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Spectral properties of a problem of vibrations of a loaded string in
Lebesgue spaces
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Abstract. Basis properties of the eigenfunctions of a spectral problem for a second order discontinuous
differential operator with a spectral parameter in discontinuity (conjugation) conditions are studied for
Lebesgue spaces. This kind of problem arises when one tries to solve the problem of vibrations of a
loaded string with fixed ends. New method is suggested to prove the basicity of eigenfunctions in the
spaces Lp ⊕ C and Lp.
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1 Introduction

Consider the following spectral problem with a point of discontinuity:

y′′(x) + λy(x) = 0 , x ∈ (0,
1

3
) ∪ (

1

3
, 1), (1.1)

y(0) = y(1) = 0,
y(13 − 0) = y(13 + 0),
y′(13 − 0)− y′(13 + 0) = λmy(13),

 (1.2)

where λ is the spectral parameter, mis a non-zero complex number. Such spectral problems
arise when the problem of vibrations of a loaded string with fixed ends is solved by applying
the Fourier method [19,1]. In case when the load is placed at the middle of the string, some
aspects of this spectral problem have been studied in [9,8]. Using different methods, similar
aspects have been treated in [12–15] for a spectral problem corresponding to the problem of
vibrations of a loaded string in case when the string is loaded at one or both ends. In [10],
the completeness of eigenfunctions for the problem (1.1),(1.2) has been proved in the spaces
Lp (0, 1) ⊕ C and Lp (0, 1). Spectral problems with a point of discontinuity and a spectral
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parameter in boundary conditions have been considered in [16,11,18,17]. Note that these
spectral problems strongly differ from the usual ones. The study of basis properties of the
systems consisting of eigenfunctions of the spectral problems with a point of discontinuity
sometimes requires completely new research methods, different from the known ones. In
[3,4], new method for exploring basis properties of discontinuous differential operators has
been suggested. The present paper is an extension of the method of [3,4].

2 Necessary information

Let us give some results from [10], which we will need throughout the paper.

Theorem 2.1 [10] The spectral problem (1.1), (1.2) has two series of eigenvalues: λ1,n =

(ρ1,n)
2 , n = 1, 2, ..., λ2,n = (ρ2,n)

2, n = 0, 1, 2, ..., where

ρ1,n = 3πn,

ρ2,n = 3πn
2 + 2+(−1)n

πmn +O
(

1
n2

)
.

}
(2.1)

The corresponding eigenfunctions are given by the following expressions

y1,n (x) = sin 3πnx, x ∈ [0, 1] , n = 1, 2, ...,

y2,n (x) =

{
sin ρ2,n

(
x− 1

3

)
+ sin ρ2,n

(
x+ 1

3

)
, x ∈

[
0, 13
]
,

sin ρ2,n (1− x) , x ∈
[
1
3 , 1
]
, n = 0, 1, 2, ... .

(2.2)

Let us construct an operator L, linearizing the problem (1.1),(1.2) in the direct sum
Lp (0, 1)⊕C, where C is the complex plane. Denote by W 2

p

(
0, 13
)
⊕W 2

p

(
1
3 , 1
)

the space
of functions whose restrictions to intervals

(
0, 1

3

)
and

(
1
3 , 1

)
belong to Sobolev spaces

W 2
p

(
0, 13
)

and W 2
p

(
1
3 , 1
)
, respectively, where 1 < p < ∞. Let us define the operator L in

the following way. As the domain D (L) we take the manifold

D (L) =
{
ŷ =

(
y (x) ,my

(
1
3

))
: y (x) ∈W 2

p

(
0, 13
)
⊕W 2

p

(
1
3 , 1
)
,

y (0) = y (1) = 0, y
(
1
3 − 0

)
= y

(
1
3 + 0

)}
,

(2.3)

and for ŷ ∈ D(L) the operator L is defined by the relation

Lŷ =

(
−y′′; y′

(
1

3
− 0

)
− y′

(
1

3
+ 0

))
. (2.4)

The following lemma is true.

Lemma 2.1 [10] The operator L defined by expressions (2.3), (2.4) is a densely defined
closed operator with completely continuous resolution. The eigenvalues of the operator L
and the problem (1.1), (1.2) coincide. If y (x) is the eigenfunction (associated function) of
problem (1.1), (1.2), then ŷ =

(
y (x) ; my

(
1
3

))
is the eigenvector (associated vector) of

the operator L.

When obtaining the main results, we need the following easily proved statement
Statement 1. Let the system {un}n∈N form a basis with parentheses for a Banach space
X . If the sequence {nk+1 − nk}k∈N is bounded and the condition

sup
n
‖un‖ ‖ϑn‖ <∞,

holds, where {ϑn}n∈N is a biorthogonal system, then the system {un}n∈N forms an ordi-
nary basis for X .
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The following statement is also true.
Statement 2. Let the system {un}n∈N {un}n∈N form a Riesz basis with parentheses for a
Hilbert space X . If the sequence {nk+1 − nk}k∈N is bounded and the following condition

sup
n
{‖un‖ ; ‖ϑn‖} <∞,

holds, where {ϑn}n∈N is a biorthogonal system, then {un}n∈N forms a usual Riesz basis
for X .

We also need the following definition.

Definition 2.1 The bases {un}n∈N of Banach spaceX is called a p-basis, if for any x ∈ X( ∞∑
n=1

|〈x, ϑn〉|p
) 1

p

≤M ‖x‖ ,

where {ϑn}n∈N is a biorthogonal system to {un}n∈N .

Definition 2.2 The sequences {un}n∈N and {ϕn}n∈N of Banach spaceX is called a p-
close, if

∞∑
n=1

‖un − ϕn‖p <∞.

We will also use the following results from [5–7].

Theorem 2.2 [5] Let {xn}n∈N form a q-basis for the space X , and the system {yn}n∈N is
p-close to {xn}n∈N , where 1

p +
1
q = 1. Then the following properties are equivalent:

i) {yn}n∈N is complete in X;
ii) {yn}n∈N is minimal in X;
iii) {yn}n∈N forms an isomorphic basis to {xn}n∈N for X .

Let X1 = X ⊕ Cm and {ûn}n∈N ⊂ X1 be some minimal system, and
{
ϑ̂n

}
n∈N

⊂
X∗1 = X∗ ⊕ Cm be its biorthogonal system:

ûn = (un;αn1, ..., αnm) ; ϑ̂n = (ϑn;βn1, ..., βnm) .

Let J = {n1, ..., nm} be some set of m natural numbers. Suppose

δ = det ‖βnij‖i,j=1,m .

The following theorem is true.

Theorem 2.3 [6,7] Let the system {ûn}n∈N form a basis for X1. In order for the system
{un}n∈Nj

, where Nj = N \ J , form a basis for X it is necessary and sufficient that the
condition δ 6= 0 be satisfied. In this case the biorthogonal system to {un}n∈Nj

is defined by

ϑ∗n =
1

δ

∣∣∣∣∣∣∣
ϑn ϑn1 ... ϑnm
βn1 βn11 ... βnm1

... ... ... ...
βnm βn1m ... βnmm

∣∣∣∣∣∣∣ .
In particular, if X is a Hilbert space and the system {un}n∈N forms a Riesz basis for

X1, then under the condition δ 6= 0, the system {un}n∈NJ
also forms a Riesz basis for X .

For δ = 0 the system {un}n∈NJ
is not complete and is not minimal in X .
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3 Main results

Let X be a Banach space and {ukn}k=1,m;n∈N be some system in X . Let a(n)ik , i, k =

1,m , n ∈ N, be some complex number. Let

An =
(
a
(n)
ik

)
i,k=1,m

and ∆n = detAn, n ∈ N.

Let us consider the following system in space X

ûkn =
m∑
i=1

a
(n)
ik uin, k = 1,m;n ∈ N. (3.1)

Theorem 3.1 If the system {ukn}k=1,m;n∈N forms a basis for X and

∆n 6= 0, ∀n ∈ N, (3.2)

then the system {ûkn}k=1,m;n∈N forms a basis with parentheses for X . If the system
{ûkn}k=1,m;n∈N is p-basis and in addition the conditions

sup {
n
‖An‖ ,

∥∥A−1n ∥∥ } <∞, sup
n
{‖ukn‖ , ‖ϑkn‖} <∞, (3.3)

holds, where {ϑkn}k=1,m;n∈N ⊂ X∗ is a biorthogonal system to {ukn}k=1,m;n∈N , then the
system {ûkn}k=1,m;n∈N also forms p-basis for X .

Proof. From the representation (3.1) and from the minimality of the system {ukn}k=1,m;n∈N ,
follows the minimality of the system {ûkn}k=1,m;n∈N and the biorthogonal system has the
form

ϑ̂in =

m∑
l=1

b
(n)
li ϑln , i = 1,m : n ∈ N, (3.4)

where the numbers b(n)li are elements of the inverse matrix
(
A−1n

)∗. Taking these expressions
into account, for x ∈ X we have∑m

i=1

〈
x, ϑ̂in

〉
ûin =

∑m
i=1

∑m
j=1

∑m
l=1 a

(n)
ij b

(n)
li 〈x, ϑln〉ujn

=
∑m

j=1

∑m
l=1

(∑m
i=1 b

(n)
li a

(n)
ij

)
〈x, ϑln〉ujn

=
∑m

j=1

∑m
l=1 δlj 〈x, ϑln〉ujn =

∑m
j=1 〈x, ϑjn〉ujn.

Consequently

SN (x) =

N∑
n=1

m∑
i=1

〈
x, ϑ̂in

〉
ûin =

N∑
n=1

m∑
j=1

〈x, ϑjn〉ujn =

m∑
j=1

N∑
n=1

〈x, ϑjn〉ujn → x, as N →∞.

Thus, the system {ûin}i=1,m;n∈N forms a basis with parentheses for X .
Now let the conditions (3.3) be satisfied. Then from the representations (3.1) and (3.4)

we obtain
sup
i,n

{
‖ûin‖ ;

∥∥∥ϑ̂in∥∥∥} < +∞.
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Consequently, the system {ûin}i=1,m;n∈N is uniformly minimal, and by Statement 1 it
forms the ordinary basis for X. On the other hand, if the system {ukn}k=1,m;n∈N forms a
p-basis for X , i.e. (

m∑
i=1

∞∑
n=1

|〈x, ϑin〉|p
) 1

p

≤M ‖x‖ ,

then from (3.3) and (3.4) follows that the following inequality is valid(
m∑
i=1

∞∑
n=1

∣∣∣〈x, ϑ̂in〉∣∣∣p)
1
p

≤M1 ‖x‖ .

Consequently, the system {ûin}i=1,m;n∈N also forms a p-basis for X.
The theorem is proved.

Theorem 3.2 Let X be a Hilbert space and the system {ukn}k=1,m;n∈N form a Riesz ba-
sis for X. Then, under condition (3.2), the system {ûkn}k∈1,m;n∈N forms a Riesz basis with
parentheses forX . If, in addition, the conditions (3.3) hold, then the system {ûkn}k∈1,m;n∈N
forms a usual Riesz basis for X .

Proof. If the system {ukn}k=1,m;n∈N forms a Riesz basis for X , then for any x ∈ X we
have the following the expansion

x =
m∑
k=1

∞∑
n=1

〈x, ϑkn〉ukn ,

where the series are unconditionally convergent. Then the series

x =
∞∑
n=1

m∑
k=1

〈x, ϑkn〉ukn,

is also unconditionally convergent. Now, taking into account the equality
m∑
k=1

〈x, ϑkn〉ukn =
m∑
k=1

〈
x, ϑ̂kn

〉
ûkn,

we obtain that the series
∞∑
n=1

m∑
k=1

〈
x, ϑ̂kn

〉
ûkn

also converges unconditionally to an element x. Consequently, the system {ûkn}k∈1,m;n∈N
forms a Riesz basis with parentheses for X . On the other hand, if the conditions (3.3) hold,
then it follows from (3.1) that

sup
i,n

{
‖ûin‖ ;

∥∥∥ϑ̂in∥∥∥} < +∞.

So, applying Statement 2, we get the validity of the theorem.

Using Theorems 3.1 and 3.2, we obtain the following main results relating to the ba-
sis properties of the eigenfunctions of problem (1.1), (1.2) in spaces Lp (0, 1) ⊕ C and
Lp (0, 1).
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Theorem 3.3 The system {ŷi,n}i=1,2;n∈Nof eigen and associated vectors of the operator L
forms a bases for space Lp (0, 1)⊕ C , 1 < p <∞. For p = 2 this basis is a Riesz basis.

Theorem 3.4 If from the system of eigen and associated functions of problem (1.1), (1.2)
{y0} ∪ {yi,n}∞i=1,2; n∈N we eliminate any function y2,n0 (x) , corresponding to a simple
eigenvalue λ2,n, then the obtaining system forms a basis for Lp (0, 1), 1 < p < ∞. And
if we eliminate any function y1,n0 (x) from this system, then the obtaining system does not
form a basis in Lp (0, 1); moreover, in this case the obtained system is not complete and is
not minimal in this space.

Remark 3.1 For m > 0, the linearizing operator L of the problem (1.1),(1.2) is a self-
adjoint operator in L2 ⊕C, and in this case all eigenvalues are real and simple, and to each
eigenvalue there corresponds only one eigenvector. If m < 0, then the operator L is a J-
self-adjoint operator in L2 ⊕ C and in this case, applying the results of [2], we obtain that
all eigenvalues are real and simple, with the exception of, may be either one pair of complex
conjugate simple eigenvalues or one non-simple real value. In the case of a complex valuem
the operator L has an infinite number of complex eigenvalues that are asymptotically simple
and, consequently, the operator L can have a finite number of associated vectors. If there are
associated vectors, they are determined up to a linear combination with the corresponding
eigenvector, and in this case there always exists an associated vector for which z2,n

(
1
3

)
= 0,

as well as an associated vector for which z2,n
(
1
3

)
6= 0.
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