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1 Introduction

The theory of boundedness of classical operators of the real analysis, such as the parabolic
maximal operator and the parabolic singular integral operators etc, from one Lebesgue space
to another one is well studied by now. These results have good applications in the theory of
partial differential equations. However, in the theory of partial differential equations, along
with Lebesgue spaces, Orlicz spaces also play an important role.

For x ∈ Rn and r > 0, we denote by B(x, r) the open ball centered at x of radius r. Let
|B(x, r)| be the Lebesgue measure of the ball B(x, r).

Let P be a real n × n matrix, all of whose eigenvalues have positive real part. Let
At = tP (t > 0), and set γ = trP . Then, there exists a quasi-distance ρ associated with P
such that

(a) ρ(Atx) = tρ(x), t > 0, for every x ∈ Rn;
(b) ρ(0) = 0, ρ(x− y) = ρ(y − x) ≥ 0

and ρ(x− y) ≤ k(ρ(x− z) + ρ(y − z));
(c) dx = ργ−1dσ(w)dρ, where ρ = ρ(x), w = Aρ−1x

and dσ(w) is a measure on the unit ellipsoid Sρ = {w ∈ Rn : ρ(w) = 1}.

Then, {Rn, ρ, dx} becomes a space of homogeneous type in the sense of Coifman-Weiss.
Thus Rn, endowed with the metric ρ, defines a homogeneous metric space ([3,6]). The
parabolic balls with respect to ρ, centered at x of radius r, are just the ellipsoids E(x, r) =
{y ∈ Rn : ρ(x− y) < r}, with the Lebesgue measure |E(x, r)| = vρr

γ , where vρ is the
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volume of the unit ellipsoid in Rn. Let also
{E(x, r) = Rn \ E(x, r) be the complement of

E(x, r). If P = I , then clearly ρ(x) = |x| and EI(x, r) = B(x, r). Note that in the standard
parabolic case P = (1, . . . , 1, 2) we have

ρ(x) =

√
|x′|2 +

√
|x′|4 + x2n
2

, x = (x′, xn).

The parabolic maximal function MP f of a function f ∈ Lloc
1 (Rn) is defined by

MP f(x) = sup
t>0
|E(x, t)|−1

∫
E(x,t)

|f(y)|dy.

If P = I , then M ≡ M I is the Hardy-Littlewood maximal operator. It is well known
that the parabolic maximal operators play an important role in harmonic analysis (see [7],
[15]).

In this work we present the characterization for parabolic maximal operator MP (The-
orem 4.1) and its commutators MP

b (Theorem 4.2) in parabolic generalized Orlicz-Morrey
spaces MΦ,ϕ,P (Rn).

By A . B we mean that A ≤ CB with some positive constant C independent of
appropriate quantities. If A . B and B . A, we write A ≈ B and say that A and B are
equivalent.

2 On Young Functions and Orlicz Spaces

Orlicz space was first introduced by Orlicz in [12,13] as a generalizations of Lebesgue
spaces Lp. Since then this space has been one of important functional frames in the math-
ematical analysis, and especially in real and harmonic analysis. Orlicz space is also an
appropriate substitute for L1 space when L1 space does not work.

First, we recall the definition of Young functions.

Definition 2.1 A function Φ : [0,∞) → [0,∞] is called a Young function if Φ is convex,
left-continuous, lim

r→+0
Φ(r) = Φ(0) = 0 and lim

r→∞
Φ(r) =∞.

From the convexity and Φ(0) = 0 it follows that any Young function is increasing. If there
exists s ∈ (0,∞) such that Φ(s) = ∞, then Φ(r) = ∞ for r ≥ s. The set of Young
functions such that

0 < Φ(r) <∞ for 0 < r <∞
will be denoted by Y. If Φ ∈ Y , then Φ is absolutely continuous on every closed interval in
[0,∞) and bijective from [0,∞) to itself.

For a Young function Φ and 0 ≤ s ≤ ∞, let

Φ−1(s) = inf{r ≥ 0 : Φ(r) > s}.

If Φ ∈ Y , then Φ−1 is the usual inverse function of Φ. It is well known that

r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for r ≥ 0, (2.1)

where Φ̃(r) is defined by

Φ̃(r) =

{
sup{rs− Φ(s) : s ∈ [0,∞)} , r ∈ [0,∞)
∞ , r =∞.
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A Young function Φ is said to satisfy the ∆2-condition, denoted also as Φ ∈ ∆2, if

Φ(2r) ≤ CΦ(r), r > 0

for some C > 1. If Φ ∈ ∆2, then Φ ∈ Y . A Young function Φ is said to satisfy the
∇2-condition, denoted also by Φ ∈ ∇2, if

Φ(r) ≤ 1

2C
Φ(Cr), r ≥ 0

for some C > 1.
Note that by the convexity of Φ and concavity of Φ−1 we have the following properties{
Φ(αt) ≤ αΦ(t), if 0 ≤ α ≤ 1
Φ(αt) ≥ αΦ(t), if α > 1

and
{
Φ−1(αt) ≥ αΦ−1(t), if 0 ≤ α ≤ 1
Φ−1(αt) ≤ αΦ−1(t), if α > 1.

(2.2)

Definition 2.2 (Orlicz Space). For a Young function Φ, the set

LΦ(Rn) =
{
f ∈ Lloc

1 (Rn) :
∫
Rn
Φ(k|f(x)|)dx <∞ for some k > 0

}
is called Orlicz space. If Φ(r) = rp, 1 ≤ p < ∞, then LΦ(Rn) = Lp(Rn). If Φ(r) =
0, (0 ≤ r ≤ 1) and Φ(r) =∞, (r > 1), then LΦ(Rn) = L∞(Rn).

LΦ(Rn) is a Banach space with respect to the norm

‖f‖LΦ = inf

{
λ > 0 :

∫
Rn
Φ
( |f(x)|

λ

)
dx ≤ 1

}
.

For a measurable set Ω ⊂ Rn, a measurable function f and t > 0, let m(Ω, f, t) =
|{x ∈ Ω : |f(x)| > t}|. In the case Ω = Rn, we shortly denote it by m(f, t).

Definition 2.3 The weak Orlicz space

WLΦ(Rn) = {f ∈ Lloc
1 (Rn) : ‖f‖WLΦ <∞}

is defined by the norm

‖f‖WLΦ = inf
{
λ > 0 : sup

t>0
Φ(t)m

(f
λ
, t
)
≤ 1
}
.

We note that ‖f‖WLΦ ≤ ‖f‖LΦ ,

sup
t>0

Φ(t)m(Ω, f, t) = sup
t>0

tm(Ω, f, Φ−1(t)) = sup
t>0

tm(Ω, Φ(|f |), t)

and ∫
Ω
Φ
( |f(x)|
‖f‖LΦ(Ω)

)
dx ≤ 1, sup

t>0
Φ(t)m

(
Ω,

f

‖f‖WLΦ(Ω)
, t
)
≤ 1, (2.3)

where ‖f‖LΦ(Ω) = ‖fχΩ‖LΦ and ‖f‖WLΦ(Ω) = ‖fχΩ‖WLΦ .
The following analogue of the Hölder’s inequality is well known (see, for example,

[14]).

Theorem 2.1 Let Ω ⊂ Rn be a measurable set and functions f , g measurable on Ω. For a
Young function Φ and its complementary function Φ̃, the following inequality is valid∫

Ω
|f(x)g(x)|dx ≤ 2‖f‖LΦ(Ω)‖g‖L

Φ̃
(Ω).
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By elementary calculations we have the following property.

Lemma 2.1 Let Φ be a Young function and E be a parabolic balls in Rn. Then

‖χE‖LΦ = ‖χE‖WLΦ =
1

Φ−1 (|E|−1)
.

By Theorem 2.1, Lemma 2.1 and (2.1) we get the following estimate.

Lemma 2.2 For a Young function Φ and for the parabolic balls E = E(x, r) the following
inequality is valid: ∫

E
|f(y)|dy ≤ 2|E|Φ−1

(
|E|−1

)
‖f‖LΦ(E).

3 Parabolic maximal function and its commutators in Orlicz spaces

In [1] the boundedness of the parabolic maximal operator MP in Orlicz spaces LΦ(Rn)
was obtained, see also [9].

Theorem 3.1 [1] Let Φ any Young function. Then the parabolic maximal operator MP is
bounded from LΦ(Rn) to WLΦ(Rn) and for Φ ∈ ∇2 bounded in LΦ(Rn).

We recall that the space BMO(Rn) = {b ∈ Lloc
1 (Rn) : ‖b‖∗ < ∞} is defined by the

seminorm

‖b‖∗ := sup
x∈Rn,r>0

1

|E(x, r)|

∫
E(x,r)

|b(y)− bE(x,r)|dy <∞,

where bE(x,r) = 1
|E(x,r)|

∫
E(x,r) b(y)dy. We will need the following property of BMO-

functions: ∣∣bE(x,r) − bE(x,t)∣∣ ≤ C‖b‖∗ ln tr for 0 < 2r < t, (3.1)

where C does not depend on b, x, r and t. We refer for instance to [10] and [11] for details
on this space and properties.

Lemma 3.1 [2] Let b ∈ BMO(Rn) and Φ be a Young function with Φ ∈ ∆2. Then

‖b‖∗ ≈ sup
x∈Rn,r>0

Φ−1
(
r−γ
) ∥∥b(·)− bE(x,r)∥∥LΦ(E(x,r)) .

The commutators generated by b ∈ Lloc
1 (Rn) and the parabolic maximal operator MP

is defined by

MP
b (f)(x) = sup

t>0
|E(x, t)|−1

∫
E(x,t)

|b(x)− b(y)||f(y)|dy.

The known boundedness statements for the parabolic maximal commutator operator
MP
b on Orlicz spaces run as follows, see [8, Corollary 2.3].

Theorem 3.2 Let Φ be a Young function with Φ ∈ ∆2 ∩∇2 and b ∈ BMO(Rn). Then the
operator MP

b is bounded on LΦ(Rn) and the inequality

‖MP
b f‖LΦ ≤ C0‖b‖∗‖f‖LΦ (3.2)

holds with constant C0 independent of f .
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The parabolic generalized Orlicz-Morrey spaces and the weak parabolic generalized
Orlicz-Morrey spaces are defined as follows.

Definition 3.1 Let ϕ(r) be a positive measurable function on (0,∞) and Φ any Young
function. We denote by MΦ,ϕ,P (Rn) the parabolic generalized Orlicz-Morrey space, the
space of all functions f ∈ Lloc

Φ (Rn) with finite quasinorm

‖f‖MΦ,ϕ,P
≡ ‖f‖MΦ,ϕ,P (Rn) = sup

x∈Rn,r>0
ϕ(r)−1Φ−1(|E(x, r)|)−1)‖f‖LΦ(E(x,r)),

where Lloc
Φ (Rn) is defined as the set of all functions f such that fχE ∈ LΦ(Rn) for all

ellipsoids E ⊂ Rn.
Also by WMΦ,ϕ,P (Rn) we denote the weak parabolic generalized Orlicz-Morrey space

of all functions f ∈WLloc
Φ (Rn) for which

‖f‖WMΦ,ϕ,P
≡ ‖f‖WMΦ,ϕ,P (Rn)

= sup
x∈Rn,r>0

ϕ(r)−1Φ−1(|E(x, r)|)−1)‖f‖WLΦ(E(x,r)) <∞,

where WLloc
Φ (Rn) is defined as the set of all functions f such that fχE ∈ WLΦ(Rn) for

all parabolic balls E ⊂ Rn.

Remark 3.1 Thanks to (2.2) we have

Φ−1(|E(x, r)|)−1) ≈ Φ−1(r−γ).

Therefore we can also write

‖f‖MΦ,ϕ,P
≡ sup

x∈Rn,r>0
ϕ(r)−1Φ−1(r−γ)‖f‖LΦ(E(x,r)),

and
‖f‖WMΦ,ϕ,P

≡ sup
x∈Rn,r>0

ϕ(r)−1Φ−1(r−γ)‖f‖WLΦ(E(x,r)),

respectively.

According to this definition, we recover the parabolic generalized Morrey space
Mp,ϕ,P (Rn) and weak parabolic generalized Morrey spaceWMp,ϕ,P (Rn) under the choice

Φ(r) = rp, 1 ≤ p < ∞. If Φ(r) = rp, 1 ≤ p < ∞ and ϕ(r) = r
λ−γ
p , 0 ≤ λ ≤ γ, then

MΦ,ϕ,P (Rn) and WMΦ,ϕ,P (Rn) coincide with Mp,λ,P (Rn) and WMp,λ,P (Rn), respec-
tively and if ϕ(r) = Φ−1(r−γ), then MΦ,ϕ,P (Rn) and WMΦ,ϕ,P (Rn) coincide with the
LΦ(Rn) and WLΦ(Rn), respectively.

A functionϕ : (0,∞)→ (0,∞) is said to be almost increasing (resp. almost decreasing)
if there exists a constant C > 0 such that

ϕ(r) ≤ Cϕ(s) (resp. ϕ(r) ≥ Cϕ(s)) for r ≤ s.

For a Young function Φ, we denote by GΦ the set of all almost decreasing functions ϕ :

(0,∞)→ (0,∞) such that t ∈ (0,∞) 7→ ϕ(t)
Φ−1(t−γ) is almost increasing.

Lemma 3.2 Let E0 := E(x0, r0). If ϕ ∈ GΦ, then there exist C > 0 such that

1

ϕ(r0)
≤ ‖χE0‖MΦ,ϕ,P

≤ C

ϕ(r0)
.
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Proof. Let E = E(x, r) denote an arbitrary ellipsoid in Rn. By the definition and Lemma
2.1, it is easy to see that

‖χE0‖MΦ,ϕ,P
= sup

x∈Rn,r>0
ϕ(r)−1Φ−1(|E|−1) 1

Φ−1(|E ∩ E0|−1)

≥ ϕ(r0)−1Φ−1(|E0|−1)
1

Φ−1(|E0 ∩ E0|−1)
=

1

ϕ(r0)
.

Now if r ≤ r0, then ϕ(r0) ≤ Cϕ(r) and

ϕ(r)−1Φ−1(|E|−1)‖χE0‖LΦ(E) ≤
1

ϕ(r)
≤ C

ϕ(r0)
.

On the other hand if r ≥ r0, then ϕ(r0)
Φ−1(|E0|−1)

≤ C ϕ(r)
Φ−1(|E|−1)

and

ϕ(r)−1Φ−1(|E|−1)‖χE0‖LΦ(E) ≤
C

ϕ(r0)
.

This completes the proof.

4 Parabolic maximal operator and its commutators in parabolic generalized
Orlicz-Morrey spaces

The following local estimates for parabolic maximal operator MP in Orlicz spaces are
valid.

Lemma 4.1 Let Φ ∈ Y , f ∈ Lloc
Φ (Rn) and E = E(x, r). Then

‖MP f‖LΦ(E) .
1

Φ−1
(
r−γ
) sup

t>r
Φ−1

(
t−γ
)
‖f‖LΦ(E(x,t)) (4.1)

for any Young function Φ ∈ ∇2 and

‖MP f‖WLΦ(E) .
1

Φ−1
(
r−γ
) sup

t>r
Φ−1

(
t−γ
)
‖f‖LΦ(E(x,t)) (4.2)

for any Young function Φ.

Proof. Let Φ ∈ ∇2. We put f = f1 + f2, where f1 = fχE(x,2kr) and f2 = fχ {E(x,2kr),
where k is the constant from the triangle inequality.

Estimation of MP f1: By Theorem 3.1 we have

‖MP f1‖LΦ(E) ≤ ‖M
P f1‖LΦ(Rn) . ‖f1‖LΦ(Rn) = ‖f‖LΦ(E(x,2kr)).

By using the monotonicity of the functions ‖f‖LΦ(E(x,t)), Φ
−1(t) with respect to t and (2.2)

we get,

1

Φ−1
(
r−γ
) sup
t>2kr

Φ−1
(
t−γ
)
‖f‖LΦ(E(x,t))

≥
‖f‖LΦ(E(x,2kr))
Φ−1

(
r−γ
) sup

t>2kr
Φ−1

(
t−γ
)
& ‖f‖LΦ(E(x,2kr)).

(4.3)
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Consequently we have

‖MP f1‖LΦ(E) .
1

Φ−1
(
r−γ
) sup

t>r
Φ−1

(
t−γ
)
‖f‖LΦ(E(x,t)) (4.4)

Estimation of MP f2: Let y be an arbitrary point from E . If E(y, t) ∩ {
(E(x, 2kr)) 6= ∅,

then t > r. Indeed, if z ∈ E(y, t)∩ {
(E(x, 2kr)), then t > ρ(y−z) ≥ 1

kρ(x−z)−ρ(x−y) >
2r − r = r.

On the other hand, E(y, t)∩ {
(E(x, 2kr)) ⊂ E(x, 2kt). Indeed, if z ∈ E(y, t)∩ {

(E(x, 2kr)),
then we get ρ(x− z) ≤ kρ(y − z) + kρ(x− y) < kt+ kr < 2kt.

Therefore,

MP f2(y) = sup
t>0

1

|E(y, t)|

∫
E(y,t)∩ {(E(x,2kr))

|f(z)|dz

≤ sup
t>r

1

|E(y, t)|

∫
E(x,2kt)

|f(z)|dz

≤ sup
t>r

C

|E(y, 2kt)|

∫
E(x,2kt)

|f(z)|dz

= sup
t>2kr

C

|E(y, t)|

∫
E(x,t)

|f(z)|dz.

Hence by Lemma 2.2

MP f2(y) . sup
t>2kr

|E(x, t)|
|E(y, t)|

Φ−1
(
|E(x, t)|−1

)
‖f‖LΦ(E(x,t))

. sup
t>r

Φ−1
(
t−γ
)
‖f‖LΦ(E(x,t)).

(4.5)

Thus the functionMP f2(y), with fixed x and r, is dominated by the expression not depend-
ing on y. Then we integrate the obtained estimate for MP f2(y) in y over E , we get

‖MP f2‖LΦ(E) .
1

Φ−1
(
r−γ
) sup

t>r
Φ−1

(
t−γ
)
‖f‖LΦ(E(x,t)) (4.6)

Gathering the estimates (4.4) and (4.6) we arrive at (4.1).
Let now Φ be an arbitrary Young function. It is obvious that

‖MP f‖WLΦ(E) ≤ ‖M
P f1‖WLΦ(E) + ‖M

P f2‖WLΦ(E).

By the boundedness of the operator MP from LΦ(Rn) to WLΦ(Rn), provided by Theorem
3.1, we have

‖MP f1‖WLΦ(E) . ‖f‖LΦ(E(x,2kr)).
By using (4.3), (4.5) and Lemma 2.1 we arrive at (4.2).

Theorem 4.1 Let Φ ∈ Y , the functions ϕ1, ϕ2 and Φ satisfy the condition

sup
r<t<∞

Φ−1
(
t−γ
)
ess inf
t<s<∞

ϕ1(s)

Φ−1
(
s−γ
) ≤ C ϕ2(r), (4.7)

where C does not depend on r. Then the operator MP is bounded from MΦ,ϕ1,P (Rn)
to WMΦ,ϕ2,P (Rn) and for Φ ∈ ∇2, the operator MP is bounded from MΦ,ϕ1,P (Rn) to
MΦ,ϕ2,P (Rn).
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Proof. Note that (
ess inf
x∈A

f(x)
)−1

= ess sup
x∈A

1

f(x)

is true for any real-valued nonnegative function f and measurable on A and the fact that
‖f‖LΦ(E(x,t)) is a nondecreasing function of t

‖f‖LΦ(E(x,t))
ess inf

0<t<s<∞
ϕ1(s)

Φ−1
(
s−γ
) = ess sup

0<t<s<∞

Φ−1
(
s−γ
)
‖f‖LΦ(E(x,t))
ϕ1(s)

≤ sup
x∈Rn,r>0

Φ−1
(
s−γ
)
‖f‖LΦ(E(x,s))
ϕ1(s)

= ‖f‖MΦ,ϕ1,P
.

Since (ϕ1, ϕ2) and Φ satisfy the condition (4.7),

sup
r<t<∞

‖f‖LΦ(E(x,t))Φ
−1(t−γ)

≤ sup
r<t<∞

‖f‖LΦ(E(x,t))
ess inf
t<s<∞

ϕ1(s)

Φ−1
(
s−γ
) ess inf
t<s<∞

ϕ1(s)

Φ−1
(
s−γ
)Φ−1(t−γ)

≤ C‖f‖MΦ,ϕ1,P
sup

r<t<∞

(
ess inf
t<s<∞

ϕ1(s)

Φ−1
(
s−γ
))Φ−1(t−γ)

≤ Cϕ2(r)‖f‖MΦ,ϕ1,P
(4.8)

Then by (4.1) and (4.8)

‖MP f‖MΦ,ϕ2,P
. sup

x∈Rn,r>0

1

ϕ2(r)
sup
t>r

Φ−1
(
t−γ
)
‖f‖LΦ(E(x,t))

= ‖f‖MΦ,ϕ1,P
.

The estimate ‖MP f‖WMΦ,ϕ2,P
. ‖f‖MΦ,ϕ1,P

can be proved similarly by the help of local
estimate (4.2).

Remark 4.1 Note that Theorem 4.1 in the isotropic case P = I was proved in [4].

Lemma 4.2 Let Φ be a Young function with Φ ∈ ∆2 ∩ ∇2, b ∈ BMO(Rn), then the
inequality

‖MP
b f‖LΦ(E(x0,r)) .

‖b‖∗
Φ−1

(
r−γ
) sup
t>r

(
1 + ln

t

r

)
Φ−1

(
t−γ
)
‖f‖LΦ(E(x0,t))

holds for any ball E(x0, r) and for all f ∈ Lloc
Φ (Rn).

Proof. For E = E(x0, r), write f = f1 + f2 with f1 = fχ
2kE and f2 = fχ

{
(2kE)

, where k

is the constant from the triangle inequality, so that∥∥MP
b f
∥∥
LΦ(E) ≤

∥∥MP
b f1

∥∥
LΦ(E) +

∥∥MP
b f2

∥∥
LΦ(E) .

By the boundedness of the operator MP
b in the space LΦ(Rn) provided by Theorem 3.2,

we obtain

‖MP
b f1‖LΦ(E) ≤ ‖MP

b f1‖LΦ(Rn) . ‖b‖∗ ‖f1‖LΦ(Rn) = ‖b‖∗ ‖f‖LΦ(2E). (4.9)
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As we proceed in the proof of Lemma 4.1, we have for x ∈ E

MP
b (f2)(x) . sup

t>2kr

1

|E(x0, t)|

∫
E(x0,t)

|b(y)− b(x)||f(y)|dy.

Then

‖MP
b f2‖LΦ(E) .

∥∥∥∥∥supt>r

1

|E(x0, t)|

∫
E(x0,t)

|b(y)− b(·)||f(y)|dy

∥∥∥∥∥
LΦ(E)

. J1 + J2 =

∥∥∥∥∥supt>2r

1

|E(x0, t)|

∫
E(x0,t)

|b(y)− bE ||f(y)|dy

∥∥∥∥∥
LΦ(E)

+

∥∥∥∥∥supt>r

1

|E(x0, t)|

∫
E(x0,t)

|b(·)− bE ||f(y)|dy

∥∥∥∥∥
LΦ(E)

.

For the term J1 by Lemma 2.1 we obtain

J1 ≈
1

Φ−1
(
r−γ
) sup
t>r

1

|E(x0, t)|

∫
E(x0,t)

|b(y)− bE ||f(y)|dy

and split it as follows:

J1 .
1

Φ−1
(
r−γ
) sup
t>r

1

|E(x0, t)|

∫
E(x0,t)

|b(y)− bE(x0,t)||f(y)|dy

+
1

Φ−1
(
r−γ
) sup
t>r

1

|E(x0, t)|
|bE(x0,r) − bE(x0,t)|

∫
E(x0,t)

|f(y)|dy.

Applying Hölder’s inequality, by Lemmas 2.2 and 3.1 and (3.1) we get

J1 .
1

Φ−1
(
r−γ
) sup
t>r

1

|E(x0, t)|
∥∥b(·)− bE(x0,t)∥∥L

Φ̃
(E(x0,t))

‖f‖LΦ(E(x0,t))

+
1

Φ−1
(
r−γ
) sup
t>r

1

|E(x0, t)|
|bE(x0,r) − bE(x0,t)||E(x0, t)|Φ

−1 (t−γ) ‖f‖LΦ(E(x0,t))
.

‖b‖∗
Φ−1

(
r−γ
) sup
t>2r

Φ−1
(
t−γ
) (

1 + ln
t

r

)
‖f‖LΦ(E(x0,t)).

For J2 we obtain

J2 ≈ ‖b(·)− bB‖LΦ(E) sup
t>r

1

|E(x0, t)|

∫
E(x0,t)

|f(y)|dy

.
‖b‖∗

Φ−1
(
r−γ
) sup
t>r

Φ−1
(
t−γ
)
‖f‖LΦ(E(x0,t))

gathering the estimates for J1 and J2, we get

‖MP
b f2‖LΦ(E) .

‖b‖∗
Φ−1

(
r−γ
) sup
t>r

Φ−1
(
t−γ
)(

1 + ln
t

r

)
‖f‖LΦ(E(x0,t)). (4.10)

By using (4.3) we unite (4.10) with (4.9), which completes the proof.
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Theorem 4.2 Let Φ be a Young function with Φ ∈ ∆2 ∩ ∇2, b ∈ BMO(Rn) and the
functions ϕ1, ϕ2 and Φ satisfy the condition

sup
r<t<∞

(
1 + ln

t

r

)
Φ−1

(
t−γ
)
ess inf
t<s<∞

ϕ1(s)

Φ−1
(
s−γ
) ≤ C ϕ2(r), (4.11)

where C does not depend on r. Then the operator MP
b is bounded from MΦ,ϕ1,P (Rn) to

MΦ,ϕ2,P (Rn).

Proof. The proof is similar to the proof of Theorem 4.1 thanks to Lemma 4.2.

Remark 4.2 Note that Theorem 4.2 in the isotropic case P = I was proved in [5].
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