Sublinear operators with rough kernel generated by Calderon-Zygmund operators and their commutators on generalized weighted Morrey spaces

Vugar H. Hamzayev

Received: 12.04.2017 / Revised: 12.01.2018 / Accepted: 01.03.2018

Abstract. In this paper, we study the boundedness of a large class of sublinear operators with rough kernel T_{Ω} on the generalized weighted Morrey spaces $M_{p,\varphi}(w)$ for with $q' \leq p < \infty$, $p \neq 1$ and $w \in A_{p/q'}$ or $1 and <math>w^{1-p'} \in A_{p'/q'}$, where $\Omega \in L_q(S^{n-1})$ with q > 1 be homogeneous of degree zero. In the case when $b \in BMO$, $1 and <math>T_{\Omega,b}$ be is a sublinear commutator operator, we find the sufficient conditions on the pair (φ_1, φ_2) and $q' \leq p < \infty$, $p \neq 1$, $w \in A_{p/q'}$ or $1 , <math>w^{1-p'} \in A_{p'/q'}$ which ensures the boundedness of the operators $T_{\Omega,b}$ from $M_{p,\varphi_1}(w)$ to $M_{p,\varphi_2}(w)$ for 1 .

Keywords. Sublinear operator · Calderón-Zygmund operator · rough kernel · generalized weighted Morrey spaces · commutator · A_p weights.

Mathematics Subject Classification (2010): 42B25 · 42B35

1 Introduction

It is well-known that the commutator is an important integral operator and it plays a key role in harmonic analysis. In 1965, Calderon [3,4] studied a kind of commutators, appearing in Cauchy integral problems of Lip-line. Let K be a Calderón-Zygmund singular integral operator and $b \in BMO(\mathbb{R}^n)$. A well known result of Coifman, Rochberg and Weiss [8] states that the commutator operator [b,K]f=K(bf)-bKf is bounded on $L_p(\mathbb{R}^n)$ for 1 . The commutator of Calderón-Zygmund operators plays an important role in studying the regularity of solutions of elliptic partial differential equations of second order (see, for example, [5–7, 10, 11]).

The classical Morrey spaces were originally introduced by Morrey in [26] to study the local behavior of solutions to second order elliptic partial differential equations. For the properties and applications of classical Morrey spaces, we refer the readers to [10,11,13,26]. Mizuhara [25] introduced generalized Morrey spaces. Later, Guliyev [13] defined the generalized Morrey spaces $M_{p,\varphi}$ with normalized norm. Recently, Komori and Shirai [23] considered the weighted Morrey spaces $L^{p,\kappa}(w)$ and studied the boundedness of some classical operators such as the Hardy-Littlewood maximal operator, the Calderón-Zygmund operator on these spaces. Guliyev [14] gave a concept of generalized weighted Morrey space $M_{p,\varphi}(w)$ which could be viewed as extension of both generalized Morrey space $M_{p,\varphi}$ and

V.H. Hamzayev

Nakhchivan Teacher-Training Institute, Nakhchivan, Azerbaijan

Institute of Mathematics and Mechanics of NAS of Azerbaijan, 9, B.Vahabzade str., AZ1141, Baku, Azerbaijan,

E-mail: vugarhamzayev@yahoo.com

weighted Morrey space $L^{p,\kappa}(w)$. In [14] Guliyev also studied the boundedness of the classical operators and its commutators in these spaces $M_{p,\varphi}(w)$, see also Guliyev et al. [18, 19, 22].

For $x \in \mathbb{R}^n$ and r > 0, let B(x,r) denote the open ball centered at x of radius r, ${}^{\complement}B(x,r)$ denote its complement and |B(x,r)| is the Lebesgue measure of the ball B(x,r). Suppose that S^{n-1} is the unit sphere in \mathbb{R}^n $(n \geq 2)$ equipped with the normalized Lebesgue measure $d\sigma$.

Let $\Omega \in L_s(S^{n-1})$ with $1 < s \le \infty$ be homogeneous of degree zero. Suppose that T_Ω represents a linear or a sublinear operator, such that that for any $f \in L_1(\mathbb{R}^n)$ with compact support and $x \notin supp f$

$$|T_{\Omega}f(x)| \le c_0 \int_{\mathbb{R}^n} \frac{|\Omega(x-y)|}{|x-y|^n} |f(y)| dy, \tag{1.1}$$

where c_0 is independent of f and x.

For a function b, suppose that the commutator operator $T_{\Omega,b}$ represents a linear or a sublinear operator, such that for any $f \in L_1(\mathbb{R}^n)$ with compact support and $x \notin supp f$

$$|T_{\Omega,b}f(x)| \le c_0 \int_{\mathbb{R}^n} |b(x) - b(y)| \frac{|\Omega(x-y)|}{|x-y|^n} |f(y)| dy,$$
 (1.2)

where c_0 is independent of f and x.

We point out that the condition (1.1) in the case $\Omega\equiv 1$ was first introduced by Soria and Weiss in [28]. The condition (1.1) are satisfied by many interesting operators in harmonic analysis, such as the Calderón-Zygmund operators, Carleson's maximal operator, Hardy-Littlewood maximal operator, C. Fefferman's singular multipliers, R. Fefferman's singular integrals, Ricci-Stein's oscillatory singular integrals, the Bochner-Riesz means and so on (see [24], [28] for details).

The following statement, was proved in [22], see also [14,18].

Theorem 1.1 Let $1 \le p < \infty$, $w \in A_p$ and (φ_1, φ_2) satisfy the condition

$$\int_{r}^{\infty} \frac{\operatorname{ess inf}_{t < \tau < \infty} \varphi_{1}(x, \tau) w(B(x, \tau))^{\frac{1}{p}}}{w(B(x, t))^{\frac{1}{p}}} \frac{dt}{t} \le C \varphi_{2}(x, r), \tag{1.3}$$

where C does not depend on x and r. Let $T \equiv T_1$ be a sublinear operator satisfying condition (1.1) with $\Omega \equiv 1$ bounded on $L_{p,w}(\mathbb{R}^n)$ for p > 1, and bounded from $L_{1,w}(\mathbb{R}^n)$ to $WL_{1,w}(\mathbb{R}^n)$. Then the operator T is bounded from $M_{p,\varphi_1}(w)$ to $M_{p,\varphi_2}(w)$ for p > 1 and from $M_{1,\varphi_1}(w)$ to $WM_{1,\varphi_2}(w)$.

The following statement, was proved in [18], see also [14].

Theorem 1.2 Let $1 , <math>w \in A_p$, $b \in BMO(\mathbb{R}^n)$ and (φ_1, φ_2) satisfy the condition

$$\int_{r}^{\infty} \left(1 + \ln \frac{t}{r} \right) \frac{\operatorname{ess inf}_{t < \tau < \infty} \varphi_{1}(x, \tau) w(B(x, \tau))^{\frac{1}{p}}}{w(B(x, t))^{\frac{1}{p}}} \frac{dt}{t} \le C \varphi_{2}(x, r), \tag{1.4}$$

where C does not depend on x and r. Let $T_b \equiv T_{1,b}$ be a sublinear commutator operator satisfying condition (1.2) with $\Omega \equiv 1$ bounded on $L_{p,w}(\mathbb{R}^n)$. Then the operator T_b is bounded from $M_{p,\varphi_1}(w)$ to $M_{p,\varphi_2}(w)$.

Note that, in the case w=1 Theorem 1.1 was proved in [15] and for the operators M and K in [1].

Watson [29] and independently by Duoandikoetxea [9] established weighted L_p boundedness for the singular integral operators with rough kernels and their commutators.

Let $S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$ the unit sphere of \mathbb{R}^n $(n \ge 2)$ equipped with the normalized Lebesgue measure $d\sigma = d\sigma(x')$.

Suppose that Ω satisfies the following conditions.

(i) Ω is a homogeneous function of degree zero on \mathbb{R}^n . That is,

$$\Omega(tx) = \Omega(x) \tag{1.5}$$

for all t > 0 and $x \in \mathbb{R}^n$.

(ii) Ω has mean zero on S^{n-1} . That is,

$$\int_{S^{n-1}} \Omega(x') d\sigma(x') = 0, \tag{1.6}$$

where x' = x/|x| for any $x \neq 0$.

The singular integral operator with homogeneous kernel \overline{T}_{Ω} is defined by

$$\overline{T}_{\Omega}(f)(x) = p.v. \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^n} f(y) \, dy, \tag{1.7}$$

where Ω is homogeneous of degree zero.

Suppose that \overline{T}_{Ω} is a singular integral operator defined by (1.7). Let Ω be a homogeneous of degree zero on \mathbb{R}^n . Let $\overline{T}_{\Omega,\varepsilon}$ is the truncated operator of T_{Ω} defined by

$$\overline{T}_{\Omega,\varepsilon}(f)(x) = \int_{\{y \in \mathbb{R}^n : |x-y| \ge \varepsilon\}} \frac{\Omega(x-y)}{|x-y|^n} f(y) \, dy, \quad \varepsilon > 0.$$
 (1.8)

Then the operator of T_{Ω}^* defined by

$$\overline{T}_{\Omega}^{*}(f)(x) = \sup_{\varepsilon > 0} \left| \overline{T}_{\Omega,\varepsilon}(f)(x) \right| \tag{1.9}$$

is called the maximal singular integral operator. Therefore, it will be an interesting thing to study the property of \overline{T}_{Ω}^* . The main purpose of this paper is to show that singular integral operators with rough kernels \overline{T}_{Ω} are bounded from one generalized weighted Morrey space $M_{p,\varphi_1}(w)$ to another $M_{p,\varphi_2}(w)$, 1 .

The commutator of the singular integral operators with rough kernels \overline{T}_{Ω} is defined by

$$[b, \overline{T}_{\Omega}](f)(x) = p.v. \int_{\mathbb{R}^n} [b(x) - b(y)] \frac{\Omega(x - y)}{|x - y|^n} f(y) dy, \tag{1.10}$$

Let $f \in L_1^{loc}(\mathbb{R}^n)$. The maximal operator with rough kernel M_{Ω} is defined by

$$M_{\Omega}f(x) = \sup_{t>0} |B(x,t)|^{-1} \int_{B(x,t)} |\Omega(x-y)| |f(y)| dy.$$

It is obvious that when $\Omega\equiv 1$, M_Ω is the Hardy-Littlewood maximal operator M. For $b\in L_1^{\mathrm{loc}}(\mathbb{R}^n)$ the commutator of the maximal operator $M_{\Omega,b}$ is defined by

$$M_{\Omega,b}f(x) = \sup_{t>0} |B(x,t)|^{-1} \int_{B(x,t)} |b(x) - b(y)| |\Omega(x-y)| |f(y)| dy.$$
 (1.11)

Theorem 1.3 ([9]) Suppose that Ω satisfies the conditions (1.5) and $\Omega \in L_q(S^{n-1})$, $1 < q \leq \infty$. Then for every $q' \leq p < \infty$, $p \neq 1$ and $w \in A_{p/q'}$ or $1 , <math>p \neq \infty$ and $w^{1-p'} \in A_{p'/q'}$, there is a constant C independent of f such that

$$||M_{\Omega}(f)||_{L_{p,w}} \leq C||f||_{L_{p,w}}.$$

Theorem 1.4 ([2]) Suppose that Ω satisfies the conditions (1.5) and $\Omega \in L_q(S^{n-1})$, $1 < q \leq \infty$. Let also $b \in BMO(\mathbb{R}^n)$. Then for every $q' \leq p < \infty$, $p \neq 1$ and $w \in A_{p/q'}$ or $1 , <math>p \neq \infty$ and $w^{1-p'} \in A_{p'/q'}$, there is a constant C independent of f such that

$$||M_{\Omega,b}(f)||_{L_{p,w}} \le C||f||_{L_{p,w}}.$$

Theorem 1.5 ([9,29]) Suppose that Ω satisfies the conditions (1.5), (1.6) and $\Omega \in L_q(S^{n-1})$, $1 < q \le \infty$. Then for every $q' \le p < \infty$, $p \ne 1$ and $w \in A_{p/q'}$ or $1 , <math>p \ne \infty$ and $w^{1-p'} \in A_{p'/q'}$, there is a constant C independent of f such that

$$||T_{\Omega}(f)||_{L_{p,w}} \leq C||f||_{L_{p,w}}.$$

Theorem 1.6 ([9,29]) Suppose that Ω satisfies the conditions (1.5), (1.6) and $\Omega \in L_q(S^{n-1})$, $1 < q \le \infty$. Let also $b \in BMO(\mathbb{R}^n)$. Then for every $q' \le p < \infty$, $p \ne 1$ and $w \in A_{p/q'}$ or $1 , <math>p \ne \infty$ and $w^{1-p'} \in A_{p'/q'}$, there is a constant C independent of f such that

$$||[b, T_{\Omega}](f)||_{L_{p,w}} \le C||f||_{L_{p,w}}.$$

In [20] the authors was studied the boundedness of the singular integral operators with rough kernels \overline{T}_{Ω} and its commutators $[b,\overline{T}_{\Omega}]$ on generalized weighted Morrey spaces $M_{p,\varphi}(w)$. In this work, we prove the boundedness of the sublinear operators T_{Ω} satisfies the condition (1.1) generated by the Calderon-Zygmund operators from $M_{p,\varphi_1}(w)$ to $M_{p,\varphi_2}(w)$ with $q' \leq p < \infty, p \neq 1, w \in A_{p/q'}$ or $1 . We find the sufficient conditions on the pair <math>(\varphi_1, \varphi_2)$ with $b \in BMO(\mathbb{R}^n)$ and $q' \leq p < \infty, p \neq 1, w \in A_{p/q'}$ or $1 which ensures the boundedness of the commutator operators <math>T_{\Omega,b}$ from $M_{p,\varphi_1}(w)$ to $M_{p,\varphi_2}(w)$ for $1 . Note that, in [16] was studied the boundedness of the operators <math>\overline{T}_{\Omega}$ and $[b,\overline{T}_{\Omega}]$ on generalized Morrey spaces $M_{p,\varphi}$.

By $A \lesssim D$ we mean that $A \leq CD$ with some positive constant C independent of appropriate quantities. If $A \lesssim D$ and $D \lesssim A$, we write $A \approx D$ and say that A and D are equivalent.

2 Generalized weighted Morrey spaces

We recall that a weight function w is in the Muckenhoupt class A_p [27], 1 , if

$$[w]_{A_p} := \sup_{B} [w]_{A_p(B)}$$

$$= \sup_{B} \left(\frac{1}{|B|} \int_{B} w(x) dx\right) \left(\frac{1}{|B|} \int_{B} w(x)^{1-p'} dx\right)^{p-1}$$
(2.1)

where the sup is taken with respect to all the balls B and $\frac{1}{p} + \frac{1}{p'} = 1$. Note that, for all balls B using Hölder's inequality, we have that

$$[w]_{A_p(B)}^{1/p} = |B|^{-1} ||w||_{L_1(B)}^{1/p} ||w^{-1/p}||_{L_{p'}(B)} \ge 1.$$
(2.2)

For p=1, the class A_1 is defined by the condition $Mw(x) \leq Cw(x)$ with $[w]_{A_1} = \sup_{x \in \mathbb{R}^n} \frac{Mw(x)}{w(x)}$, and for $p=\infty$ $A_\infty = \bigcup_{1 \leq p < \infty} A_p$ and $[w]_{A_\infty} = \inf_{1 \leq p < \infty} [w]_{A_p}$.

Remark 2.1 It is known that

$$w^{1-p'} \in A_{p'/q'} \Rightarrow [w^{1-p'}]_{A_{p'/q'}(B)}^{q'/p'} = |B|^{-1} ||w^{1-p'}||_{L_1(B)}^{q'/p'} ||w^{q'/p}||_{L_{(p'/q')'}(B)}.$$

Moreover, we can write $w^{1-p'} \in A_{p'/q'} \Rightarrow w^{1-p'} \in A_{p'}$ because of $w^{1-p'} \in A_{p'/q'} \subset A_{p'}$. Therefore, we get

$$w^{1-p'} \in A_{p'/q'} \Rightarrow w^{1-p'} \in A_{p'}$$

$$\Rightarrow [w^{1-p'}]_{A_{p'}(B)}^{1/p'} = |B|^{-1} ||w^{1-p'}||_{L_1(B)}^{1/p'} ||w^{1/p}||_{L_p(B)}.$$
 (2.3)

But the opposite is not true.

Remark 2.2 Let's write $w^{1-p'} \in A_{p'/q'}$ and used the definitions A_p classes we get the following

$$w^{1-p'} \in A_{p'/q'} \Rightarrow [w^{1-p'}]_{A_{p'/q'}}^{\frac{q(p-1)}{p(q-1)}} = |B|^{-1} ||w^{1-p'}||_{L_1(B)}^{\frac{q(p-1)}{p(q-1)}} ||w^{q'/p}||_{L_{(p'/q')'}(B)}$$

$$\Rightarrow [w^{1-p'}]_{A_{p'/q'}}^{1/p'} = |B|^{-\frac{q-1}{q}} ||w^{1-p'}||_{L_1(B)}^{1/p'} ||w||_{L_{\frac{q}{q-p}(B)}}^{1/p}, \qquad (2.4)$$

where the following equalities are provided.

$$1 - p' = -\frac{p'}{p}, \quad \frac{q'}{p} = \frac{q}{p(q-1)}, \quad \frac{q'}{p'} = \frac{q(p-1)}{p(q-1)}, \quad \left(\frac{q}{p}\right)' = \frac{q}{q-p}, \quad \left(\frac{p'}{q'}\right)' = \frac{p(q-1)}{q-p}.$$

Then from eq.(2.3) and eq.(2.4) we have

$$\begin{split} w^{1-p'} &\in A_{p'/q'} \Rightarrow [w^{1-p'}]_{A_{p'/q'}}^{1/p'} \\ &= |B|^{\frac{1}{q}} [w^{1-p'}]_{A_{p'}(B)}^{1/p'} \|w^{1/p}\|_{L_p(B)}^{-1} \|w\|_{L_{\frac{q}{q-p}(B)}}^{1/p}. \end{split} \tag{2.5}$$

We define the generalized weighed Morrey spaces as follows.

Definition 2.1 [14] Let $1 \le p < \infty$, φ be a positive measurable function on $\mathbb{R}^n \times (0, \infty)$ and w be non-negative measurable function on \mathbb{R}^n . We denote by $M_{p,\varphi}(w)$ the generalized weighted Morrey space, the space of all functions $f \in L^{loc}_{p,w}(\mathbb{R}^n)$ with finite norm

$$||f||_{M_{p,\varphi}(w)} = \sup_{x \in \mathbb{R}^n, r > 0} \varphi(x, r)^{-1} w(B(x, r))^{-\frac{1}{p}} ||f||_{L_{p,w}(B(x, r))},$$

where $L_{p,w}(B(x,r))$ denotes the weighted L_p -space of measurable functions f for which

$$\|f\|_{L_{p,w}(B(x,r))} \equiv \|f\chi_{B(x,r)}\|_{L_{p,w}(\mathbb{R}^n)} = \left(\int_{B(x,r)} |f(y)|^p w(y) dy\right)^{\frac{1}{p}}.$$

Furthermore, by $WM_{p,\varphi}(w)$ we denote the weak generalized weighted Morrey space of all functions $f \in WL_{p,w}^{loc}(\mathbb{R}^n)$ for which

$$||f||_{WM_{p,\varphi}(w)} = \sup_{x \in \mathbb{R}^n, r > 0} \varphi(x, r)^{-1} w(B(x, r))^{-\frac{1}{p}} ||f||_{WL_{p,w}(B(x, r))} < \infty,$$

where $WL_{p,w}(B(x,r))$ denotes the weak $L_{p,w}$ -space of measurable functions f for which

$$\|f\|_{WL_{p,w}(B(x,r))} \equiv \|f\chi_{B(x,r)}\|_{WL_{p,w}(\mathbb{R}^n)} = \sup_{t>0} t \left(\int_{\{y \in B(x,r): |f(y)| > t\}} w(y) dy \right)^{\frac{1}{p}}.$$

Remark 2.3 (1) If $w \equiv 1$, then $M_{p,\varphi}(1) = M_{p,\varphi}$ is the generalized Morrey space.

- (2) If $\varphi(x,r) \equiv w(B(x,r))^{\frac{\kappa-1}{p}}$, then $M_{p,\varphi}(w) = L_{p,\kappa}(w)$ is the weighted Morrey space.
- (3) If $\varphi(x,r) \equiv v(B(x,r))^{\frac{\kappa}{p}} w(B(x,r))^{-\frac{1}{p}}$, then $M_{p,\varphi}(w) = L_{p,\kappa}(v,w)$ is the two weighted Morrey space.
- (4) If $w \equiv 1$ and $\varphi(x,r) = r^{\frac{\lambda-n}{p}}$ with $0 < \lambda < n$, then $M_{p,\varphi}(w) = L_{p,\lambda}(\mathbb{R}^n)$ is the classical Morrey space and $WM_{p,\varphi}(w) = WL_{p,\lambda}(\mathbb{R}^n)$ is the weak Morrey space.
- (5) If $\varphi(x,r) \equiv w(B(x,r))^{-\frac{1}{p}}$, then $M_{p,\varphi}(w) = L_{p,w}(\mathbb{R}^n)$ is the weighted Lebesgue space.

3 Sublinear operators with rough kernel generated by Calderón-Zygmund operators in the spaces $M_{p,\varphi}(w)$

We will use the following statements on the boundedness of the weighted Hardy operators

$$H_w g(r) := \int_r^\infty g(t)w(t)dt, \ 0 < t < \infty$$

and

$$H_w^*g(r) := \int_r^\infty \left(1 + \ln\frac{t}{r}\right) g(t)w(t)dt, \ 0 < t < \infty,$$

where w is a fixed function non-negative and measurable on $(0, \infty)$. The following theorem was proved in [16, 17].

Theorem 3.1 [16,17] Let v_1 , v_2 and w be positive almost everywhere and measurable functions on $(0, \infty)$. The inequality

$$\operatorname{ess \, sup}_{t>0} v_2(t) H_w g(t) \le C \operatorname{ess \, sup}_{t>0} v_1(t) g(t) \tag{3.1}$$

holds for some C>0 for all non-negative and non-decreasing g on $(0,\infty)$ if and only if

$$B := \operatorname{ess\,sup}_{t>0} v_2(t) \int_t^\infty \frac{w(s)ds}{\operatorname{ess\,sup}_{s<\tau<\infty} v_1(\tau)} < \infty.$$

Moreover, the value C = B is the best constant for (3.1).

The following theorem was proved in [14].

Theorem 3.2 [14] Let v_1 , v_2 and w be positive almost everywhere and measurable functions on $(0, \infty)$. The inequality

$$\operatorname{ess \, sup}_{r>0} v_2(r) H_w^* g(r) \le C \operatorname{ess \, sup}_{r>0} v_1(r) g(r)$$
(3.2)

holds for some C>0 for all non-negative and non-decreasing g on $(0,\infty)$ if and only if

$$B := \sup_{r>0} v_2(r) \int_r^{\infty} \left(1 + \ln \frac{t}{r}\right) \frac{w(t)dt}{\sup_{t < s < \infty} v_1(s)} < \infty.$$
 (3.3)

Moreover, the value C = B is the best constant for (3.1).

Remark 3.1 In (3.1) – (3.3) it is assumed that $0 \cdot \infty = 0$.

In the following lemma we get local estimate (see, for example, [12,13] in the case w=1 and [14] in the case $w\in A_p$) for the operator T_{Ω} .

Lemma 3.1 Let $1 \le p < \infty$, T_{Ω} be a sublinear operator satisfying condition (1.1) with $\Omega \in L_q(S^{n-1}), q > 1$, be a homogeneous of degree zero, and bounded on $L_{p,w}(\mathbb{R}^n)$ for p > 1, and bounded from $L_{1,w}(\mathbb{R}^n)$ to $WL_{1,w}(\mathbb{R}^n)$.

If $q' \leq p < \infty$, $p \neq 1$ and $w \in A_{p/q'}$, then the inequality

$$||T_{\Omega}(f)||_{L_{p,w}(B(x_0,r))} \lesssim w(B(x_0,r))^{\frac{1}{p}} \int_{2r}^{\infty} ||f||_{L_{p,w}(B(x_0,t))} w(B(x_0,t))^{-\frac{1}{p}} \frac{dt}{t}$$

holds for any ball $B(x_0, r)$, and for all $f \in L_{p,w}^{loc}(\mathbb{R}^n)$.

If $1 , <math>p \ne \infty$ and $w^{1-p'} \in A_{p'/q'}$, then the inequality

$$||T_{\Omega}(f)||_{L_{p,w}(B(x_{0},r))} \lesssim ||w||_{L_{\frac{q}{q-p}(B(x_{0},r))}}^{1/p} \int_{2r}^{\infty} ||f||_{L_{p,w}(B(x_{0},t))} ||w||_{L_{\frac{q}{q-p}(B(x_{0},t))}}^{-1/p} \frac{dt}{t}$$

holds for any ball $B(x_0, r)$, and for all $f \in L_{p,w}^{loc}(\mathbb{R}^n)$.

Proof. Let Ω be satisfies the conditions (1.5), (1.6) and $\Omega \in L_q(S^{n-1})$, $1 < q \le \infty$. Note that

$$\|\Omega(x-\cdot)\|_{L_q(B(x_0,t))} \le c_0 \|\Omega\|_{L_q(S^{n-1})} |B(0,t+|x-x_0|)|^{\frac{1}{q}},$$

where $c_0 = (nv_n)^{-1/q}$ and $v_n = |B(0,1)|$ (see, [20]). For arbitrary $x_0 \in \mathbb{R}^n$, set $B = B(x_0, r)$ for the ball centered at x_0 and of radius r, $2B = B(x_0, 2r)$. We represent f as

$$f = f_1 + f_2, \ f_1(y) = f(y)\chi_{2B}(y), \ f_2(y) = f(y)\chi_{c_{(2B)}}(y), \ r > 0$$
 (3.4)

and have

$$||T_{\Omega}(f)||_{L_{p,w}(B)} \le ||T_{\Omega}(f_1)||_{L_{p,w}(B)} + ||T_{\Omega}(f_2)||_{L_{p,w}(B)}.$$

Since $f_1 \in L_{p,w}(\mathbb{R}^n)$, $T_{\Omega}(f_1) \in L_{p,w}(\mathbb{R}^n)$ and from the boundedness of T_{Ω} in $L_{p,w}(\mathbb{R}^n)$ for $w \in A_{p/q'}$ and $q' \le p < \infty$, $p \ne 1$ (see Theorem 1.5) it follows that

$$\begin{split} \|T_{\Omega}\left(f_{1}\right)\|_{L_{p,w}(B)} &\leq \|T_{\Omega}\left(f_{1}\right)\|_{L_{p,w}(\mathbb{R}^{n})} \\ &\lesssim \|\Omega\|_{L_{q}(S^{n-1})} \left[w\right]_{A_{\frac{p}{q'}}}^{\frac{1}{p}} \|f_{1}\|_{L_{p,w}(\mathbb{R}^{n})} \\ &\approx \|\Omega\|_{L_{q}(S^{n-1})} \left[w\right]_{A_{\frac{p}{q'}}}^{\frac{1}{p}} \|f\|_{L_{p,w}(2B)}. \end{split}$$

It's clear that $x \in B$, $y \in {}^{\complement}(2B)$ implies $\frac{1}{2}|x_0 - y| \le |x - y| \le \frac{3}{2}|x_0 - y|$. Then by the Minkowski inequality and conditions on Ω , we get

$$T_{\Omega}(f_2(x)) \lesssim \int_{\mathbb{C}_{(2B)}} \frac{|\Omega(x-y)||f(y)|}{|x_0-y|^n} dy.$$

By Fubini's theorem we have

$$\begin{split} \int_{\mathbb{C}_{(2B)}} \frac{|\varOmega(x-y)||f(y)|}{|x_0-y|^n} dy &\approx \int_{\mathbb{C}_{(2B)}} |\varOmega(x-y)| \, |f(y)| \int_{|x-y|}^\infty \frac{dt}{t^{n+1}} dy \\ &= \int_{2r}^\infty \int_{2r \leq |x_0-y| < t} |\varOmega(x-y)| \, |f(y)| dy \frac{dt}{t^{n+1}} \\ &\lesssim \int_{2r}^\infty \int_{B(x_0,t)} |\varOmega(x-y)| \, |f(y)| dy \frac{dt}{t^{n+1}} \, . \end{split}$$

By applying Hölder's inequality for $q' \leq p < \infty, p \neq 1$ and $w \in A_{p/q'}$, we get

$$\int_{\mathcal{C}_{(2B)}} \frac{|\Omega(x-y)| |f(y)|}{|x_0 - y|^n} dy \lesssim \int_{2r}^{\infty} \|\Omega(x - \cdot)\|_{L_q(B(x_0, t))} \|f\|_{L_{q'}(B(x_0, t))} \frac{dt}{t^{n+1}}$$

$$\lesssim \|\Omega\|_{L_q(S^{n-1})} \int_{2r}^{\infty} \|f\|_{L_{p, w}(B(x_0, t))} \|w^{-q'/p}\|_{L_{(p/q')'}(B(x_0, t))}^{\frac{1}{q'}} |B(0, t + |x - x_0|)|^{\frac{1}{q}} \frac{dt}{t^{n+1}}$$

$$\lesssim \|\Omega\|_{L_q(S^{n-1})} [w]_{A_{\frac{p}{q'}}}^{\frac{1}{p}} \int_{2r}^{\infty} \|f\|_{L_{p, w}(B(x, t))} w(B(x_0, t))^{-\frac{1}{p}} |B(x_0, t)|^{\frac{1}{q'}} |B(0, t)|^{\frac{1}{q}} \frac{dt}{t^{n+1}}$$

$$\approx \|\Omega\|_{L_q(S^{n-1})} [w]_{A_{\frac{p}{q'}}}^{\frac{1}{p}} \int_{2r}^{\infty} \|f\|_{L_{p, w}(B(x_0, t))} w(B(x_0, t))^{-\frac{1}{p}} \frac{dt}{t}.$$
(3.5)

Moreover, for all $q' \le p < \infty$, $p \ne 1$ the inequality

$$||T_{\Omega}(f_2)||_{L_{p,w}(B)} \lesssim ||\Omega||_{L_q(S^{n-1})} [w]_{A_{\frac{p}{q'}}}^{\frac{1}{p}} w(B)^{\frac{1}{p}} \int_{2r}^{\infty} ||f||_{L_{p,w}(B(x_0,t))} w(B(x_0,t))^{-\frac{1}{p}} \frac{dt}{t}.$$

is valid. Thus

$$||T_{\Omega}(f)||_{L_{p,w}(B)} \lesssim ||\Omega||_{L_{q}(S^{n-1})} [w]_{A_{\frac{p}{q'}}}^{\frac{1}{p}} \Big(||f||_{L_{p,w}(2B)} + w(B)^{\frac{1}{p}} \int_{2r}^{\infty} ||f||_{L_{p,w}(B(x_{0},t))} w(B(x_{0},t))^{-\frac{1}{p}} \frac{dt}{t} \Big).$$

On the other hand,

$$||f||_{L_{p,w}(2B)} \approx |B| ||f||_{L_{p,w}(2B)} \int_{2r}^{\infty} \frac{dt}{t^{n+1}}$$

$$\lesssim |B| \int_{2r}^{\infty} ||f||_{L_{p,w}(B(x_0,t))} \frac{dt}{t^{n+1}}$$

$$\lesssim w(B)^{\frac{1}{p}} ||w^{-1/p}||_{L_{p'}(B)} \int_{2r}^{\infty} ||f||_{L_{p,w}(B(x_0,t))} \frac{dt}{t^{n+1}}$$

$$\lesssim w(B)^{\frac{1}{p}} \int_{2r}^{\infty} ||f||_{L_{p,w}(B(x_0,t))} ||w^{-1/p}||_{L_{p'}(B(x_0,t))} \frac{dt}{t^{n+1}}$$

$$\lesssim [w]_{A_{\frac{p}{q'}}}^{\frac{1}{p}} w(B)^{\frac{1}{p}} \int_{2r}^{\infty} ||f||_{L_{p,w}(B(x_0,t))} w(B(x_0,t))^{-\frac{1}{p}} \frac{dt}{t}.$$
(3.6)

Thus

$$||T_{\Omega}(f)||_{L_{p,w}(B)} \lesssim ||\Omega||_{L_{q}(S^{n-1})} [w]_{A_{\frac{p}{q'}}}^{\frac{1}{p}} w(B)^{\frac{1}{p}} \int_{2r}^{\infty} ||f||_{L_{p,w}(B(x_{0},t))} w(B(x_{0},t))^{-\frac{1}{p}} \frac{dt}{t}$$
$$\lesssim w(B(x_{0},r))^{\frac{1}{p}} \int_{2r}^{\infty} ||f||_{L_{p,w}(B(x_{0},t))} w(B(x_{0},t))^{-\frac{1}{p}} \frac{dt}{t}.$$

Let also $1 , <math>p \ne \infty$ and $w^{1-p'} \in A_{p'/q'}$. Since $f_1 \in L_{p,w}(\mathbb{R}^n)$, $T_{\Omega}(f_1) \in L_{p,w}(\mathbb{R}^n)$ and from the boundedness of T_{Ω} in $L_{p,w}(\mathbb{R}^n)$ for $w^{1-p'} \in A_{p'/q'}$ and 1 (see Theorem 1.5) it follows that

$$||T_{\Omega}(f_{1})||_{L_{p,w}(B)} \leq ||T_{\Omega}(f_{1})||_{L_{p,w}(\mathbb{R}^{n})} \lesssim ||\Omega||_{L_{q}(S^{n-1})} [w^{1-p'}]_{A_{\frac{p'}{q'}}}^{\frac{1}{p'}} ||f_{1}||_{L_{p,w}(\mathbb{R}^{n})}$$

$$\approx ||\Omega||_{L_{q}(S^{n-1})} [w^{1-p'}]_{A_{\frac{p'}{q'}}}^{\frac{1}{p'}} ||f||_{L_{p,w}(2B)}.$$

If $1 and <math>w^{1-p'} \in A_{p'/q'}$, then Minkowski theorem and Hölder inequality,

$$\begin{split} &\|T_{\Omega}(f_{2})\|_{L_{p,w}(B)} \leq \left(\int_{B}^{\infty} \int_{B(x_{0},t)} |\Omega(x-y)||f(y)|dy \frac{dt}{t^{n+1}}\right)^{p} w(x)dx\right)^{\frac{1}{p}} \\ &\leq \int_{2r}^{\infty} \int_{B(x_{0},t)} \|\Omega(\cdot-y)\|_{L_{p,w}(B)}|f(y)|dy \frac{dt}{t^{n+1}} \\ &\lesssim \int_{2r}^{\infty} \int_{B(x_{0},t)} \|\Omega(\cdot-y)\|_{L_{q}(B)} \|w\|_{L_{(q/p)'}(B)}^{\frac{1}{p}} |f(y)|dy \frac{dt}{t^{n+1}} \\ &\lesssim \|\Omega\|_{L_{q}(S^{n-1})} \|w\|_{L_{(q/p)'}(B)}^{\frac{1}{p}} \int_{2r}^{\infty} \int_{B(x_{0},t)} |B(0,r+|x_{0}-y|)|^{\frac{1}{q}} |f(y)|dy \frac{dt}{t^{n+1}} \\ &\lesssim \|\Omega\|_{L_{q}(S^{n-1})} \|w\|_{L_{(q/p)'}(B)}^{\frac{1}{p}} \int_{2r}^{\infty} \|f\|_{L_{1}(B(x_{0},t))} |B(0,r+t)|^{\frac{1}{q}} \frac{dt}{t^{n+1}} \\ &\lesssim \|\Omega\|_{L_{q}(S^{n-1})} \|w\|_{L_{\frac{q}{q-p}}(B)}^{\frac{1}{p}} \int_{2r}^{\infty} \|f\|_{L_{p,w}(B(x_{0},t))} \|w^{-p'/p}\|_{L_{1}(B(x_{0},t))}^{\frac{1}{p'}} |B(x_{0},t)|^{\frac{1}{q}} \frac{dt}{t^{n+1}} \\ &\lesssim \|\Omega\|_{L_{q}(S^{n-1})} |B|^{\frac{1}{q}} \|w\|_{L_{\frac{q}{q-p}}(B)}^{\frac{1}{p}} \int_{2r}^{\infty} \|f\|_{L_{p,w}(B(x_{0},t))} \|w^{1-p'}\|_{L_{1}(B(x_{0},t))}^{\frac{1}{p'}} |B(x_{0},t)|^{\frac{1}{q}} \frac{dt}{t^{n+1}} \end{split}$$

is obtained. By applying (2.3) for $\|w^{1-p'}\|_{L_1(B(x_0,t))}^{\frac{1}{p'}}$ and (2.5) for $\|w\|_{L_{\frac{q}{q-p}}(B)}^{\frac{1}{p}}$ we have the following inequality

$$\|T_{\Omega}(f_{2})\|_{L_{p,w}(B)} \lesssim \|\Omega\|_{L_{q}(S^{n-1})} [w^{1-p'}]_{\frac{p'}{q'}}^{\frac{1}{p'}} \|w\|_{L_{\frac{q}{q-p}(B)}}^{\frac{1}{p}} \int_{2r}^{\infty} \|f\|_{L_{p,w}(B(x_{0},t))} \|w\|_{L_{\frac{q}{q-p}}(B(x_{0},t))}^{-\frac{1}{p}} \frac{dt}{t}$$

is valid. Thus

$$||T_{\Omega}(f)||_{L_{p,w}(B)} \lesssim ||\Omega||_{L_{q}(S^{n-1})} [w^{1-p'}]_{A_{\frac{p'}{q'}}}^{\frac{1}{p'}} \Big(||f||_{L_{p,w}(2B)} + ||w||_{L_{\frac{q}{q-p}(B)}}^{\frac{1}{p}} \int_{2r}^{\infty} ||f||_{L_{p,w}(B(x_{0},t))} ||w||_{L_{\frac{q}{q-p}}(B(x_{0},t))}^{-\frac{1}{p}} \frac{dt}{t} \Big).$$

On the other hand,

$$||f||_{L_{p,w}(2B)} \approx |B|||f||_{L_{p,w}(2B)} \int_{2r}^{\infty} \frac{dt}{t^{n+1}}$$

$$\lesssim |B| \int_{2r}^{\infty} ||f||_{L_{p,w}(B(x_{0},t))} \frac{dt}{t^{n+1}}$$

$$= [w^{1-p'}]_{A_{p'}(B)}^{-\frac{1}{p'}} |B|^{\frac{1}{q}} ||w^{1-p'}||_{L_{1}(B)}^{\frac{1}{p'}} ||w||_{L_{\frac{q}{q-p}(B)}}^{\frac{1}{p}} \int_{2r}^{\infty} ||f||_{L_{p,\omega}(B(x_{0},t))} \frac{dt}{t^{n+1}}$$

$$\lesssim [w^{1-p'}]_{A_{p'}(B)}^{-\frac{1}{p'}} ||w||_{L_{\frac{q}{q-p}(B)}}^{\frac{1}{p}} \int_{2r}^{\infty} ||f||_{L_{p,\omega}(B(x_{0},t))} |B(x_{0},t)|^{\frac{1}{q}} ||w^{1-p'}||_{L_{1}(B(x_{0},t))}^{\frac{1}{p'}} \frac{dt}{t^{n+1}}$$

$$\lesssim ||w||_{L_{\frac{q}{q-p}(B)}}^{\frac{1}{p}} \int_{2r}^{\infty} ||f||_{L_{p,\omega}(B(x_{0},t))} ||w||_{L_{\frac{q}{q-p}(B(x_{0},t))}}^{-\frac{1}{p}} \frac{dt}{t} .$$

Thus

$$||T_{\Omega}(f)||_{L_{p,w}(B)} \lesssim ||\Omega||_{L_{q}(S^{n-1})} [w^{1-p'}]_{A_{\frac{p'}{q'}}}^{\frac{1}{p'}} ||w||_{L_{\frac{q}{q-p}(B)}}^{\frac{1}{p}} \int_{2r}^{\infty} ||f||_{L_{p,w}(B(x_{0},t))} ||w||_{L_{\frac{q}{q-p}(B(x_{0},t))}}^{-\frac{1}{p}} \frac{dt}{t}.$$

Thus we complete the proof of Lemma 3.1.

Theorem 3.3 Let $1 \le p < \infty$, T_{Ω} be a sublinear operator satisfying condition (1.1) with $\Omega \in L_q(S^{n-1})$, q > 1, be a homogeneous of degree zero, and bounded on $L_{p,w}(\mathbb{R}^n)$ for p > 1, and bounded from $L_{1,w}(\mathbb{R}^n)$ to $WL_{1,w}(\mathbb{R}^n)$. Let also, for $q' , <math>w \in A_{p/q'}$ the pair (φ_1, φ_2) satisfies the condition (1.3) and for $1 , <math>w^{1-p'} \in A_{p'/q'}$ the pair (φ_1, φ_2) satisfies the condition

$$\int_{r}^{\infty} \frac{\operatorname{ess inf}_{t < \tau < \infty} \varphi_{1}(x, \tau) \|w\|_{L_{\frac{q}{q-p}(B(x, \tau))}}^{1/p}}{\|w\|_{L_{\frac{q}{q-p}(B(x, t))}}^{1/p}} \frac{dt}{t} \le C \varphi_{2}(x, r) \frac{w(B(x, r))^{\frac{1}{p}}}{\|w\|_{L_{\frac{q}{q-p}(B(x, r))}}^{\frac{1}{p}}}, \tag{3.7}$$

where C does not depend on x and r.

Then the operator T_{Ω} is bounded from $M_{p,\varphi_1}(w)$ to $M_{p,\varphi_2}(w)$. Moreover

$$||T_{\Omega}(f)||_{M_{p,\varphi_2}(w)} \lesssim ||f||_{M_{p,\varphi_1}(w)}.$$

Proof. When $q' , <math>w \in A_{p/q'}$, by Lemma 3.1 and Theorem 3.1 with $\nu_2(r) = \varphi_2(x,r)^{-1}$, $\nu_1(r) = \varphi_1(x,r)^{-1}w(B(x,r))^{-\frac{1}{p}}$, $g(r) = \|f\|_{L_{p,w}(B(x,r))}$ and $w(r) = w(B(x,r))^{-\frac{1}{p}}r^{-1}$ we have

$$||T_{\Omega}(f)||_{M_{p,\varphi_{2}}(w)} = \sup_{x \in \mathbb{R}^{n}, r > 0} \varphi_{2}(x, r)^{-1} w(B(x, r))^{-\frac{1}{p}} ||\mu_{\Omega}(f)||_{L_{p,w}(B(x, r))}$$

$$\lesssim \sup_{x \in \mathbb{R}^{n}, r > 0} \varphi_{2}(x, r)^{-1} \int_{r}^{\infty} ||f||_{L_{p,w}(B(x, t))} w(B(x, t))^{-\frac{1}{p}} \frac{dt}{t}$$

$$\lesssim \sup_{x \in \mathbb{R}^{n}, r > 0} \varphi_{1}(x, r)^{-1} w(B(x, r))^{-\frac{1}{p}} ||f||_{L_{p,w}(B(x, r))}$$

$$= ||f||_{M_{p,\varphi_{2}}(w)}.$$

For the case of $1 , <math>w^{1-p'} \in A_{p'/q'}$, by Lemma 3.1 and Theorem 3.1 with $\nu_2(r) = \varphi_2(x,r)^{-1} w(B(x,r))^{-\frac{1}{p}} \|w\|_{L_{\frac{q}{q-p}(B(x,r))}}^{\frac{1}{p}}$, $\nu_1(r) = \varphi_1(x,r)^{-1} w(B(x,r))^{-\frac{1}{p}}$,

$$\begin{split} g(r) &= \|f\|_{L_{p,w}(B(x,r))} \text{ and } w(r) = \|w\|_{L_{\frac{q}{q-p}(B(x,r))}}^{-\frac{1}{p}} r^{-1} \text{ we have} \\ \|T_{\Omega}(f)\|_{M_{p,\varphi_2}(w)} &= \sup_{x \in \mathbb{R}^n, \, r > 0} \varphi_2(x,r)^{-1} \, w(B(x,r))^{-\frac{1}{p}} \, \|\mu_{\Omega}(f)\|_{L_{p,w}(B(x,r))} \\ &\lesssim \sup_{x \in \mathbb{R}^n, \, r > 0} \varphi_2(x,r)^{-1} \, w(B(x,r))^{-\frac{1}{p}} \, \|w\|_{L_{\frac{q}{q-p}(B)}}^{\frac{1}{p}} \int_r^{\infty} \|f\|_{L_{p,w}(B(x_0,t))} \, \|w\|_{L_{\frac{q}{q-p}(B(x_0,t))}}^{-\frac{1}{p}} \, \frac{dt}{t} \\ &\lesssim \sup_{x \in \mathbb{R}^n, \, r > 0} \varphi_1(x,r)^{-1} \, w(B(x,r))^{-\frac{1}{p}} \, \|f\|_{L_{p,w}(B(x,r))} \\ &= \|f\|_{M_{p,\varphi_1}(w)}. \end{split}$$

4 Commutators of linear operators with rough kernel generated by Calderón-Zygmund operators in the spaces $M_{p,\varphi}(w)$

Remark 4.1 ([21])

(1) The John-Nirenberg inequality : There are constants C_1 , $C_2 > 0$, such that for all $b \in BMO(\mathbb{R}^n)$ and $\beta > 0$

$$|\{x \in B : |b(x) - b_B| > \beta\}| \le C_1 |B| e^{-C_2 \beta/\|b\|_*}, \quad \forall B \subset \mathbb{R}^n.$$

(2) The John-Nirenberg inequality implies that

$$||b||_* \approx \sup_{x \in \mathbb{R}^n, r > 0} \left(\frac{1}{|B(x,r)|} \int_{B(x,r)} |b(y) - b_{B(x,r)}|^p dy \right)^{\frac{1}{p}}$$
 (4.1)

for 1 .

(3) Let $b \in BMO(\mathbb{R}^n)$. Then there is a constant C > 0 such that

$$|b_{B(x,r)} - b_{B(x,t)}| \le C||b||_* \ln \frac{t}{r} \text{ for } 0 < 2r < t,$$
 (4.2)

where C is independent of b, x, r and t.

In the following lemma we get local estimate (see, for example, [14]) for the commutator operator $T_{\Omega,b}$.

Lemma 4.1 Let $1 , <math>b \in BMO(\mathbb{R}^n)$, T_{Ω} be a sublinear operator satisfying condition (1.1) with $\Omega \in L_q(S^{n-1})$, q > 1, be a homogeneous of degree zero, and bounded on $L_{p,w}(\mathbb{R}^n)$.

If $q' < p' < \infty$ and $w \in A_{p/q'}$, then the inequality

$$||T_{\Omega,b}(f)||_{L_{p,w}(B(x_0,r))} \lesssim ||b||_* w(B(x_0,r))^{\frac{1}{p}} \int_{2r}^{\infty} \left(1 + \ln \frac{t}{r}\right) ||f||_{L_{p,w}(B(x_0,t))} w(B(x_0,t))^{-\frac{1}{p}} \frac{dt}{t}$$

holds for any ball $B(x_0, r)$, and for all $f \in L_{p,w}^{loc}(\mathbb{R}^n)$.

If $1 and <math>w^{1-p'} \in A_{p'/q'}$, then the inequality

$$||T_{\Omega,b}(f)||_{L_{p,w}(B(x_0,r))} \leq ||w||_{L_{\frac{q}{q-p}(B(x_0,r))}}^{1/p} \int_{2r}^{\infty} \left(1 + \ln\frac{t}{r}\right) ||f||_{L_{p,w}(B(x_0,t))} ||w||_{L_{\frac{q}{q-p}(B(x_0,t))}}^{-1/p} \frac{dt}{t}$$

holds for any ball $B(x_0, r)$, and for all $f \in L_{p,w}^{loc}(\mathbb{R}^n)$.

Proof. Let $p \in (1, \infty)$ and $b \in BMO(\mathbb{R}^n)$. For arbitrary $x_0 \in \mathbb{R}^n$, set $B = B(x_0, r)$ for the ball centered at x_0 and of radius $r, 2B = B(x_0, 2r)$. We represent f as (3.4) and have

$$||T_{\Omega,b}(f)||_{L_{p,w}(B)} \le ||T_{\Omega,b}(f_1)||_{L_{p,w}(B)} + ||T_{\Omega,b}(f_2)||_{L_{p,w}(B)}.$$

Since $f_1 \in L_{p,w}(\mathbb{R}^n)$, $T_{\Omega,b}(f_1) \in L_{p,w}(\mathbb{R}^n)$ and from the boundedness of $T_{\Omega,b}$ in $L_{p,w}(\mathbb{R}^n)$ for $w \in A_{p/q'}$ and q' (see Theorem 1.6) it follows that

$$\begin{split} \|T_{\Omega,b}\left(f_{1}\right)\|_{L_{p,w}(B)} &\leq \|T_{\Omega,b}\left(f_{1}\right)\|_{L_{p,w}(\mathbb{R}^{n})} \\ &\lesssim \|\Omega\|_{L_{q}(S^{n-1})} \left[w\right]_{A_{\frac{p}{q'}}}^{\frac{1}{p}} \|b\|_{*} \|f_{1}\|_{L_{p,w}(\mathbb{R}^{n})} \\ &\approx \|\Omega\|_{L_{q}(S^{n-1})} \left[w\right]_{A_{\frac{p}{q'}}}^{\frac{1}{p}} \|b\|_{*} \|f\|_{L_{p,w}(2B)}. \end{split}$$

For $x \in B$ we have

$$T_{\Omega,b}(f_2(x)) \lesssim \int_{\mathfrak{c}_{(2B)}} |b(y) - b(x)| |\Omega(x-y)| \frac{|f(y)|}{|x_0 - y|^n} dy.$$

Then

$$||T_{\Omega,b}(f_{2})||_{L_{p,w}(B)}$$

$$\lesssim \left(\int_{B} \left(\int_{\mathbb{C}_{(2B)}} |b(y) - b(x)| |\Omega(x - y)| \frac{|f(y)|}{|x_{0} - y|^{n}} dy \right)^{p} w(x) dx \right)^{\frac{1}{p}}$$

$$\lesssim \left(\int_{B} \left(\int_{\mathbb{C}_{(2B)}} |b(y) - b_{B,w}| |\Omega(x - y)| \frac{|f(y)|}{|x_{0} - y|^{n}} dy \right)^{p} w(x) dx \right)^{\frac{1}{p}}$$

$$+ \left(\int_{B} \left(\int_{\mathbb{C}_{(2B)}} |b(x) - b_{B,w}| |\Omega(x - y)| \frac{|f(y)|}{|x_{0} - y|^{n}} dy \right)^{p} w(x) dx \right)^{\frac{1}{p}}$$

$$= I_{1} + I_{2}.$$

Let us estimate I_1 .

$$\begin{split} I_{1} &= w(B)^{\frac{1}{p}} \int_{\mathbb{C}_{(2B)}} |b(y) - b_{B,w}| |\Omega(x-y)| \frac{|f(y)|}{|x_{0} - y|^{n}} \, dy \\ &\approx w(B)^{\frac{1}{p}} \int_{\mathbb{C}_{(2B)}} |b(y) - b_{B,w}| |\Omega(x-y)| |f(y)| \int_{|x_{0} - y|}^{\infty} \frac{dt}{t^{n+1}} \, dy \\ &\approx w(B)^{\frac{1}{p}} \int_{2r}^{\infty} \int_{2r \leq |x_{0} - y| \leq t} |b(y) - b_{B,w}| |\Omega(x-y)| |f(y)| \, dy \frac{dt}{t^{n+1}} \\ &\lesssim w(B)^{\frac{1}{p}} \int_{2r}^{\infty} \int_{B(x_{0},t)} |b(y) - b_{B,w}| |\Omega(x-y)| |f(y)| \, dy \frac{dt}{t^{n+1}}. \end{split}$$

Set m=p/q'>1. Since $w\in A_m$, from (2.3), we know $w^{1-m'}\in A_{m'}$. Applying Hölder's inequality and by (4.2), we get

$$\begin{split} I_{1} &\lesssim \|b\|_{*} \, w(B)^{\frac{1}{p}} \int_{2r}^{\infty} \|\Omega(x-\cdot)\|_{L_{q}(B(x_{0},t))} \, \||b(y) - b_{B,w}| f\|_{L_{q'}(B(x_{0},t))} \, \frac{dt}{t^{n+1}} \\ &\lesssim \|\Omega\|_{L_{q}(S^{n-1})} \, w(B)^{\frac{1}{p}} \int_{2r}^{\infty} \|b - b_{B,w}\|_{L_{m'q',w^{1-m'}}(B(x_{0},t))} \\ & \times \|f\|_{L_{p,w}(B(x_{0},t))} \, |B(x_{0},t+|x-x_{0}|)|^{\frac{1}{q}} \, \frac{dt}{t^{n+1}} \\ &\lesssim \|\Omega\|_{L_{q}(S^{n-1})} \|b\|_{*} \, w(B)^{\frac{1}{p}} \int_{2r}^{\infty} \left(1 + \ln\frac{t}{r}\right) \left(w^{1-m'}(B(x_{0},t))\right)^{\frac{1}{m'q'}} \\ & \times \|f\|_{L_{p,w}(B(x_{0},t))} \, |B(x_{0},t)| \, \frac{dt}{t^{n+1}} \\ &\lesssim \|\Omega\|_{L_{q}(S^{n-1})} [w]_{A_{\frac{p}{q'}}}^{\frac{1}{p}} \|b\|_{*} \, w(B)^{\frac{1}{p}} \int_{2r}^{\infty} \left(1 + \ln\frac{t}{r}\right) \|f\|_{L_{p,w}(B(x_{0},t))} \, w(B(x_{0},t))^{-\frac{1}{p}} \, \frac{dt}{t}. \end{split}$$

In order to estimate I_2 note that

$$I_2 = \left(\int_B |b(x) - b_{B,w}|^p w(x) dx \right)^{\frac{1}{p}} \int_{\mathfrak{c}_{(2B)}} \frac{|\Omega(x - y)| |f(y)|}{|x_0 - y|^n} dy.$$

By (3.5) and (4.2), we get

$$\begin{split} I_2 &\lesssim \|b\|_* \, w(B)^{\frac{1}{p}} \int_{\mathbb{C}_{(2B)}} \frac{|\varOmega(x-y)||f(y)|}{|x_0 - y|^n} \, dy \\ &\lesssim \|\varOmega\|_{L_q(S^{n-1})} [w]_{A_{\frac{p}{q'}}}^{\frac{1}{p}} \|b\|_* \, w(B)^{\frac{1}{p}} \int_{2r}^{\infty} \|f\|_{L_{p,w}(B(x,t))} \, w(B(x_0,t))^{-\frac{1}{p}} \, \frac{dt}{t}. \end{split}$$

Summing up I_1 and I_2 , for all $p \in (1, \infty)$ we get

$$||T_{\Omega,b}(f_2)||_{L_{p,w}(B)} \lesssim ||\Omega||_{L_q(S^{n-1})} [w]_{A_{\frac{p}{q'}}}^{\frac{1}{p}} ||b||_* w(B)^{\frac{1}{p}} \int_{2r}^{\infty} \left(1 + \ln \frac{t}{r}\right) ||f||_{L_{p,w}(B(x_0,t))} w(B(x_0,t))^{-\frac{1}{p}} \frac{dt}{t}.$$

Thus

$$||T_{\Omega,b}(f)||_{L_{p,w}(B)} \lesssim ||\Omega||_{L_{q}(S^{n-1})} [w]_{A_{\frac{p}{q'}}}^{\frac{1}{p}} ||b||_{*} \Big(||f||_{L_{p,w}(2B)} + w(B)^{\frac{1}{p}} \int_{2r}^{\infty} \Big(1 + \ln \frac{t}{r} \Big) ||f||_{L_{p,w}(B(x_{0},t))} w(B(x_{0},t))^{-\frac{1}{p}} \frac{dt}{t} \Big).$$

On the other hand, by (3.6) we get

$$\begin{split} & \|T_{\Omega,b}(f)\|_{L_{p,w}(B)} \\ & \lesssim \|\Omega\|_{L_{q}(S^{n-1})} [w]_{A_{\frac{p}{q'}}}^{\frac{1}{p}} \|b\|_{*} w(B)^{\frac{1}{p}} \int_{2r}^{\infty} \left(1 + \ln \frac{t}{r}\right) \|f\|_{L_{p,w}(B(x_{0},t))} w(B(x_{0},t))^{-\frac{1}{p}} \frac{dt}{t} \\ & \lesssim \|b\|_{*} w(B(x_{0},r))^{\frac{1}{p}} \int_{2r}^{\infty} \left(1 + \ln \frac{t}{r}\right) \|f\|_{L_{p,w}(B(x_{0},t))} w(B(x_{0},t))^{-\frac{1}{p}} \frac{dt}{t}. \end{split}$$

With similar techniques for $1 , <math>w^{1-p'} \in A_{p'/q'}$ can be achieved and the proof is finished.

Theorem 4.1 Let $1 , <math>b \in BMO(\mathbb{R}^n)$, T_Ω be a sublinear operator satisfying condition (1.1) with $\Omega \in L_q(S^{n-1})$, q > 1, be a homogeneous of degree zero, and bounded on $L_{p,w}(\mathbb{R}^n)$. Let also, for $q' , <math>w \in A_{p/q'}$ the pair (φ_1, φ_2) satisfies the condition (1.4) and for $1 , <math>w^{1-p'} \in A_{p'/q'}$ the pair (φ_1, φ_2) satisfies the condition

$$\int_{r}^{\infty} \left(1 + \ln \frac{t}{r}\right) \frac{\operatorname{ess inf}_{t < \tau < \infty} \varphi_{1}(x, \tau) \|w\|_{L_{\frac{q}{q-p}(B(x, \tau))}}^{1/p}}{\|w\|_{L_{\frac{q}{q-p}(B(x, t))}}^{1/p}} \frac{dt}{t} \le C \varphi_{2}(x, r) \frac{w(B(x, r))^{\frac{1}{p}}}{\|w\|_{L_{\frac{q}{q-p}(B(x, r))}}^{\frac{1}{p}}}, (4.3)$$

where C does not depend on x and r.

Then the operator $T_{\Omega,b}$ is bounded from $M_{p,\varphi_1}(w)$ to $M_{p,\varphi_2}(w)$.

$$||T_{\Omega,b}(f)||_{M_{p,\varphi_2}(w)} \lesssim ||f||_{M_{p,\varphi_1}(w)}.$$

Proof. When $q' , <math>w \in A_{p/q'}$, by Lemma 4.1 and Theorem 3.2 with $\nu_2(r) = \varphi_2(x,r)^{-1}$, $\nu_1(r) = \varphi_1(x,r)^{-1}w(B(x,r))^{-\frac{1}{p}}$, $g(r) = \|f\|_{L_{p,w}(B(x,r))}$ and $w(r) = w(B(x,r))^{-\frac{1}{p}}r^{-1}$ we have

$$||T_{\Omega,b}(f)||_{M_{p,\varphi_{2}}(w)} = \sup_{x \in \mathbb{R}^{n}, r > 0} \varphi_{2}(x, r)^{-1} w(B(x, r))^{-\frac{1}{p}} ||\mu_{\Omega,b}(f)||_{L_{p,w}(B(x,r))}$$

$$\lesssim ||b||_{*} \sup_{x \in \mathbb{R}^{n}, r > 0} \varphi_{2}(x, r)^{-1} \int_{r}^{\infty} \left(1 + \ln \frac{t}{r}\right) ||f||_{L_{p,w}(B(x,t))} w(B(x,t))^{-\frac{1}{p}} \frac{dt}{t}$$

$$\lesssim ||b||_{*} \sup_{x \in \mathbb{R}^{n}, r > 0} \varphi_{1}(x, r)^{-1} w(B(x, r))^{-\frac{1}{p}} ||f||_{L_{p,w}(B(x,r))}$$

$$= ||b||_{*} ||f||_{M_{p,\varphi_{1}}(w)}.$$

For the case of $1 , <math>w^{1-p'} \in A_{p'/q'}$, by Lemma 3.1 and Theorem 3.2 with $\nu_2(r) = \varphi_2(x,r)^{-1} w(B(x,r))^{-\frac{1}{p}} \|w\|_{L_{\frac{q}{q-p}(B(x,r))}}^{\frac{1}{p}}$, $\nu_1(r) = \varphi_1(x,r)^{-1} w(B(x,r))^{-\frac{1}{p}}$, $g(r) = \|f\|_{L_{p,w}(B(x,r))}$ and $w(r) = \|w\|_{L_{\frac{q}{q-p}(B(x,r))}}^{-\frac{1}{p}} r^{-1}$ we have $\|T_{\Omega,b}(f)\|_{M_{p,\varphi_2}(w)} = \sup_{x \in \mathbb{R}^n, r > 0} \varphi_2(x,r)^{-1} w(B(x,r))^{-\frac{1}{p}} \|w\|_{L_{\frac{q}{q-p}(B)}}^{\frac{1}{p}}$ $\lesssim \sup_{x \in \mathbb{R}^n, r > 0} \varphi_2(x,r)^{-1} w(B(x,r))^{-\frac{1}{p}} \|w\|_{L_{\frac{q}{q-p}(B(x_0,t))}}^{\frac{1}{p}}$ $\times \int_r^{\infty} \left(1 + \ln \frac{t}{r}\right) \|f\|_{L_{p,w}(B(x_0,t))} \|w\|_{L_{\frac{q}{q-p}(B(x_0,t))}}^{-\frac{1}{p}} \frac{dt}{t}$ $\lesssim \sup_{x \in \mathbb{R}^n, r > 0} \varphi_1(x,r)^{-1} w(B(x,r))^{-\frac{1}{p}} \|f\|_{L_{p,w}(B(x,r))}$ $= \|f\|_{M_{p,\varphi_1}(w)}.$

References

1. Akbulut, A., Guliyev V.S., Mustafayev, R.: On the boundedness of the maximal operator and singular integral operators in generalized Morrey spaces, Math. Bohem. 137 (1), 27–43 (2012).

- 2. Alvarez, J., Bagby, R.J., Kurtz, D.S., Pérez, C.: Weighted estimates for commutators of linear operators, Studia Math. 104, 195–209 (1993).
- 3. Calderon, A.P.: *Commutators of singular integral operators*, Proc. Natl. Acad. Sci. USA, **53**, 1092–1099 (1965).
- 4. Calderon, A.P.: *Cauchy integrals on Lipschitz curves and related operators*, Proc. Natl. Acad. Sci. USA **74**(4), 1324–1327 (1977).
- 5. Chiarenza, F., Frasca, M.: *Morrey spaces and Hardy-Littlewood maximal function*, Rend Mat. **7**, 273–279 (1987).
- Chiarenza, F., Frasca, M., Longo, P.: W^{2,p}-solvability of Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc. 336, 841–853 (1993).
- 7. Chen, Y.: *Regularity of solutions to elliptic equations with VMO coefficients*, Acta Math. Sin. (Engl. Ser.) **20**, 1103–1118 (2004).
- 8. Coifman, R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103(2), 611–635 (1976).
- 9. Duoandikoetxea, J.: Weighted norm inequalities for homogeneous singular integrals, Trans. Amer. Math. Soc. **336**, 869–880 (1993).
- 10. Di Fazio G., Ragusa M.A.: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal. 112, 241–256 (1993).
- 11. Fan, D., Lu, S., Yang, D.: Boundedness of operators in Morrey spaces on homogeneous spaces and its applications, Acta Math. Sinica (N. S.) 14, 625–634 (1998).
- 12. Guliyev, V.S.: Integral operators on function spaces on the homogeneous groups and on domains in \mathbb{R}^n , *Doctoral dissertation, Moscow, Mat. Inst. Steklov*, 329 pp. (1994) (in Russian).
- 13. Guliyev, V.S.: Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl. Art. ID 503948, 20p. (2009).
- 14. Guliyev, V.S.: Generalized weighted Morrey spaces and higher order commutators of sublinear operators, Eurasian Math. J. **3**(3), 33–61 (2012).
- 15. Guliyev, V.S., Aliyev S.S., Karaman, T.: Boundedness of a class of sublinear operators and their commutators on generalized Morrey spaces, Abstr. Appl. Anal. Art. ID 356041, 18 p. (2011).
- 16. Guliyev, V.S.: Local generalized Morrey spaces and singular integrals with rough kernel, Azerb. J. Math. **3** (2), 79–94 (2013).
- 17. Guliyev, V.S.: Generalized local Morrey spaces and fractional integral operators with rough kernel, J. Math. Sci. (N. Y.) **193**(2), 211–227 (2013).
- 18. Guliyev, V.S., Karaman, T., Mustafayev, R.Ch., Serbetci, A.: Commutators of sublinear operators generated by Calderón-Zygmund operator on generalized weighted Morrey spaces, Czechoslovak Math. J. 64, 139 (2), 365–386 (2014).
- 19. Guliyev, V.S., Omarova, M.N.: *Higher order commutators of vector-valued intrinsic square functions on vector-valued generalized weighted Morrey spaces*, Azerb. J. Math. **4**(2), 64–85 (2014).
- 20. Guliyev, V.S., Hamzayev, V.H.: Rough singular integral operators and its commutators on generalized weighted Morrey spaces, Math. Ineq. Appl. 19(3), 863–881 (2016).
- 21. Janson, S.: *On functions with conditions on the mean oscillation*, Ark. Mat. **14** (2), 189–196 (1976).
- 22. Karaman, T., Guliyev, V.S., Serbetci, A.: Boundedness of sublinear operators generated by Calderón-Zygmund operators on generalized weighted Morrey spaces, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), **60**(1), 227–244 (2014).
- 23. Komori, Y., Shirai, S.: *Weighted Morrey spaces and a singular integral operator*, Math. Nachr. **282**(2), 219–231 (2009).
- 24. Lu, G., Lu, S., Yang, D.: Singular integrals and commutators on homogeneous groups,

- Anal. Math. 28, 103-134 (2002).
- 25. Mizuhara, T.: *Boundedness of some classical operators on generalized Morrey spaces*, Harmonic Analysis (S. Igari, Editor), ICM 90 Satellite Proceedings, Springer Verlag, Tokyo, 183–189 (1991).
- 26. MORREY, C.B.: On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., **43**, 126–166 (1938).
- 27. Muckenhoupt, B.: *Weighted norm inequalities for the Hardy maximal function*, Trans. Amer. Math. Soc. **165**, 207–226 (1972).
- 28. Soria, F., Weiss, G.: *A remark on singular integrals and power weights*, Indiana Univ. Math. J. **43**, 187–204 (1994).
- 29. Watson, D.: Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. J. **60**, 389–399 (1990).