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Abstract. Let K = [0,∞) × R be the Laguerre hypergroup which is the fundamental manifold of the
radial function space for the Heisenberg group. In this paper, we are interested in the dual of the Laguerre
hypergroup K̂ which can be topologically identified with the so-called Heisenberg fan, the subset of R2:( ∪

m∈N

{(λ, µ) ∈ R2 : µ = |λ|(2m+ α+ 1), λ ̸= 0}
)∪

{(0, µ) ∈ R2 : µ ≥ 0}.

We obtain necessary and sufficient conditions on the parameters for the boundedness of the fractional
integral operator on the dual of Laguerre hypergroup K̂ from the spaces Lp(K̂) to the spaces Lq(K̂) for
1 < p < q <∞ and from the spaces Lp(K̂) to the weak spaces WLq(K̂) for 1 ≤ p < q <∞.

Keywords. Dual of Laguerre hypergroup · generalized translation operator · Fourier-Laguerre transform ·
fractional integral.

Mathematics Subject Classification (2010): 42B20, 42B25, 42B35

1 Introduction

The Hardy–Littlewood maximal function, fractional maximal function and fractional integrals are
important technical tools in harmonic analysis, theory of functions and partial differential equations. The
maximal function was firstly introduced by Hardy and Littlewood in 1930 (see [16]) for functions defined
on the circle. It was extended to the Euclidean spaces, various Lie groups, symmetric spaces, and some
weighted measure spaces (see [8], [9], [20], [23], [25]). In the setting of hypergroups versions of Hardy–
Littlewood maximal functions were given in [6] for the Jacobi hypergroups of compact type, in [7] for
the Jacobi-type hypergroups, in [4] for the one-dimensional Chebli-Trimeche hypergroups, in [21] for the
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one-dimensional Bessel-Kingman hypergroups, in [10] (see also [11–13]) for the n-dimensional Bessel-
Kingman hypergroups (n ≥ 1), and in [15] for the dual of Laguerre hypergroups.

In the present work, we study fractional integral on the dual of Laguerre hypergroup [5,17], so we
fix α ≥ 0 and K̂ ∼= R × N and we define fractional integral using the harmonic analysis on the Laguerre
hypergroup and its dual which can be seen as a deformation of the hypergroup of radial functions on the
Heisenberg group (see, for example [2,19,22]).

The functional analysis and Fourier analysis on K and its dual have been extensively studied in [3]
and [19], and hence, it is well known that the Fourier-Laguerre transform defined on K is a topological
isomorphism from the Schwartz space S(K) onto S(K̂): the Schwartz space on K̂ (see [[19], Proposition
II.1]). Its inverse is given by

g∨(ξ) =

∫
K̂
φ(ξ)gdγα, (1.1)

where dγ is the Plancherel measure on K̂ given by dγ(λ,m) = |λ|α+1dλ ⊗ Lα
m(0)δm. The topology on

K is given by the norm N(x, t) = (x4 + 4t2)1/4, while we assign to K̂ the topology generated by the
quasi-semi-norm N (λ,m) = |λ|(m+ α+1

2 ).
The classical Riesz potential is an important technical tool in harmonic analysis, theory of functions

and partial differential equations. In the present work, we study the fractional maximal function and
fractional integral on the dual of Laguerre hypergroup. We define the fractional maximal function and
the fractional integral using harmonic analysis on dual of Laguerre hypergroups which can be seen as a
deformation of the hypergroup of radial functions on the Heisenberg group (see, for example [2,18,19,
22]). We obtain the necessary and sufficient conditions for the boundedness of the fractional maximal
operator and the fractional integral operator on the dual of Laguerre hypergroup from the spaces Lp(K̂)

to the spaces Lq(K̂) and from the spaces L1(K̂) to the weak spaces WLq(K̂).
The paper organized as follows. In Section 2, we give the our main result on the boundness of the

fractional integral on the dual of Laguerre hypergroup. In Section 3, we present some definitions and
auxiliary results. In section 4, we give polar coordinates in dual of Laguerre hypergroup and some lemmas
needed to facilitate the proofs of our theorems. The main result of the paper is the inequality of Hardy-
Littlewood-Sobolev type for the fractional integral, established in Section 5. We prove the boundedness of
the fractional maximal operator and fractional integral operator from the spaces Lp(K̂) to Lq(K̂) and from
the spaces L1(K̂) to the weak Lebesgue spaces WLq(K̂). We show that the conditions on the parameters
ensuring the boundedness cannot be weakened.

2 Main result

Let α ≥ 0 be a fixed number, K̂ = R × N and where dγ is the Plancherel measure on K̂ given by
dγ(λ,m) = |λ|α+1dλ⊗ Lα

m(0)δm.
For every 1 ≤ p ≤ ∞, we denote by Lp(K̂) = Lp(K̂; dγα) the spaces of complex-valued functions f ,

measurable on K̂ such that

∥f∥Lp(K̂) =

(∫
K̂
|f(λ,m)|p dγα(λ,m)

)1/p

<∞ if p ∈ [1,∞),

and
∥f∥L∞(K̂) = ess sup

(λ,m)∈K̂
|f(λ,m)| if p = ∞.

We recall here that dγα is the positive measure defined on K̂ by∫
K̂
f(λ,m)dγα(λ,m) =

∞∑
m=0

L
(α)
m (0)

∫
R
f(λ,m)|λ|α+1dλ.

For 1 ≤ p <∞ we denote byWLp(K̂), the weak Lp(K̂) spaces defined as the set of locally integrable
functions f(λ,m), (λ,m) ∈ K̂ with the finite norm

∥f∥WLp(K̂) = sup
r>0

r (γα{(λ,m) ∈ K̂ : |f(λ,m)| > r})1/p.
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For m ∈ N we denote by K̂m = {(0, 0)} ∪ {R \ {0} × {0, 1, 2, . . . , 2m}} and 1K̂m
the characteristic

function of K̂m. In this section we introduce the ball in K̂ with center (λ,m) and radius r > 0 (for
shortness Br) to be the set

Br(λ,m) = {(µ, η) ∈ K̂m, N (λ− µ,max(n−m), 0) < r}.

We denote by

fr(λ,m) = r−(α+2)f
(
δ 1

r
(λ,m)

)
the dilated of the function f defined on K̂ preserving the mean of f with respect to the measure dmα, in
the sense that ∫

K̂
fr(λ,m)dγα(λ,m) =

∫
K̂
f(λ,m)dγα(λ,m), ∀r > 0 and f ∈ L1(K̂).

The generalized translation operators T (α)
(λ,m)

on K̂ are given for a suitable function f by

[T
(α)
(λ,m)

f ](µ, η) =
∑

j∈Nm,n

f(λ+ µ, j)Cα
j ((λ,m)(µ, η)),

where

Cα
j ((λ,m)(µ, η)) =

Lα
j (0)

Γ (α+ 1)

∫ ∞

0

Lα
m

(∣∣∣ λ

λ+ µ

∣∣∣x)Lα
n

(∣∣∣ µ

λ+ µ

∣∣∣x)Lα
j (x)x

αdx,

and

Nm,n =

{
{0, 1 . . . ,m+ n}, if λµ > 0,

N, if λµ ≤ 0

with the assumption Cα
j ((λ,m)(µ, η)) = 0 if j ≥ m+ n+ 1 and λµ > 0.

The generalized translation operator above satisfies the following contraction property,

∥T (α)
(λ,m)

f∥p,γα ≤ ∥f∥p,γα ∀f ∈ Lp(K̂).

The generalized convolution product on K̂ is defined for a suitable pair of functions f and g by

f♯g(λ,m) =

∫
K̂
T
(α)
(λ,m)

f(µ, η)g(−µ, η)dγα(µ, η),

and satisfies for f in Lp(K̂) and g in Lq(K̂), 1 ≤ p, q ≤ ∞, f♯g belongs to Lr(K̂), 1
p + 1

q = 1 + 1
r , and

∥f♯g∥Lr(K̂) ≤ ∥f∥Lp(K̂)∥g∥Lq(K̂).

For the maximal operator defined on K̂ by

Mf(λ,m) = sup
r>0

1

γα(Br)

∫
Br

T
(α)
(λ,m)

|f(µ, η)|dγα(µ, η)

and the fractional integral by

Iβf(λ,m) =

∫
K̂
T
(α)
(λ,m)

|(µ, η)|β−α−2

K̂
f(µ, η)dγα(µ, η), 0 < β < α+ 2.

We have the following result
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Theorem 2.1 (see [1]) 1. If f ∈ L1(K̂), then for every β > 0

γα{(λ,m) ∈ K̂ :Mf(λ,m) > β} ≤ C

β

∫
K̂
|f(λ,m)|dγα(λ,m),

where C > 0 is independent of f .
2. If f ∈ Lp(K̂)λ, 1 < p ≤ ∞, then Mf ∈ Lp(K̂) and

∥Mf∥Lp(K̂) = Cp∥f∥Lp(K̂),

where Cp > 0 is independent of f .

Corollary 2.1 If f ∈ Lloc(K̂), then

lim
r→0

1

γαBr

∫
Br

∣∣T (α)
(λ,m)

f(y, s)− f(λ,m)
∣∣ dmα(y, s) = 0

for a. e. (λ,m) ∈ K̂.

As an application, we give a result about approximations of the identity. The maximal function can be
used to study almost everywhere convergence of f ∗φε as they can be controlled by the Hardy-Littlewood
maximal function Mf under some conditions on φ.

Theorem 2.2 [15] Let ψ a nonnegative and decreasing function on [0,∞),

|φ(λ,m)| ≤ ψ(|(λ,m)|K̂) and ψ(|(λ,m)|K̂) ∈ L1(K̂). Then there exists a constant C > 0 such that

Mφf(λ,m) ≡ sup
r>0

|(f ∗ φr) (λ,m)| ≤ CMf(λ,m).

Corollary 2.2 Let φ ∈ L1(K̂) and assume
∫
K̂ φ(λ,m) dmα(λ,m) = 1. Then for f ∈ Lp(K̂), 1 ≤ p <∞

lim
r→0

∥f ∗ φr − f∥Lp(K̂) = 0.

The following theorem is our main result in which we obtain the necessary and sufficient conditions
for the fractional integral operator Iβ to be bounded from the spaces Lp(K̂) to Lq(K̂), 1 < p < q < ∞
and from the spaces L1(K̂) to the weak spaces WLq(K̂), 1 < q <∞.

Theorem 2.3 Let 0 < β < α+ 2 and 1 ≤ p < α+2
β .

1) If 1 < p < α+2
β , then the condition 1

p − 1
q = β

α+2 is necessary and sufficient for the boundedness

of Iβ from Lp(K̂) to Lq(K̂).
2) If p = 1, then the condition 1 − 1

q = β
α+2 is necessary and sufficient for the boundedness of Iβ

from L1(K̂) to WLq(K̂).

Recall that, for 0 < β < α+ 2, the following inequality hold

Mβf(λ,m) ≤ Ω
β

α+2−1

2 Iβ(|f |)(λ,m),

where Ω2 is the volume of the unit ball in K̂. Hence the boundedness of the fractional integral operator
Iβ implies the boundedness of the fractional maximal operator Mβ .

Corollary 2.3 Let 0 < β < α+ 2 and 1 ≤ p < α+2
β .

1) If 1 < p < α+2
β , then the condition 1

p − 1
q = β

α+2 is necessary and sufficient for the boundedness

of Mβ from Lp(K̂) to Lq(K̂).
2) If p = 1, then the condition 1 − 1

q = β
α+2 is necessary and sufficient for the boundedness of Mβ

from L1(K̂) to WLq(K̂).
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For 1 ≤ p, q ≤ ∞ and 0 < s < 2, the Besov space on the dual of Laguerre hypergroup Bs
p,q(K̂)

consists of all functions f in Lp(K̂) so that

∥f∥Bs
p,q(K̂)

= ∥f∥Lp(K̂) +

∫
K̂

∥T (α)
(λ,m)

f(·)− f(·)∥q
Lp(K̂)

|(λ,m)|α+2+sq

K̂

dγα(λ,m)

1/q

<∞. (2.1)

Besov spaces in the setting of the Laguerre hypergroups studied by Assal and Ben Abdallah ([2]). In
the following theorem we prove the boundedness of the maximal operator in Besov spaces on the dual of
Laguerre hypergroups.

Theorem 2.4 For 1 < p < ∞, 1 ≤ q ≤ ∞ and 0 < s < 2 the Hardy-Littlewood maximal function
operator is bounded on Bs

pq(K̂). More precisely, there is a constant C > 0 such that

∥Mf∥Bs
pq(K̂)

≤ C∥f∥Bs
pq(K̂)

hold for all f ∈ Bs
pq(K̂).

3 Preliminaries

The harmonic analysis on the Laguerre hypergroup K (see [21]) is generated by the singular operator
Lα = ∂2

∂x2 + 2α+1
x

∂
∂x + x2 ∂2

∂t2
and the norm N(x, t) = (x4 + t2)1/4, (x, t) ∈ K, while its dual K̂ is

generated by the differential difference operator Λ = Λ2
1 − (2Λ2 + 2 ∂

∂λ )
2, where Λ1 = 1

|λ|

(
m△+△− +

(α + 1)△+

)
and Λ2 = −1

2λ

(
(α + j + 1)△+ +m△−

)
and the quasinorm N (λ,m) = |λ|(m + α+1

2 ),

(λ,m) ∈ K̂, where the difference operators △± are given for a suitable function Φ by: △+Φ(λ,m) =

Φ(λ,m+ 1)− Φ(λ,m), △−Φ(λ,m) = Φ(λ,m)− Φ(λ,m− 1), if m ≥ 1 and △−Φ(λ, 0) = Φ(λ, 0).
These operators satisfy some basic properties which can be found in [2], [3] and [19], namely one has

Lαφ(λ,m) = −N (λ,m)φ(λ,m) and Λφ(λ,m)(x, t) = N4(x, t)φ(λ,m). (3.1)

For f ∈ L1(K̂) the Fourier-Laguerre transform F is defined by

F(f)(λ,m) =

∫
K̂

φ−λ,m(λ,m)f(λ,m)dγα(λ,m)

such that
∥F(f)∥L∞(K̂) ≤ ∥f∥L1(K̂).

The generalized translation operators T (α)
(λ,m)

on the dual of Laguerre hypergroup satisfies the follow-
ing properties

T
(α)
(λ,m)

f(µ, η) = T
(α)
(µ,η)

f(λ,m), T
(α)
(0,0)

f(µ, η) = f(µ, η),

∥T (α)
(λ,m)

f∥Lp(K̂) ≤ ∥f∥Lp(K̂) for all f ∈ Lp(K̂), 1 ≤ p ≤ ∞, (3.2)

F
(
T
(α)
(λ,m)

f
)
(λ,m) = F(f)(λ,m) φλ,m(λ,m).

The translation operator T (α)
(λ,m)

is defined by

T
(α)
(λ,m)

f(µ, η) =

∫
K̂
f(z, v)Wα((λ,m), (µ, η), (z, v))z2α+1dzdv,

where dzdv is the Lebesgue measure on K̂, and Wα is an appropriate kernel satisfying∫
K̂
Wα((λ,m), (µ, η), (z, v))z2α+1dzdv = 1
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(see [18]). For all (λ,m) ∈ R× N, the function φλ,m(λ,m) satisfies the following product formula

φλ,m(λ,m)φλ,m(µ, η) = T
(α)
(λ,m)

φλ,m(µ, η).

By using the generalized translation operators T (α)
(λ,m)

, (λ,m) ∈ K̂, we define a generalized convolu-

tion product ∗ on K̂ by (
δ(λ,m) ∗ δ(µ,η)

)
(f) = T

(α)
(λ,m)

f(µ, η),

where δ(λ,m) is the Dirac measure at (λ,m).
We define the convolution product on the space Mb(K̂) of bounded Radon measures on K̂ by

(µ ∗ ν)(f) =
∫
K̂×K̂

T
(α)
(λ,m)

f(µ, η) dµ(λ,m) dν(µ, η).

If µ = h ·mα and ν = g ·mα, then we have

µ ∗ ν = (h ∗ ǧ) ·mα, with ǧ(µ, η) = g(y,−s),

where, h and g belong to the space L1(K̂) of the integrable functions on K̂ with respect to the measure
dγα(λ,m), and h ∗ g is the convolution product defined by

(h ∗ g)(λ,m) =

∫
K̂
T
(α)
(λ,m)

h(µ, η) g(y,−s) dmα(µ, η), for all (λ,m) ∈ K̂.

Note that, for the convolution operators the Young inequality is valid: If 1 ≤ p, r ≤ q ≤ ∞, 1/p′ +
1/q = 1/r, f ∈ Lp(K̂), and g ∈ Lr(K̂), then f ∗ g ∈ Lq(K̂) and

∥f ∗ g∥Lq(K̂) ≤ ∥f∥Lp(K̂) ∥g∥Lr(K̂) , (3.3)

where p′ = p/(p− 1).

4 Polar coordinates in dual of Laguerre hypergroup and some lemmas

Let Σ = Σ2 be the unit sphere in K̂. We denote by ω2 the surface area of Σ and by Ω2 its volume (see
[14,15]). For ξ = (λ,m) ∈ K̂, consider the transformation given by

x = r(cosφ)1/2, t = r2 sinφ,

where −π/2 ≤ φ ≤ π/2, r = |ξ|K̂ and ξ′ = ((cosφ)1/2, sinφ) ∈ Σ.

The Jacobian of the above transformation is r2α+3(cosφ)α. If f is integrable in K̂, then∫
K̂
f(λ,m) dmα(λ,m)

=
1

2πΓ (α+ 1)

∫ π/2

−π/2

∫ ∞

0

f
(
r(cosφ)1/2, r2 sinφ

)
r2α+3(cosφ)αdrdφ.

Since
1

2πΓ (α+ 1)

∫ π/2

−π/2

(cosφ)αdφ =

∫
Σ

dξ′,

we get ∫
K̂
f(λ,m) dγα(λ,m) =

∫
Σ

∫ ∞

0

rα+1f(δrξ
′) drdξ′. (4.1)

Here dξ′ is the surface area element on Σ.
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Lemma 4.1 [14,15] The following equalities are valid

ω2 =
Γ (α+1

2 )

2
√
πΓ (α+ 1)Γ (α2 + 1)

, Ω2 =
Γ (α+1

2 )

4
√
π(α+ 2)Γ (α+ 1)Γ (α2 + 1)

.

Note that for any x ∈ K̂ and r > 0, the area of the sphere Sr(λ,m) is r2α+3ω2 and its volume is
rα+2Ω2 = rα+2 ω2

α+2 .

Lemma 4.2 [14,15] The function f(λ,m) = |(λ,m)|λK̂ is integrable in any neighborhood of the origin if
and only if λ > −α − 2, and f is integrable in the complement of any neighborhood of the origin if and
only if λ < −α− 2.

5 Hardy-Littlewood-Sobolev theorem for the fractional integral on the dual of Laguerre
hypergroup

The examples considered below show that if p ≥ α+2
β , then Iβ is not defined for all functions f ∈ Lp(K̂).

Example 1. Let (λ,m) ∈ K̂, 0 < β < α + 2, f(λ,m) = 1

|(λ,m)|β
K̂
ln |(λ,m)|K̂

χ {B2
(λ,m), where

{
Br = K̂ \Br , r > 0. For p = α+2

β , we have f ∈ Lp(K̂) and Iβf(λ,m) = +∞.

Example 2. Let (λ,m) ∈ K̂, 0 < β < α+ 2, f(λ,m) = |(λ,m)|−β

K̂
χ {B2

(λ,m). For p > α+2
β , we

have f ∈ Lp(K̂) and Iβf(λ,m) = +∞.

For the fractional integral on the Laguerre group the following analogue of Hardy-Littlewood-Sobolev
theorem is valid.

Theorem 5.1 Let 0 < β < α+ 2 and 1 ≤ p < α+2
β .

1) If 1 < p < α+2
β , f ∈ Lp(K̂) and 1

p − 1
q = β

α+2 , then Iβf ∈ Lq(K̂) and

∥∥Iβf∥∥Lq(K̂)
≤ Cpq∥f∥Lp(K̂), (5.1)

where Cpq = 2(C3)
1−p/q(C2Cp)

p/q , C2 = Ω22
α+2/(2β − 1), C3 =

(
Ω2q/p

′)1/p′
.

2) If f ∈ L1(K̂) and 1− 1
q = β

α+2 , then Iβf ∈WLq(K̂) and

∥∥Iβf∥∥WLq(K̂)
≤ C1q∥f∥L1(K̂), (5.2)

where C1q = 2(C1C2)
1/q .

Proof. 1) Let f ∈ Lp(K̂), 1 < p < α+2
β . Then we write

Iβf(λ,m) =

(∫
Br

+

∫
{Br

)
T
(α)
(λ,m)

f(µ, η) |(µ, η)|β−α−2

K̂
dγα(µ, η) = A(λ,m) +B(λ,m).
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By taking sum with respect to all integer k > 0, we get

|A(λ,m)| ≤
∫
Br

T
(α)
(λ,m)

|f(µ, η)| |(µ, η)|β−α−2

K̂
dmα(µ, η)

=

∞∑
k=1

∫
B

2−k+1r
\B

2−kr

T
(α)
(λ,m)

|f(µ, η)| |(µ, η)|β−α−2

K̂
dmα(µ, η)

≤
∞∑
k=1

(
2−kr

)β−α−2
∫
B

2−k+1r
\B

2−kr

T
(α)
(λ,m)

|f(µ, η)| dmα(µ, η)

≤ Ω2r
β(Mf)(λ,m)

∞∑
k=1

(
2−k

)β−α−2 (
2−k+1

)α+2

= Ω22
α+2rβ(Mf)(λ,m)

∞∑
k=1

2−kβ ≤ Ω22
α+2

2β − 1
rβ(Mf)(λ,m).

Therefore it follows that
|A(λ,m)| ≤ C2r

βMf(λ,m). (5.3)

By Hölder’s inequality and the inequality (3.2) we have

|C(λ,m)| ≤
(∫

{Br

(
T
(α)
(λ,m)

|f(µ, η)|
)p
dγα(µ, η)

) 1
p

×
(∫

{Br

|(µ, η)|(β−α−2)p′

K̂
dγα(µ, η)

) 1
p′

≤
∥∥∥T (α)

(λ,m)
|f |

∥∥∥
Lp(K̂)

(∫
{Br

|(µ, η)|(β−α−2)p′

K̂
dγα(µ, η)

) 1
p′

≤ ∥f∥Lp(K̂)

(∫
{Br

|(µ, η)|(β−α−2)p′

K̂
dγα(µ, η)

) 1
p′

= C3r
−(α+2)/q∥f∥Lp(K̂).

Consequently, we get
|B(λ,m)| ≤ C3r

−(α+2)/q∥f∥Lp(K̂). (5.4)

Thus, from the inequalities (5.3) and (5.4), we have∣∣Iβf(λ,m)
∣∣ ≤ C2r

βMf(λ,m) + C3r
−(α+2)/q ∥f∥Lp(K̂) .

The minimum value of the right-hand side is attained at

r =
[
(C2Mf(λ,m))−1 C3∥f∥Lp(K̂)

]p/(α+2)
,

and hence ∣∣Iβf(λ,m)
∣∣ ≤ 2 (C2Mf(λ,m))p/q

(
C3 ∥f∥Lp(K̂)

)1−p/q
.

By Theorem 2.1, we have∫
K̂

∣∣Iβf(λ,m)
∣∣q dγα(λ,m) ≤ 2q

(
C3∥f∥Lp(K̂)

)q−p
∫
K̂
(C2Mf(λ,m))p dγα(λ,m)

≤ 2q(C3)
q−p(C2Cp)

p ∥f∥q
Lp(K̂)

.

Then we get ∥∥Iβf∥∥Lq(K̂)
≤ 2(C3)

1−p/q(C2Cp)
p/q∥f∥Lp(K̂).
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2) Let f ∈ L1(K̂). We have

γα

{
(λ,m) ∈ K̂ : |Iβf(λ,m)| > 2τ

}
≤ γα

{
(λ,m) ∈ K̂ : |A(λ,m)| > τ

}
+ γα

{
(λ,m) ∈ K̂ : |B(λ,m)| > τ

}
.

Taking into account the inequality (5.3) and applying Theorem 1 we have

τ γα

{
(λ,m) ∈ K̂ : |A(λ,m)| > τ

}
≤ τ

∫
{(λ,m)∈K̂: C2rβMf(λ,m)>τ}

dγα(λ,m)

= τ γα

{
(λ,m) ∈ K̂ : Mf(λ,m) >

τ

C2rβ

}
≤ C1 r

β
∫
K̂
|f(λ,m)|dγα(λ,m)

= C1C2 r
β ∥f∥L1(K̂) ,

and

|C(x, t)| ≤
∫

{Br

T
(α)
(λ,m)

|f(µ, η)| |(µ, η)|β−α−2

K̂
dγα(µ, η)

≤ rβ−α−2
∫

{Br

T
(α)
(λ,m)

|f(µ, η)| dγα(µ, η)

≤ r−
α+2
q

∫
K̂
|f(µ, η)|dγα(µ, η) = r−

α+2
q ∥f∥L1(K̂) .

If r−
α+2
q ∥f∥L1(K̂) = τ , then |C(λ,m)| ≤ τ , and hence

γα

{
(λ,m) ∈ K̂ : |C(λ,m)| > τ

}
= 0.

Then we get

γα

{
(λ,m) ∈ K̂ : |Iβf(λ,m)| > 2τ

}
≤ γα

{
(λ,m) ∈ K̂ : |A(λ,m)| > τ

}
+ γα

{
(λ,m) ∈ K̂ : |B(λ,m)| > τ

}
≤ C1C2

τ
rβ ∥f∥L1(K̂) = C1C2r

β+α+2
q

= C1C2r
α+2 = C1C2τ

−q ∥f∥q
L1(K̂)

=
C1C2

τq
∥f∥q

L1(K̂)

and hence ∥∥Iβf∥∥WLq(K̂)
≤ 2(C1C2)

1/q∥f∥L1(K̂).

Therefore the proof of the theorem is completed.

Proof of Theorem 2.3. Sufficiency part of the proof follows from Theorem 5.1.
Necessity. 1) Let 1 < p < α+2

β , f ∈ Lp(K̂) and assume that the inequality∥∥Iβf∥∥Lq(K̂)
≤ C ∥f∥Lp(K̂) (5.5)

holds, where C depends only on p, q and α.
Define fr(λ,m) := f(rx, r2t), then

∥fr∥Lp(K̂) = r−
α+2
p ∥f∥Lp(K̂)

and ∥∥Iβfr∥∥Lq(K̂)
= r−β− 2α+4

q
∥∥Iβf∥∥Lq(K̂)

.
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By the inequality (5.5) ∥∥Iβf∥∥Lq(K̂)
≤ Crβ+

α+2
q −α+2

p ∥f∥Lp(K̂).

If 1
p > 1

q + β
α+2 , then for all f ∈ Lp(K̂) we have

∥∥Iβf∥∥Lq(K̂)
= 0 as r → 0, which is impossible.

Similarly, if 1
p <

1
q + β

α+2 , then for all f ∈ Lp(K̂) we obtain
∥∥Iβf∥∥Lq(K̂)

= 0 as r → ∞, which is also
impossible.

Therefore 1
p = 1

q + β
α+2 .

Necessity. Let Iβ bounded from L1(K̂) to WLq(K̂). We have∥∥Iβfr∥∥WLq(K̂)
= r−β−α+2

q
∥∥Iβf∥∥WLq(K̂)

.

By the boundedness Iβ from L1(K̂) to WLq(K̂)∥∥Iβf∥∥WLq(K̂)
= rβ+

α+2
q

∥∥Iβfr∥∥WLq(K̂)

≤ Crβ+
α+2
q ∥fr∥L1(K̂) = Crβ+

α+2
q −(α+2)∥f∥L1(K̂),

where C depends only on q and α.
If 1 < 1

q + β
α+2 , then for all f ∈ L1(K̂) we have

∥∥Iβf∥∥WLq(K̂)
= 0 as r → 0. Similarly, if

1 > 1
q + β

α+2 , then for all f ∈ L1(K̂) we obtain
∥∥Iβf∥∥WLq(K̂)

= 0 as r → ∞ .

Hence we get 1 = 1
q + β

α+2 . Thus the proof of Theorem 2.3 is completed.

Proof of Corollary 2.3. Sufficiency part of the proof follows from Theorem 5.1 and the inequality

Mβf(λ,m) ≤ Ω
β

α+2−1

2 Iβ(|f |)(λ,m), 0 < β < α+ 2.

Necessity. 1) Let Mβ be bounded from Lp(K̂) to Lq(K̂) for 1 < p < β
α+2 , 1 < p < q <∞. Then we

have
Mβfr(λ,m) = r−β Mβf(rλ, r

2m),

and ∥∥Mβfr
∥∥
Lq(K̂)

= r−β−α+2
q

∥∥Mβf
∥∥
Lq(K̂)

.

By the same argument in Theorem 2.3 we obtain 1
p = 1

q + β
α+2 .

2) Let Mβ be bounded from L1(K̂) to WLq(K̂). Then we have∥∥Mβfr
∥∥
WLq(K̂)

= r−β−α+2
q

∥∥Mβf
∥∥
WLq(K̂)

.

Hence it is not hard to verify that 1 = 1
q + β

α+2 . Thus the proof of Corollary 2.3 is completed.

Proof of Theorem 2.4. For (λ,m) ∈ K̂, let T (α)
(λ,m)

be the generalized translation by (λ,m). By
definition of the Besov spaces it suffices to show that

∥T (α)
(λ,m)

Mf −Mf∥Lp(K̂) ≤ C∥T (α)
(λ,m)

f − f∥Lp(K̂).

It is easy to see that T (α)
(λ,m)

commutes with M , i.e. T (α)
(λ,m)

Mf =M(T
(α)
(λ,m)

f). Hence we have

|T (α)
(λ,m)

Mf −Mf | = |M(T
(α)
(λ,m)

f)−Mf | ≤M(|T (α)
(λ,m)

f − f |).

Taking Lp(K̂) norm on both ends of the above inequality, by the boundedness of M on Lp(K̂) (see [1]),
we obtain the desired result. Theorem 2.4 is proved.
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