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Abstract. This paper is devoted to the study of certain generalized maximal functions measuring smooth-
ness. We study the connection between the two ¢-maximal functions that measuring smoothness of locally
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Introduction

It is known that maximal functions measuring smoothness play an important role in the study of
properties of integral operators and other objects of Harmonic Analysis. The main topic of this paper is
the study of certain generalized maximal function measuring smoothness.

The paper is organized as follows. Section 1 has auxiliary character and presents the basic definitions,
some notation and well-known facts. In section 2 the relations between maximal function and metric
characteristic are investigated and some useful inequalities were obtained. In section 3 was obtained
inequalities for metric characteristics. In section 4 inequalities between generalized maximal functions
was proved. In section 5 estimations between generalized maximal function and maximal function was
obtained. The main results are given in Theorem 3.1, Theorem 4.2, Propositions 5.3, 5.5 and Corollary
5.2.

1 Some definition and auxiliary facts

Let R™ be n-dimensional Euclidean space of the points =z = (z1,z9,...,2n), and
B(a,r) :={xz€R": |z —a| <r} beaclosed ball in R” of radius » > 0 with the center at point
a € R™. Denote by L;,. (R™) a class of all local summable functions defined on R".

Let f € Lioc (Rn) and

1
. t)dt,
fB(a.r) |B (x,7)| B(x,r)f()
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where | B (x, )| denotes the volume of ball B (a,7). Let s¢ (z) = linJ}O fB(x,r) if this limit exist and
. o ;

is finite, and sy (x) = f () at the remaining points. It is known that if f € L;,. (R™), then almost
everywhere in R™ it holds the equality s¢ (z) = f ().

Let the function ¢ (z, r) be defined on the set R x (0, +00), accept only positive values, and mono-
tonically increase with respect to the argument r on the interval (0, +00). We denote the class of all
functions ¢ (z, r) with the above mentioned properties by ¥.

Let® € L' (R™), & (x) >0 (z €R™), p €W, f € Liy. (R™). Introduce the following ¢-maximal
functions (generalized maximal functions)

1
@) = swp s [ @ e =[O et

N:ff(;r):supﬁ/nsﬁr(m—t)‘f(t)—sf(x)}dt.

r>0 ¥

We also introduce the following metric ®-characteristics

m% (z;8) = sup [ Dr(z—1)|f () = fp(a,n|dt,
0<r<é Jrn»

n?(z;é): sup / @r(xft)|f(t)fsf(x)|dt, ze€R™ §>0.
’ 0<r<é JR™

Note that the functions fJ @ (x) and m? (z; 0) were first introduced in [16].
Consider the known special cases of the introduced maximal functions.
1

DIfP(z) = P (z) = WXB(OJ) (z), where X (x) is a characteristic function of the set

E CR", and ¢ (z, r) = 1, then ff’ ¢ (z) = f7 (x), where f# (z) is the maximal function introduced in
the paper [4];

) If & (z) = o (x), ¢ (x, 7) = (@ > 0), then f7% (2) = f¥ (x). The maximal function f¥ (z)
was introduced in the paper [5]. In paper [6] the function ff (x) was investigated.

NI P(x) = Po(x), p(z,r) = r* (a>0), thenNgf (z) = Naf (z). The maximal function
Naf () was introduced in [4] and studied in [5]. The paper [6] was devoted to the investigation of
the functions ff (z) and No f ().

HIf P (z) = Do (z), ¢ (x, T) = ¢ (1), then the maximal functions ff’¢ (z) =: ff (z) and fof (z) =:
Ny f () may be found in the papers [7], [8], [9], [10], [11].

Now let’s consider special cases of metric $-characteristics.

LIf & (z) = &g (z), then mF (z; §) = m (x; 6), where

my (z; ) = sup L

B (z, )] F ) = Bz, m)| dt.
o<r<s | B (z, )] B(m,r)‘ t) = fB(z, ]

Note that the function m ¢ (x; §) was first introduced in the paper [12] (see also, [13], [14]).
2.1f & (z) = Py (x), then nf (z; 8) =ny (x; 5), where

1
:8) = R — t) — dt.
ny (& 9) oili‘;uBu,r)/B(z,r)'f ® = 2s(@)

For almost all = € R™ it is valid the equality ny (x; §) = wy («; §), § > 0, where

1
L) = - t) — dt, 1 €R™, §> 0.
ori0)= s s [ WO f@ld

The function wy (z; §) may be found in literature (see e.g. [2], [17]).
3.Let ® (z) = P (x), where P (z) is the Poisson-Kernel i.e.
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n+1

P(z) = . <1 + |x|2) 7 , where ¢, = I" (”—‘H) . 7~"3" . Global variant of the characteris-

tic mf (z; §) (more precisely, the equivalent characteristic to it which is called a modulus of harmonic
oscillation) for periodic functions of one variable may be found in the papers of O.Blasco and others [1].
It is known that Hardy-Littlewood’s maximal function is determined by the equality

Mf (z) = sup L

_— t)|dt, x € R".
r>0 |B (xa T)l B(z,r) |f( )l

Ifd e LY(R™), & (x) >0 (xR, f e Ly (R™), then the following maximal function is also
considered [16]

M¢f(x)=sup/ S (x—t)|f ()| dt, z € R™.
r>0JR"

It is easy to see that if @ (z) = &g (z), = € R", then Mg f (x) = M f (z).
From the definition of a maximal function f# (z) it follows that,

VzeR": f#(m)gsup

2 e |
r>0 | B (x, 7)) B(M)U(t)l t=2Mf (z)

Thus,
f#(x) <2Mf (), z€R™ (1.1)
On the other hand,

1
Ve e R" Vr>0: —_— t)dt < Mf(x),
|B(l‘, ,r,)| Bla,r) |f( )l f( )

and therefore for almost all =z € R™

161 = tm oy [ POl a0 @),

Thus, for almost all = € R" itis valid the inequality

If (@) < Mf(z). 1.2)
If

Nf(x):=su )—s dt, x € R,
F@ = ey o O @)

then for almost all « € R™ we have

Nf(zx) <sup ———
/(@) r>0 B, )| JB(a,r)

If @)l dt + |sy ()] = Mf () +|f (2)],
and hence by means of (1.2) we get that for almost all = € R"
Nf(x) < 2Mf (). (1.3)
It is known that (see, e.g. [17]) if 1 < p < oo then
3Cp >0 Vfe LP (R") : [MfllLo < Cp-[IfllLo-
Hence, from (1.1) and (1.3) we get
34 >0 Ve Lr (&) ¥ < Ap- 1l

ABp>0 Vfe L’ (R"): [INflio < Bp- IfllLo-

The last relation mean that the operators f — f# and f — N f are the operators of the type (p, p)
forl < p < oo.



R.M. Rzaev, EN. Aliyev 151

It is also known that [17] that if f € L' (R™), then there exist a number A > 0 such that for any A > 0
n A
where m FE denotes the Lebesque measure of the set £ C R™. Hence, by means of (1.1) and (1.3) we get

n n A 24
m{meR : f#(a:)>)\}§m{xER :Mf(x)>§}§7-||f||L1(Rn),

m{zeR": Nf(x)>/\}§m{m€R":Mf(x)>%}g%.HfHLl(Rn).

Thus, if f € ! (R™), then there exist the numbers A; > 0 and By > 0 such that for any A > 0

. A
m{zeR: f# @) >2} < Sl

B
m{zeR": Nf(z)>A}< 71 Nl g gy -
The last relations mean that the operators f — f# and f — N f are the operators of weak type (1,1).

In the case ¢ (z, ) = 1, we denote the functions ff’é (z) and Ngf (z) by f# % (2) and N?f (z),
respectively. Then for the function f# % () we have

4 @) =sp [0 =) |0 Ty

r>0
gsup{/ B (=01 Ol dt+ | o] [ sbr(x—t)dt}
r>0 Rn R”
1
< D, —t ) dt+ C - _— t)| dt
< [ oc@-lr0) 5 Jan )

=Mgf(z)+C-Mf(z), z €R",
where C' = [,,, &7 (¢ —t)dt = [, §(t)dt. Thus,

f5P (2) < Maf (¥) + C- Mf (z), z € R". (14)
Similarly, for N? f (z) we have

N () =Sup/n¢r(w—t)|f(t)—8f ()] dt

r>0JR

Ssup/ & (x—t)|f @) dt+C - ’sf(x)| =Mgf(z)+C- }sf(x)|
>0 n

=Mgpf(z)+C-[f ()],
for almost all = € R"™. Hence by means of (1.2) it follows that for almost all = € R™
NTf(z) < Maf (z) +C - Mf (). (15)

From these inequalities (1.4), (1.5), from the Hardy-Littlewood maximal theorem and from theorem
2 of chapter 3 [17] we get following facts.

Ify (z) = sup |®(y)], v € L' (R™), thenfor1 < p < oo
ly|>]=|

34y > ovf e (R : 17| < Ap-ifil

3By > 0vf e 17 (R") < [N?s| < B ISl
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and for p = 1 we have

Ay

m{mER": f#@(:r)>A}§7~||f||L1, FeL' (R"), A>0,

m{zer": N?@)>Ab< B, rert (), A0,

where the positive constants A; andB; are independent of f and .
Thus, at the indicated conditions on the function &, the operators f — f #? and f— N @ f are the
operators of type (p, p) for 1 < p < oo, and are also weak type operators (1,1).

2 Relations between maximal functions and metric characteristics
Everywhere in this point we’ll assume that & € L (R"), & (z) > 0 ( z € R"), p € ¥.

Proposition 2.1.[16] If f € L;,. (R™), then the following equality is true

o4
me (z, r
£ (2) = sup A

, x € R™
r>0 (p(CC, T)

Proposition 2.2. If f € L;,. (R"™), then the following equality is true

@
nf (z,r
N$ (z) = supL)

, z€R™ 2.1
r>0 ¢ (2, 7)

Proof. From definition of the function Nf (z) it follows that

fof(as):supﬁ/”@r(w—t)}f(t)—Sf(a:)’dt

r>0 P

b
ny (x, r
<ouprt &7

, z € R™. 2.2)
r>0 ¢ (z, 1)

On the other hand, for any r > 0 and = € R"™ we have

1

/ D (z —t) |f(t) —sf (x)’dt.
Hence it follows that

[ or=0lr@ - sy @i < oo N2f @),

therefore
n?(x; r) <¢(z,r) -fo(x),r >0, z € R".
So,
@
n% (z; r)
NEf(z fi,r>0,x€R".
o f @) 2 ¢ (z,7)
From the last inequality we get
@
n% (z;r
NZf(x) > sup i ), € R™ (2.3)
r>0 ¥ (‘Tv 7‘)

Equality (2.1) follows from inequalities (2.2) and (2.3).
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3 Inequalities between metric characteristics m? (x; r) and n? (x, 7)

Lemma 3.1 [16] Let f € L;,. (R™), and
essinf{® (z): xz€ B(0,1)} =co >0. 3.

Then for any constant C' the following inequality is true
/ Pr(z—t)|f(t) = fB@,n|dt < a / & (z —1t)|f (t) — C|dt,” >0, z € R", (3.2)
n R™

where the positive constant ¢1 depends only on the co, dimension n and on the quantity || || L1(R")-

Proposition 3.1. Let f € L;,. (R™), = € R™ and condition (3.1) be fulfilled. Then the following inequal-
ity is true
m? (z;r) < ey ~n‘f (z; 1), >0, 3.3)

where ¢; > 0 is a constant from inequality (3.2).

Proof. Having taken C' = s (z) in the (3.2), we have
/ Gy (=) |[f (t) = fp,n|dt < cl-/ G (x—t) |f (t) = sg ()| dt,r > 0.
R"™ Rn

In going to supremum in this inequality, we get inequality (3.3).

Proposition 3.2. Let f € Lj,. (R"), = € R™ and condition (3.1) be fulfilled. Then the following inequal-
ities are true

1 @
. < . - (1: .
my (x5 1) < o B0, 1] my (w5 7), 7> 0, 34
1 @
; < . ; . .
nf(x’r)*co-|B(0,1)| ng (z;r), r>0 3.5)

Proof. Inequality (3.4) was proved in [16]. We now prove the inequality (3.5). By means of condition
(3.1) we get

/ndﬁr(x—t)\f(t)—Sf(w) dt > @/Rnszsr(x;t) £ (6) = g (@) e

260'% ) |f(t)—5f (m)‘dt, zeR”, r>0.
Hence,
1 1
|B(gc77n)|/JE;(I)T)‘f(t)—Sf(x)|dt§ o BOD| Rn@r(fc—t){f(t)_sf(x)|dt_

From this we obtain (3.5).

Theorem 3.1 Let f € Lj,. (R"), = € R", the function & satisfy the condition (3.1) and let

U (o t
/ D < oo (3.6)
0 t
Then it holds the inequality
T m® Tt
n? (z;t) <c- (m? (z; t) +/ fi)dt> , >0, (3.7
0

where the constant ¢ > 0 is independent of x, r and f.
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Proof. By means of lemma 1.1 from [12] for 0 < n < ¢ the following inequality is true

2" ¢ 1
Imme—mmMSMQGwma+/7W?7MQ‘ (3:8)

n

From inequality (3.8), taking into account (3.4), we get
& ¢ m? (z; 1)
by~ ol Ser- (mf @ o+ [ "5 ar) (39)
n

where ¢ = 1?1—2 . m. By means of conditions (3.6) inequality (3.9) shows that there exists the
limit s¢ (z) = rl—igl-o IB(x,r)- Taking this into account and passing to limit as n — 0 in inequality (3.9),

[ it
|/ B, e) =55 (@)] <er- (m? (z; £)+/O mfiw)dt) .

Therefore we have

/¢T<x—t>|f<t>—s,e<x>}dts/ By — 1) |£ (1) = Fro.rn)| dt
R Rn

we get

+ /B2, ) — 55 (@) / Gy (¢ —t)dt <mT (z; 1)
" mf (x; 1)
+e1 - 1@l gn - (m? (z;7) +/0 ffdt

rm® (x; t)
< (1 +ep- ||¢HL1(]RTL)) . (m‘f (z; ) +/0 %dt .

Hence, the required (3.7) follows.

For ¢ = ¢, the unimprovability of estimation (3.9) was shown in [14].

Remark. Note that in place of the function @ (z), =z € R", satisfying condition (3.1) we can take,
for instance, the following functions:
D) &g (z) = mXB(O, 1 ()5

2) 8 () = ﬁ; (a>0);

n+1
3)P(m):cn-(1+|x\2) * where ¢ = I (%52) 73"

Verify, that if & (z) = & (z), then then
n? (x5 7) =ng (x5 7). (3.10)

Indeed, if & (z) = WXB(O* 1) (), then

Pr(x—t)=r"P (m - t) TR |Bl(0, 1) XBO:D (xT_t)

1
.XB(z - (t) = Bz, )] if te Bz, r),
, 0 if t¢ Bz, 7).

. 1
|B (z, )]
Therefore for this function @ (x) we have

1
[ oe=nlro-ss @)= i

z, T')| B(z,r)

’f(t) —sf (I)‘dt.

Hence equality (3.10) follows.
Similar reasonings show that if @ (z) = &g (), then

m‘f (z;r) = my (z; 7).
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4 Inequalities between maximal functions

First, we recall some notation and relations.
If &g (CL‘) = W{WXB(O"D (l‘), z € R™, then
FPo(a) = fF (@), NS f (@) = Np f (), = € R",
m?o (x5 8) = my (z; 6),71?0 (z; 0) =ny (x;6), . € R", § > 0.

If o (z,t) =1, z € R, ¢t € (0, +00), then for any functions & (z) > 0 ( z € R"), # € L' (R") and
f € Ljoe (R™) we have introduced the notation

52 @)= P (2), N2 f (@) = NTf(2), 2 € R™

Theorem 4.1. Let f € L;,. (R"), ¢ € ¥, and the function & satisfy condition (3.1). Then the following
inequality is true

5% @) <e-NEf(x), z € R, (4.1)
where the constant ¢ > 0 is independent of z, f and ¢.
Proof. From Propositions 2.1, 3.1 and 2.2 we have

D D
#,D my (z5 1) ny (z; 1)
() —up BTy D)
>0 @ (z,r) r>0 @ (z, )

where ¢; > 0 is a constant from inequality (3.3).

:Cl’Ngf(x)v

Theorem 4.2. Let f € L, (R™), ¢ € ¥, and the function ® satisfy condition (3.1) and let
* o (e, 1)
/ f’dt:O(@(a:, §)(zeR", §>0). 4.2)
0

Then there exists a number ¢ > 0 such that the following inequality is true
Ngf(z)<e-f§7 (@), z €R", 4.3)
where the constant ¢ > 0 is independent of f and x.

Proof. If = € R™ and ff @ (z) = +oo0, fulfillment of inequality (4.3) is obvious.
Let z € R™ and ff @ (z) < +oc. Then, applying Proposition 2.2 and Theorem 3.1, we have

o] <]
ny (z; r) 1 " my (w3 7)
NZr(z) =su AR <c-sup— | m? T T —I—/ = dt
A= = r>%so(w,r>< A

D . r e .
m ; R
<c-|sup F @ T)—|—sup 1 / my ( ).<P(fl77t)dt
>0 ¢(@ 1) 0@ (@m) )y ez t) t

D b .

my (x; r my (x; T T

<c- supy—&-sup I )-sup L / S0(1”15)dt
>0 @@, 1) >0 e(mt) >0 pl@T) t

e #"p(m)-(l—ksup 1 /Tso(a:, t>dt>
’ >0 ¢ (%5 7) Jo t ’

where the constant ¢ > 0 is independent of f, x and ¢. Hence from condition (4.2) we get the required
inequality.

Corollary 4.1. Let f € L;,. (R"), ¢ € ¥, the function & satisfy condition (3.1) and condition (4.2) be
fulfilled. Then there exist the numbers ¢; > 0, co > Osuch that

e fEP (@) <NEf(e)<ea- [P (2), 2 €R”, (4.4)

where the constants ¢; and cy are independent of f and x.
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5 Estimations of #-maximal functions by maximal functions

Proposition 5.1. If f € L;,. (R™), ¢ € ¥ and the function @ satisfies condition (3.1) then the following
inequalities are true

fE@ <c @), zeR”,
Neyf(z) <c-NEf(z), = €R",

where ¢ = , and cq is a constant from inequality (3.1).

1
co-1B(0,1)]

Proof. By means of Proportions 2.1, 2.2 and inequalities (3.4), (3.5) we get

o]
N my (2; 1) 1 my (1) 1 #, P n
T) = sup < - sup = . z), € R",
fo @) = S BO D o w BG D P@
ny (33 7) | n? (2 1) ! .
Nyf () = sup < -sup = “Ng f(z), z € R".

r>0 ¢ (@, 7) T co- B0, ] 50 @@, 7)  co-|B(0, 1)

Proposition 5.2. [15]. Let &, (x) =
inequality is true

W’ a >0, z€R" f e L (R™). Then the following

> my (x; 1)

et >0, (5.1)

m?” (x57r)<c-r®

where the constant ¢ > 0 is independent of f, = and r.

Proposition 5.3. Let f € L;,. (R"), z € R", a > 0. Then the following inequality is true

"ng (@) *ng(z; 1)
n?“(m;r)ﬁc(/o %dﬂrr&/r %dt >0, (5.2)

where the constant ¢ > 0 is independent of f, x and r.

Proof. Ttis easy to verify that the function @, () satisfies condition (3.1). By means of inequalities (3.7),
(5.1) and (3.3) we get

(3
Tmy (x; t)
Do Do ’
ne” (z;r) <c (mf (z; r) +/0 ftdt)
e’} T e’}
a [T myg (@ t) Lo [ my(zw)
S (&) <T’ g Wdt + 0 ; t ; Wdu dt

o0 it " ; ¢ o > i "
=c (ro‘ %dt + %ﬁlu) (/ t* 1dt) du + %ﬁlu) (/ t* 1dt) du)
r t 0o U 0 r u 0

o it " ; o ;
e (Ta my (z )dHl/ my (@) o1 a my (z u)du)
r 0

tatl o U o ” uotl

T . t o0 . t
<cg- npAr Y (; )dt +r¢ By Y (@ )dt ,
0 t - tat+l

where the constant co > 0 is independent of f, = and r.
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Proposition 5.4. [16] Let f € L, (R"), p € ¥, &y (z) = ﬁ 2z €R" o> 0and
a o © (ZC, t) n
r ” tat+1 dt =0 ((P (l‘, T))v r> 07 z e R". (53)

Then the following inequality is true
fE% @) <e ff (x), s eR",

where the positive constant c is independent of f and x.

Proposition 5.5. Let f € L. (R™), ¢ € ¥, &4 (z) = W, z € R", o > 0, conditions (4.2)
and (5.3) be fulfilled. Then it holds the inequality

NE“f(2) S e Nef (@), @ € R",
where the positive constant c is independent of f and .
Proof. From relation (2.1), (5.2), (5.3) and (4.2) we have

D
ny* (w; 1) 1 "ng(z;t) X ng(z;t)
NZaf(z)=sup L~ <. P2 g | A0
o f (x) =sup <c-sup ) (/0 +r : s

>0 ¢z, 7) r>0 ¥ 3

T t
<cosup— / Y ety
r>0 ¥ (955 7”) o ¥ (937 t) t

S . -t
. 'I“a/ nf (l’, ) . 90 (.T, t) dt
ro ez t) ottt

+c - sup
r>0 ¢ (2, 1)

<C'Nf(33)<sup ! -/r(p(x’t)dt—i—sup ! -ra/w¢(x’t)dt)
- ’ r>0 ¥ (1‘, ’f’) 0 t r>0 ¥ ((E, T) r tatl

<ec1-Nef(z), z € R,

where the constant ¢; > 0 is independent of f and .

Proposition 5.6. [16] Let f € L;,. (R"), ¢ € ¥, §, (z) = W, z € R", o > 0, and condition
(5.3) be fulfilled. Then there exist the numbers ¢; > 0, co > 0 such that

1 fE () < fHP () <o fE (), z R,

where the constants ¢; and cg are independent of f and x.

Corollary 5.1. Let f € Lj,. (R"), ¢ € ¥, o (z) = H_‘wﬁ, z € R", a > 0, conditions (4.2)
and (5.3) be fulfilled. Then there exist the numbers ¢; > 0, ¢o > 0 such that
c1- Nof () < NG°f () < ca - Nof (@),

where the constants c¢; and cg are independent of f and x.
From Corollary 4.1, Proposition 5.6 and Corollary 5.1 we get the following statements.

Corollary 5.2. Let f € L;,. (R"), p € ¥, & (x) =
and (5.3) be fulfilled. Then the following relation is true

1 n ..
T T € R™, a > 0, conditions (4.2)

T @~ N f (@)~ fE (@)~ Nof (@), @ €R",

! For non-negative functions F' and G we will use the notation F' (u) ~ G (u) ,u € U , if there are positive constants c1
andcg suchthatVu € U: ¢1 - F(u) <G (u) <co- F(u).
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where the constants in the ratio “~” are independent of f and x.

Now consider the case of the function ¢ (x) = P (z), where P (z) is a Poisson kernel, i.e. P (z) =
ntl

- 41l .
Cn - (1 + |x|2) * wherecn, =TI (”TH) -w~ "2 . Itis easy to see that there exist the numbers ¢; > 0,
c2 > 0 such that for all = € R" it holds the relation

1 1
ci-————<Pa)<cg-———.
In other words, P (z) ~ &1 (z), z € R", where @, (z) = W Hence it follows that if f €

Lo (R™) and ¢ € ¥, then the following relations are true
PP @~ 5" @), NJ f(2)  Ng' f (), z € R",

m}) (z; 1) zm?l (z; r),nJIcD (z; ) %n?l (x;7r), € R™, r>0.

By means of these reasonings, from Corollary 5.2 we get.

Corollary 5.3. Let f € L, (R™), P = P (z) be a Poisson kernel, ¢ € ¥, condition (4.2) be fulfilled,
and

w@(xvt) Rn
r Tdt:O(tp(x,r)),r>O,x€ .
Jr

Then the following relation is true

5P (@)~ NEf(z) ~ f# (z) ~ Nof (z), © € R™
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