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Abstract. In this paper, we study the boundedness of a large class of sublinear operators with rough
kernel Tg, on the generalized weighted Morrey spaces My o(w) for with ¢ < p < oo, p # 1 and
w € Apqgorl < p<gqand w P € Ay g where 2 € Lq(S™ 1) with ¢ > 1 be homogeneous of
degree zero. In the case when b € BMO, 1 < p < oo and Ty, be is a sublinear commutator operator,
we find the sufficient conditions on the pair (p1,02) and ¢ <p < oo,p# 1, w € A, 0orl <p < g,
w7 e Ap'/q
1 <p<oo.

p/q
+ which ensures the boundedness of the operators Tq 1, from Mp o, (w) to Mp, o, (w) for
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1 Introduction

It is well-known that the commutator is an important integral operator and it plays a key
role in harmonic analysis. In 1965, Calderon [3,4] studied a kind of commutators, appearing
in Cauchy integral problems of Lip-line. Let K be a Calder6n-Zygmund singular integral
operator and b € BMO(R"™). A well known result of Coifman, Rochberg and Weiss [8]
states that the commutator operator [b, K|f = K(bf) — b K f is bounded on L,(R™) for
1 < p < o0. The commutator of Calderén-Zygmund operators plays an important role in
studying the regularity of solutions of elliptic partial differential equations of second order
(see, for example, [5-7,10,11]).

The classical Morrey spaces were originally introduced by Morrey in [26] to study the
local behavior of solutions to second order elliptic partial differential equations. For the
properties and applications of classical Morrey spaces, we refer the readers to [10,11,13,
26]. Mizuhara [25] introduced generalized Morrey spaces. Later, Guliyev [13] defined the
generalized Morrey spaces M), ., with normalized norm. Recently, Komori and Shirai [23]
considered the weighted Morrey spaces LP*(w) and studied the boundedness of some clas-
sical operators such as the Hardy-Littlewood maximal operator, the Calderén-Zygmund op-
erator on these spaces. Guliyev [14] gave a concept of generalized weighted Morrey space
M, ,(w) which could be viewed as extension of both generalized Morrey space M, , and
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weighted Morrey space LP-*(w). In [14] Guliyev also studied the boundedness of the clas-
sical operators and its commutators in these spaces M), ,(w), see also Guliyev et al. [18,19,
22].

For x € R™ and r > 0, let B(xz,r) denote the open ball centered at 2 of radius r,

‘B (z,r) denote its complement and | B(z, )| is the Lebesgue measure of the ball B(x,r).
Suppose that S™~1 is the unit sphere in R™ (n > 2) equipped with the normalized Lebesgue
measure do.

Let 2 € Ly(S™ 1) with 1 < s < co be homogeneous of degree zero. Suppose that T
represents a linear or a sublinear operator, such that that for any f € L (R™) with compact
support and = ¢ suppf

sl < eo [0 lay, (L.

R

where cq is independent of f and z.
For a function b, suppose that the commutator operator 1, ; represents a linear or a
sublinear operator, such that for any f € L;(R™) with compact support and x ¢ suppf

Tof@l <o [ o) - 22

d 1.2
where cg is independent of f and x.

We point out that the condition (1.1) in the case 2 = 1 was first introduced by Soria and
Weiss in [28]. The condition (1.1) are satisfied by many interesting operators in harmonic
analysis, such as the Calderén-Zygmund operators, Carleson’s maximal operator, Hardy—
Littlewood maximal operator, C. Fefferman’s singular multipliers, R. Fefferman’s singular
integrals, Ricci-Stein’s oscillatory singular integrals, the Bochner—Riesz means and so on
(see [24], [28] for details).

The following statement, was proved in [22], see also [14,18].

Theorem 1.1 Let 1 < p < oo, w € Ap and (1, p2) satisfy the condition

1

oo ess inf oy (x, T)w(B(z,T))?
/ t<r<oo : & < Cafa,), (1.3)
. w(B(z, 1) t
where C does not depend on x and r. Let T = T be a sublinear operator satisfying
condition (1.1) with £2 = 1 bounded on Ly, ,,(R™) for p > 1, and bounded from L1 ,,(R™)
to W L1 ,(R™). Then the operator T' is bounded from M, ,,, (w) to M, ., (w) for p > 1 and

from My, (w) to WM o, (w).

The following statement, was proved in [18], see also [14].

Theorem 1.2 Let 1 < p < oo, w € Ap, b € BMO(R"™) and (1, p2) satisfy the condition

1
o ess inf 1 (x, T)w(B(x,T))?
/ (1 +1In :) fersee &< Ca(z,7), (1.4)

w(B(x,1))7 t

where C' does not depend on x and r. Let Ty, = T\, be a sublinear commutator opera-
tor satisfying condition (1.2) with {2 = 1 bounded on L, ,,(R™). Then the operator T}, is
bounded from M, ,, (w) to My, ,,(w).
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Note that, in the case w = 1 Theorem 1.1 was proved in [15] and for the operators M
and K in [1].

Watson [29] and independently by Duoandikoetxea [9] established weighted L,, bound-
edness for the singular integral operators with rough kernels and their commutators.

Let " ! = {z € R" : |z| = 1} the unit sphere of R” (n > 2) equipped with the
normalized Lebesgue measure do = do (z').

Suppose that (2 satisfies the following conditions.

(1) £2is a homogeneous function of degree zero on R™. That is,

2(tx) = 2(x) (1.5)

forallt > 0 and z € R™.
(i) §2 has mean zero on S™~!. That is,

/ Q' )do(2') = 0, (1.6)
gn—1

where ' = x/|z| for any x # 0. B
The singular integral operator with homogeneous kernel Ty, is defined by

To(Na) = po. [ T2 ) ay (L7

where (2 is homogeneous of degree zero.
Suppose that T'¢; is a singular integral operator defined by (1.7). Let {2 be a homoge-
neous of degree zero on R™. Let T'¢ . is the truncated operator of T'; defined by

_ Nz —
To () = [ YD) py)dy, e>o0. (18)
{yeR™:|z—y|>e} ‘x - y‘
Then the operator of 77, defined by
To(f)(@) = sup|To.()(@) (19)

e>0

is called the maximal singular integral operator. Therefore, it will be an interesting thing to
study the property of T}z- The main purpose of this paper is to show that singular integral
operators with rough kernels T'r, are bounded from one generalized weighted Morrey space
M, ,, (w) to another M), ,,(w), 1 < p < oo.

The commutator of the singular integral operators with rough kernels T, is defined by

2z —y)

|z —y|™

b Tal(H@) =po. [ [ble) ~ biw) f(w)dy, (1.10)

Let f € LllOC (R™). The maximal operator with rough kernel M, is defined by
Maf(e) =sup| Bz [ |26~ y)l|£)ldy
t>0 (z,t)

It is obvious that when {2 = 1, My, is the Hardy-Littlewood maximal operator M. For
b € L°¢(R™) the commutator of the maximal operator M. 0,p 1s defined by

Mgy f(z) ZSUPIB(%WI/ [b(z) = oY)l [£2(x = y)[ | f (y)|dy. (L.11)
t>0 B(z,t)
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Theorem 1.3 ([9]) Suppose that {2 satisfies the conditions (1.5) and {2 € Lq(Snfl), 1<
q < oo. Then forevery ¢ < p <oo,p# landw € A,y orl < p < q, p # oo and

wli? € A

p/q
there is a constant C independent of f such that

Theorem 1.4 ([2]) Suppose that {2 satisfies the conditions (1.5) and {2 € Lq(Snfl), 1<
q < oo. Let also b € BMO(R™). Then for every ¢ < p < oo,p # landw € A, or

l<p<gp#ooandw' ™" € A

p'/q"

p/q
' /q» there is a constant C' independent of f such that

Theorem 1.5 ([9,29]) Suppose that §2 satisfies the conditions (1.5), (1.6) and {2 € Lq(S”_l),
1< qg< oo Thenforeveryq <p<oo,p#landw € A,;,orl <p<gq, p# coand

p/q
w' P e A there is a constant C independent of f such that

Theorem 1.6 (/9,29]) Suppose that §2 satisfies the conditions (1.5), (1.6) and 2 € L,(S™™1),
1 < g < 0. Letalsob € BMO(R™). Then for every ¢’ < p <oo,p# landw € A

orl <p§q,p7éooandw1*p/ €A

P'/q"

p/q’
o' /q» there is a constant C independent of f such that

|0, 7o (5], < CUF iy

In [20] the authors was studied the boundedness of the singular integral operators with
rough kernels T'; and its commutators [b, T';] on generalized weighted Morrey spaces
M, »(w). In this work, we prove the boundedness of the sublinear operators 7, satisfies the
condition (1.1) generated by the Calderon-Zygmund operators from M, ,, (w) to M, ,, (w)
withg' <p <oo,p# L we Ay yporl <p<yg, w'™? e Ay /g~ We find the sufficient
conditions on the pair (¢1, p2) withb € BMO(R") and ¢/ < p < oo, p # 1,w € A,y
orl <p<ug, w™? e Ay /¢ which ensures the boundedness of the commutator opera-
tors T from M, ,, (w) to M, ,,(w) for 1 < p < oo. Note that, in [16] was studied the
boundedness of the operators T'r, and [b, T')] on generalized Morrey spaces My .

By A < D we mean that A < CD with some positive constant C' independent of
appropriate quantities. If A < D and D < A, we write A = D and say that A and D are
equivalent.

2 Generalized weighted Morrey spaces

We recall that a weight function w is in the Muckenhoupt class A, [27], 1 < p < o0, if

[w]a, : = S%P[w]A,,(B)

cep(y o) 3y [rorra

where the sup is taken with respect to all the balls B and ]lg + }% = 1. Note that, for all balls
B using Holder’s inequality, we have that

1 - 1 _
wl %y = 1B wl % g o™ 2,5 > 1. (2.2)
For p = 1, the class A; is defined by the condition Mw(z) < Cw(x) with [w]a, =
Mw(z) _ _ = i
xseuﬂgl wz)» and for p = oo Aco = U1<peco Ap and [w]a,, = 1§1]1;1<foo[w}Ap.
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Remark 2.1 It is known that

W € Ay sy = WY o) = BT I o Py, )

Moreover, we can write wl ™ € Ay g = wl=? ¢ A, because of wl=? ¢ Ay g C
A,y Therefore, we get

wl_p/ S Ap’/q’ = wl_p/ S A

= [w' " ) = 1B 0 1 10 Pl @3)

But the opposite is not true.

Remark 2.2 Let’s write w'™? & Ay /g and used the definitions A, classes we get the
following

a(p—1) a(p—1)

— / _ ola—1) A1) !
Mp@@ijwﬁu)UﬂWM”$£Wmmwwm
1-p1/p" -2 1—p'  1/p 1/p
= W = 1B e Iy el e

where the following equalities are provided.

oy M a4 _dp-1) <Q>'_q (13/)'_?(@—1)
p’p plg—=1) p plg—1)" \p qg—p \¢ q—0p

Then from eq.(2.3) and eq.(2.4) we have

1-p' L 1-p/11/p’
w € Ap /q [ ]Ap//q
L 1 1
= 1B LY ) Nty Nl @.5)

We define the generalized weighed Morrey spaces as follows.

Definition 2.1 [14] Let 1 < p < oo, ¢ be a positive measurable function on R™ x (0, c0)
and w be non-negative measurable function on R". We denote by M, ,(w) the generalized

weighted Morrey space, the space of all functions f € L}D‘?fu(R") with finite norm
_1
1Faty oy = sup @@, m) " w(B(@,7)) "% | fllL, (B,
z€R™,r>0

where Ly, ,(B(xz,1)) denotes the weighted L,-space of measurable functions f for which

1

»
1f Ny (Br)) = 1 X | Lpw®r) = (/B( )\f(y)\’%u(y)dy) :

Furthermore, by W M, ,(w) we denote the weak generalized weighted Morrey space of
all functions f € WL;?Z;(RTL) for which

_1
| fllw sy (w) = xeﬂng:w%D(%?")_l w(B(x, 7)) * | fllwi,.w(Br) < o0

where W Ly, .,(B(z, 1)) denotes the weak Ly, ,,-space of measurable functions f for which

)
1w, oy = 1 Xoen WL, o @m = supt j/ wiy)dy | .
Wl (Bl pen W E G000 \ et i
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Remark 2.3 (1) If w = 1, then M, ,(1) = M, , is the generalized Morrey space.
K—1

(2) If p(x,r) = w(B(x,7)) » , then M, ,(w) = Ly .(w) is the weighted Morrey

space.
K 1

(3) If p(x,r) = v(B(x,r))pw(B(x,r)) », then My (w) = Ly, (v,w) is the two

weighted Morrey space.
A—n

(4) Ifw =1and p(z,7) =7 » with0 < A < n, then M, ,(w) = L, »(R") is the
classical Morrey space and WM, ,(w) = W Ly, (R™) is the weak Morrey space.

5) If p(x,r) = w(B(x,r)) »,then M, ,(w) = L,.,(R") is the weighted Lebesgue

(5) If o X% P g g
space.

-

3 Sublinear operators with rough kernel generated by Calderén-Zygmund operators
in the spaces M, ,(w)

We will use the following statements on the boundedness of the weighted Hardy operators

Hyg(r) = /00 g(t)w(t)dt, 0 <t < oo

and - ;
Hg(r):= / (1+1In ;) g(t)w(t)dt, 0 <t < oo,
T
where w is a fixed function non-negative and measurable on (0, c0).
The following theorem was proved in [16,17].

Theorem 3.1 [16,17] Let v, vo and w be positive almost everywhere and measurable
functions on (0, 00). The inequality

ess sup va(t)Hyyg(t) < Cess sup vy (t)g(t) (3.1)
t>0 >0

holds for some C > 0 for all non-negative and non-decreasing g on (0, 00) if and only if

o0
d
B :=ess Supvg(t)/ _wis)ds < 0.
t>0 ¢ esssupuy(r)
s§<T <00

Moreover, the value C = B is the best constant for (3.1).
The following theorem was proved in [14].

Theorem 3.2 [14] Let vy, v and w be positive almost everywhere and measurable func-
tions on (0, 00). The inequality

ess sup va(r)Hy,g(r) < Cess supvi(r)g(r) (3.2)
r>0 r>0

holds for some C > 0 for all non-negative and non-decreasing g on (0, 00) if and only if

o t t)dt
B:= supvg(r)/ (1+In-) _witidt < 0. (3.3)
r>0 r T SUPics<oo Ul(s)

Moreover, the value C = B is the best constant for (3.1).

Remark 3.1 In (3.1) — (3.3) it is assumed that 0 - co = 0.
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In the following lemma we get local estimate (see, for example, [12,13] in the case
w = 1 and [14] in the case w € A)) for the operator T},.

Lemma 3.1 Let 1 < p < oo, T be a sublinear operator satisfying condition (1.1) with
Q2 € Ly(S™Y), ¢ > 1, be a homogeneous of degree zero, and bounded on Ly, ,,(R") for
p > 1, and bounded from Ly ,,(R™) to W L ,,(R"™).

Ifd <p<oo,p#landw € A

p/q» then the inequality
1 1dt
72130000 S 0B [ 1, by 0Bl )
holds for any ball B(xq, ), and for all f € Lg”fy (R™).
If1 <p<gq, p+# occand wl™? e Ay /g0 then the inequality
[e.e]

1/p 1/p dt
T2 ety S V0 1Ny iy Il

holds for any ball B(x,r), and for all f € LYS,(R™).

Proof. Let {2 be satisfies the conditions (1.5), (1.6) and {2 € Lq(S"_l), 1< q< .
Note that

1
192(z = )L, (Bo.t)) < o 1201, (sn-1) B0, + |z — z0])] 9,

where ¢y = (nvy) ™Y and v, = |B(0,1)] (see, [20]).
For arbitrary o € R", set B = B (o, r) for the ball centered at xy and of radius r,
2B = B(xo,2r). We represent f as

f=hto i) =FW)xap(y), f2ly) = F(Y)Xeyp»), >0 G4
and have

1Te(Ly.w) < Te(fllL, ) + Te(f2)llL,.8)

Since f1 € Lpw(R™), T (f1) € Lpw(R™) and from the boundedness of T in Ly, ,,(R™)
forw € A,/ and q < p < oo, p# 1 (see Theorem 1.5) it follows that

1Te (f) lLywm) < T2 (A1) Iz, @

1
S 12N zysm— [wli, 1AL, @

q

1
~ |92][L,(s5n-1) [w ]ffxﬁ 1 £l 2, (2B)

It’sclearthatz € B,y € E(2B) implies 1|20 — y| < |z — y| < 3|20 — y|. Then by the
Minkowski inequality and conditions on {2, we get

|zo — y|™
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By Fubini’s theorem we have

192(z —y)||f(y)] / <o dt
dy =~ Qx—y)||f(y / —dy
/“(23) lzo — y|m t2B) 1 NFw)l lo—y| "1
o0 dt
-] 126~ I )y s
2r J2r<|zo—y|<t

o dt
< 2z — dy—- .
s 1eElwg

By applying Hélder’s inequality for ¢’ < p < oo, p # landw € A, /q'> We get
[2(x — )| 1/ ()] > dt
Joos Ay 5 [ 126 =~ Yraaeom 1Ly 5o rr

|zog — y|™

2r
0o ey % 1 dt
S 120z sm) / 1ty 3oty 10~ PUE ey 1B+ |2 = 0]} oy
: 1 Y 1 dt
S PRE / 111y (300 W (B0, 0) 77 | Bwo, O[T [BO, )] g
q
1 1dt
~ 1 @lsygsmy [0l [ 1 by olBloo, ) - 6.5
ql
Moreover, for all ¢ < p < oo, p # 1 the inequality
L 1 [ _1dt
1T (£2) o8y S 120 Lysns) [}, w(B)? / 10y (B0 (B0, 1) 77 5
q’ T
is valid. Thus
1
70y t5) S 1905y sy (17120t
1 _1dt
0B [ 1l oy w(Blao,t) 5 T,
On the other hand,
©dt
e =B [ s
dt
SB[ 1ty 5te00 77
S o° dt
< w(B)?|jw l/p”L/B/2 1200 (Bo.1)) T
1 dt
SWE [ 1l aoianen 107Ny ot i
1 1 _1dt
Slull, 0B [ 1l wibeun 0Bl ) 5. (.6)
q’ T

Thus

1 dt
1Tz, SN2l L, sm-1) [w ]iiﬂ/ w(B)

L 151 bty 0B, 1)
2r

D=
=

3=

o _1dt
Sw(Baor))? [l s wBlao ) .

r
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Letalsol < p < ¢, p # oo and w7 € Ap g Since f1 € Lpw(R"), T (f1) €

Lyw(R™) and from the boundedness of T, in L, ,,(R™) for w'~?" € Ap g and 1 <p<gq
(see Theorem 1.5) it follows that

[~

A

1T (f) ,..8) < 112 (fi) lz,..@ S 19200,5m7-1) [w! 7] 1 f1ll 2,0 (R7)
p

q/

[~

o Wl 2By

q

)

~ 192]| 1, (571 [w! 7]

Ifl<p<gqp# ocoand w? € Ay q» then Minkowski theorem and Holder
inequality,

1
) ,
o0 dt P
HTQ<f2>uL,,,w<B>s</ (/ / \Q(w—y)llf(y)!dytn+1> w(x)dx)
B 2r J B(zo,t)
</°°/ 126 — Iz, ol f o)l dy 25
~ Jor B(o,t) Yy Lp,w(B) Yy ythrl
</°O/ 120 =Wl ol o 1F )] dy -2
~ Jar JB(xoy) YLqB) MNIL, () 1YY i
dt

1 00 1
Sy el iy [ 1B+l )y
T O,

-

> o 1 dt
S 120 zgesmn) \lwlli(q/p>,(3) /2r Il 21 (B(wo,t)) [ B0, 7 + )]« preey

1 ad P 1 dt
< HQHLq(Snfl) Hw”i’ ¢ (B) / ||f”Lp,w(B(x0,t)) |w p/p”zl(B(mO,t)) |B(xo,t)|4 Py

q—p 2r

) 1
S 20y 1Bl llwll_, (B)/
> 2

o0

- dt
”f”Lp,w(B(xo,t)) le P ||zl(3(x07t)) | B(xo,t)] o]

Q|

T

1
) and (2.5) for w7 () We have the
T

1
is obtained. By applying (2.3) for ||w! ' HEII(B(

xo,t

following inequality
| To(f2)llz,..(B)

R 00 1 dt
Sl [0 WlEy o [ 1y ity 10127, (otani T
q’ q—pP T q—p

is valid. Thus

=

S

1T 2y i3y S 120y [0 71 (1£1ln, 0em)

p/
q

> -1 dt
ol g Wl 01 e T

T
755 (5)

\\

On the other hand,

©dt
tn+1

1712005 = B0 o8 /

T
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< o dt
S |B| , 1 F 1y (Bo.t)) i
T
1 1 1
B L dt
= [w p]A:/ B ‘B’qul p ”zl(B || Hz q (B)/ ”fHpr zOvt)) tn+1
< [P pl > B ol || dar
<lw ]Ap, |w IIL . £ 12y B0y 1 B0, DI 1w N7 Bia 1)) TS,
—p 2r
1 1 dt
< P
~ Hw”Lﬁ(B) /2r 12y (o 0l T (Bo)
Thus
1T(H)lL,.B)
N x di
SI@llzygsnny 'K, I0lE / PP o £

q

Thus we complete the proof of Lemma 3.1.

Theorem 3.3 Let 1 < p < oo, Ty be a sublinear operator satisfying condition (1.1) with
e Lq(S”_l), q > 1, be a homogeneous of degree zero, and bounded on Ly, ,,(R™) for
p > 1, and bounded from L1 ,,(R™) to W Ly ,,(R"). Let also, for ¢ < p < 0o, w € Apy
the pair (1, p2) satisfies the condition (1.3) and for 1 < p < g, w'? e Ay g the pair
(1, p2) satisfies the condition

o ©ss inf @1 (x, 7')HwHL 1
t<T<00 755 (B(z,m) dt w(B(x,r))r
7 — < Cpa(z,r) —(1( ™) , 3.7
" Hw” L5 (B(,t) ||7~UH£
- 7255 (B(@.m)

where C' does not depend on x and r.
Then the operator Tq, is bounded from My, ., (w) to My, ., (w). Moreover

1T ()t 0y () S N F 0ty 0, ()

Proof. When ¢’ < p < oo, w € A/, by Lemma 3.1 and Theorem 3.1 with v(r) =

P/q
pa(x,r) 7 n(r) = @iz ) (B, r) 7, g(r) = fllL,. (B and w(r) =
w(B(z, r))fir_l we have

1
1Tty pywy = sup oz, r)  w(Bla, )% [|pe()llz,. 8@

z€R™ r>0
-1 o 1dt
S s o) [ Il isee 0B 0) T
z€R™, r>0 r
_1
< sup o pi(m ) T w(B(@, ) 1 flln, (B
zER™,r>0
= 1fllat, 4, (w)-
For the case of 1 < p < g, wl™? e Ay /q» by Lemma 3.1 and Theorem 3.1 with
_1 1 _1
wo(r) = wa(z,r) " w(B(a,r) 7 |wl} ,vi(r) = pi(z,r)w(B(z, )7,

H(B(iﬂ'))
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1
— _ p —1
9r) = 1y ey and () = ol 7, e ave

_1
1T ()01, 0y (w) = Eﬂz}gpwm(wﬂ“)_l w(B(z,r) 7 [|pe ()L, (B

1 1 o0
< s ale ) w(B@r)F wll / T
zER™, r>0 =B Jr

1 dt

T
HLﬁw(zo,tn t

_1
< sup oi(m ) T w(B(@,r) P 1l (B
zER™,r>0

= [1flla,0, (w)-

4 Commutators of linear operators with rough kernel generated by
Calderén-Zygmund operators in the spaces M), ., (w)

Remark 4.1 ([21])

(1) The John-Nirenberg inequality : There are constants C, Co > 0, such that for all
be BMO(R™)and 8 > 0
{z € B : |b(x) — bg| > B}| < C1|Ble~?F/Ibl- vB c R™.
(2) The John-Nirenberg inequality implies that

1 P
bll« = sup / b(y) — bg(z.m|Pdy 4.1)
I 2ER™ >0 (!B(%Tﬂ B(m)’ ) = b

for1 < p < 0.
(3) Letb € BMO(R™). Then there is a constant C' > 0 such that

t
6By — bBes| < Cllb]l«In~ for 0<2r <t (4.2)
T
where C' is independent of b, x, r and ¢.

In the following lemma we get local estimate (see, for example, [14] ) for the commuta-
tor operator T\ 5.

Lemmad.l Let 1 < p < oo, b € BMO(R"™), T, be a sublinear operator satisfying

condition (1.1) with {2 € Lq(S"*I), q > 1, be a homogeneous of degree zero, and bounded
on Ly ,(R™).

If¢ <p<ocandw € Ay, then the inequality

1T () Ly (Bosr)

oo

< 1 t _idt
S ollewBeo e | (1 Yy ooy (Bl 1) 7 5

holds for any ball B(z,r), and for all f € LYS,(R™).
If1 <p<gqand w! P e Ay /g then the inequality

1T20(f) Ly (Bwor))

o0 t _ dt
< L (0 m ) oy Il

Lot 8o Jo 755 (B(ag.0) T

holds for any ball B(xq, ), and for all f € L})‘ffu (R™).
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Proof. Let p € (1,00) and b € BMO(R™). For arbitrary zop € R"”, set B = B(xq, ) for
the ball centered at xy and of radius r, 2B = B(xg, 2r). We represent f as (3.4) and have

1Tep(HL, .. < 1Tes(fi)llr,..s) + 1Tos(f2)lL,.B)

Since fi € Lpw(R™), Top(fi) € Lpw(R™) and from the boundedness of Ty, in

Lyw(R™) forw € A, /¢ and ¢ < p < oo (see Theorem 1.6) it follows that

1Tep (f1) lz, w3 < 1Top (f1)l1,.@&

1
S92z, sn-y [wl i, [0l 1Ly, 7

q

1
~ |12, sm1) [w]ﬁﬂ 1011 1|2, .o 2B)-

For x € B we have

Tospie) S [, ) bt - i Iy

Then

1T2p(f2)lL,..8)

o WL Y
5(/3(/3(23)1)@) bl y>||$0_y|ndy> <>d>
N PR UL
s(/B (/E(QB)I’(” b2 y)’\xo—ywdy) <>d>
_ N FC) | AP,
+</B (/U(QB)IW‘) b 120 y>||x0_y,ndy> ()d)

=1 + I

B =

Let us estimate [7.

b(y) — bl — )| HLDL g,
(2B) 20 — Y|

J

/[J( B) ’b >—bBwH~Q(x_ Hf ’/ tn—l—l dy
1 d
/ y) — bl - )Hf(y)ldytn%

@

r J2r<|zo— y|<t

- dt
/M )~ bm,ll 2@ — )L () ldy
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Set m = p/q’ > 1. Since w € A,,, from (2.3), we know w'~™ € A,,. Applying
Holder’s inequality and by (4.2), we get

1 [° dt
I S bl w(B)» /2 192(x = )|y (B0 116(Y) = bBwlfllL,, (Bao,t) pres)

o0
Lo =bmalle,, o)

2r
1 dt
XN F Lo B0y 1B (ot + o = wol) |7 57

1
<1202, s 6]l w(B)? /

2r

3=

S 1920y sn-1) w(B)

e} 1
7

t ' 1
(11 2) (@' (Blao, 1)) 77
dt
KNS B0y B0 D] oo

1

S 12l s ol I w(B)? L (1m0 ) 1y i) 0Bl )

2r

~|&

3=

In order to estimate /5 note that

A )b o) [ 2@ wII©)
b= </B|b( )~ bpuluw(@)d > /“(23) |z — y[" !

By (3.5) and (4.2), we get

/ 12(x — y)I|f(y)] dy
Cepy  lzo—y|”

1 1 _1
S 19201 5n ] Il (B’ / 1l s ey (B0, 1)

D =

Iy S [[bll« w(B)

Summing up /7 and Iy, for all p € (1,00) we get
1T2p(f2)lL,..8)
S 19211l I wB)
Thus

1
ITas( iy ey S 12Nsny (T Wl (15, 2

3=

N _1dt
L (4 )1y aniy o (Blao, )+

2r

o

1 _1dt
F B [ (L)1l e Bl ) 7).
2r
On the other hand, by (3.6) we get
1Top(L,..B)

o

1 1 t _1
S 19205 [l 1w (B [ (1410 )1t B, 0)

2r
1 _1
S 10l w(Bleo, ) [ (1410 D)1l ot (B )

With similar techniques for 1 < p < gq, w' e Ay /g can be achieved and the proof is
finished.
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Theorem 4.1 Let 1 < p < oo, b € BMO(R"), Ty, be a sublinear operator satisfying
condition (1.1) with {2 € Lq(S"_l), q > 1, be a homogeneous of degree zero, and bounded
on Ly .(R™). Let also, for ¢ < p < oo, w € A, the pair (@1, p2) satisfies the condition

(1.4) and for1 <p < ¢ w' " € Ay g the pair (o1, 2) satisfies the condition

ess inf 1 (x, 7)

/°° <1+lnt)t<‘r<oo
, r

where C does not depend on x and r.
Then the operator Tq y, is bounded from M, ,, (w) to My, o, (w).

1T2b ()01 0y w) S NNt 0 )

Proof. When ¢’ < p < oo, w € A/, by Lemma 4.1 and Theorem 3.2 with v(r) =

o, )7, m(r) = e1(w, ) w(B,m) 7 g(r) = [Fllny (5 and w(r) =
w(B(x, 7)) »r~! we have

lwll” i L
o) dt B
5 (B(2,7)) : < Clar) w(B(z,r))?

1
Lo (B(a,t) Hwa

, (4.3)
[l
755 (B@r)

1
1 T2,6() 2y (w) = o @a(x,r) " w(B(, )7 s ()L, B

_ _1dt
Sl s eawn) [ (11Dl ey 0B 0)

z€R™ r>0 13

SIBl. sup or(er) " w(Be ) E 11l )
T€R™ >0
= [l F 12y, (0
For the case of 1 < p < g, w' " e Ay /q» by Lemma 3.1 and Theorem 3.2 with
) = pale, ) wB )l , ) = e B )
q—p ’

_1
9(r) = 11y uipary and w(r) = wll,”, 7~ wehave
q—p -

_1
ITes (st pyw) = suD 2(2,7) " w(B(@, 1)) "7 ()L, .wmen)

z€R™, r>0
_1 1
< sup po(x,r) tw(B(x,r) e w|]
2€R™, >0 745 (B)
o0 1 dt
< / (1410 )1y Gy WLy oy T
< osup gz, ) tw(Bla,r))” prHLp,w(B(zr))
zER™,r>0
= 1fllat,,0, (w)-
References

1. Akbulut, A., Guliyev V.S., Mustafayev, R.: On the boundedness of the maximal oper-

ator and singular integral operators in generalized Morrey spaces, Math. Bohem. 137
(1), 2743 (2012).



V.H. Hamzayev 93

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Alvarez, J., Bagby, R.J., Kurtz, D.S., Pérez, C.: Weighted estimates for commutators of

linear operators, Studia Math. 104, 195-209 (1993).

. Calderon, A.P.: Commutators of singular integral operators, Proc. Natl. Acad. Sci.

USA, 53, 1092-1099 (1965).

. Calderon, A.P.: Cauchy integrals on Lipschitz curves and related operators, Proc. Natl.

Acad. Sci. USA 74(4), 1324-1327 (1977).

. Chiarenza, F., Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function,

Rend Mat. 7, 273-279 (1987).

. Chiarenza, F., Frasca, M., Longo, P.: W2’p-solvability of Dirichlet problem for nondi-

vergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc. 336, 841-
853 (1993).

. Chen, Y.: Regularity of solutions to elliptic equations with VMO coefficients, Acta Math.

Sin. (Engl. Ser.) 20, 1103-1118 (2004).

. Coifman, R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in sev-

eral variables, Ann. of Math. 103(2), 611-635 (1976).

. Duoandikoetxea, J.: Weighted norm inequalities for homogeneous singular integrals,

Trans. Amer. Math. Soc. 336, 869—-880 (1993).

Di Fazio G., Ragusa M.A.: Interior estimates in Morrey spaces for strong solutions
to nondivergence form equations with discontinuous coefficients, J. Funct. Anal. 112,
241-256 (1993).

Fan, D., Lu, S., Yang, D.: Boundedness of operators in Morrey spaces on homogeneous
spaces and its applications, Acta Math. Sinica (N. S.) 14, 625-634 (1998).

Guliyev, V.S.: Integral operators on function spaces on the homogeneous groups and
on domains in R", Doctoral dissertation, Moscow, Mat. Inst. Steklov, 329 pp. (1994)
(in Russian).

Guliyev, V.S.: Boundedness of the maximal, potential and singular operators in the
generalized Morrey spaces, J. Inequal. Appl. Art. ID 503948, 20p. (2009).

Guliyev, V.S.: Generalized weighted Morrey spaces and higher order commutators of
sublinear operators, Eurasian Math. J. 3(3), 33-61 (2012).

Guliyev, V.S., Aliyev S.S., Karaman, T.: Boundedness of a class of sublinear opera-
tors and their commutators on generalized Morrey spaces, Abstr. Appl. Anal. Art. ID
356041, 18 p. (2011).

Guliyev, V.S.: Local generalized Morrey spaces and singular integrals with rough ker-
nel, Azerb. J. Math. 3 (2), 79-94 (2013).

Guliyev, V.S.: Generalized local Morrey spaces and fractional integral operators with
rough kernel, J. Math. Sci. (N. Y.) 193(2), 211-227 (2013).

Guliyev, V.S., Karaman, T., Mustafayev, R.Ch., Serbetci, A.: Commutators of sublinear
operators generated by Calderon-Zygmund operator on generalized weighted Morrey
spaces, Czechoslovak Math. J. 64, 139 (2), 365-386 (2014).

Guliyev, V.S., Omarova, M.N.: Higher order commutators of vector-valued intrinsic
square functions on vector-valued generalized weighted Morrey spaces, Azerb. J. Math.
4(2), 64-85 (2014).

Guliyev, V.S., Hamzayev, V.H.: Rough singular integral operators and its commutators
on generalized weighted Morrey spaces, Math. Ineq. Appl. 19(3), 863-881 (2016).
Janson, S.: On functions with conditions on the mean oscillation, Ark. Mat. 14 (2),
189-196 (1976).

Karaman, T., Guliyev, V.S., Serbetci, A.: Boundedness of sublinear operators generated
by Calderon-Zygmund operators on generalized weighted Morrey spaces, An. Stiint.
Univ. Al I. Cuza lasi. Mat. (N.S.), 60(1), 227-244 (2014).

Komori, Y., Shirai, S.: Weighted Morrey spaces and a singular integral operator, Math.
Nachr. 282(2), 219-231 (2009).

Lu, G, Lu, S., Yang, D.: Singular integrals and commutators on homogeneous groups,



94 Sublinear operators with rough kernel generated by Calderon-Zygmund operators and . ..
Anal. Math. 28, 103-134 (2002).

25. Mizuhara, T.: Boundedness of some classical operators on generalized Morrey spaces,
Harmonic Analysis (S. Igari, Editor), ICM 90 Satellite Proceedings, Springer - Verlag,
Tokyo, 183-189 (1991).

26. MORREY, C.B.: On the solutions of quasi-linear elliptic partial differential equations,
Trans. Amer. Math. Soc., 43, 126-166 (1938).

27. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function, Trans.
Amer. Math. Soc. 165, 207-226 (1972).

28. Soria, F., Weiss, G.: A remark on singular integrals and power weights, Indiana Univ.
Math. J. 43, 187-204 (1994).

29. Watson, D.: Weighted estimates for singular integrals via Fourier transform estimates,

Duke Math. J. 60, 389-399 (1990).



