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Abstract. In this work, we investigate the Nikolskii type inequalities for arbitrary algebraic polynomials
in the weighted Bergman space, where the boundary of region and the weight function have some sin-
gularities. We obtain Nikolskii -type estimation for algebraic polynomials in the bounded regions with
piecewise Dini-smooth boundary having interior zero angles.
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1 Introduction and Main Results

Let C be a complex plane, and C := C U {o0}; G C C be the bounded Jordan region,
with 0 € G and the boundary L := OG be a closed Jordan curve, 2 := C \ G = extL.
A := {w : |w| > 1} (with respect to C). Let function w = &(z) be the univalent conformal
mapping of {2 onto the A normalized by ¢(o0) = oo, lim,_,o q}(j) >0,and ¥ := ¢~ 1.
For R > lletusset Lp := {z: |®(z)| = R}, Gg :=intLp, 2 := extLp. For z € C
and M C C,weset: d(z, M) = dist(z, M) :=inf {|z — (| : ( € M}.

Let {z; };”:1 € L be a fixed system of distinct points. Consider a so-called generalized
Jacobi weight function h (z) being defined as follows:

h(z):=]]lz =2, z€Gry Ro>1, (1.1)
j=1

where v; > —2, forevery j = 1,2,...,m.

Denote by ¢,, the class of all complex algebraic polynomials P, (z) of degree at most
n € N.

For any p > 0 and for Jordan region G, lets define:

1/p
1Pl = = 1Pl ) = ( /| h(z)\mznpdaz) <o0,0<p< oo (12)

1Palloc : = 1Pall a0y = 1 Palle@y » p = 00,
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where o, is the two-dimensional Lebesgue measure. Clearly,
norm for 1 < p < oo and a p—norm for 0 < p < 1).
In [24] we investigated following problem: find a estimate of the type

||, is the quasinorm (i.e. a

|Pa(2)] < c.an(L, hyd(2,L),p) | Pall, |8(2)"!, 2€ 2, p>0,  (1.3)

where ¢ = ¢(L,p) > 0 is a constant independent from n, z, P,,, and o, (L, h,d(z, L), p) —
oo (in general!) as n — oo, depending on the geometrical properties of curve L, weight
function h and parameter p.

Analogous results of (1.3)-type for some norms, weight function hA(z) and for differ-
ent unbounded regions were obtained by Lebedev, Tamrazov, Dzjadyk, Shevchuk (see, for
example, [20]), Abdullayev and et all [11], [10], [14], [8], [13] and others.

The (1.3) gives estimate for | P,,(z)| in the points of unbounded region (2.Thus, in order
to obtain an estimate in the whole complex plane, we need to find estimates for the finite
closed region G.

In this paper we study this problem and obtain a solution in the form of the following
Nikol’skii-type inequality:

1Pallae < ¢Bn(G, by p) [ Pall, (1.4)

where ¢ = ¢(G, h,p) > 0 is a constant independent of n and P,, and 3, (G, h,p) — oo,
n — 00, depending on the geometrical properties of region (G, weight function A and of p.

Note that, the estimate of (1.4)-type for some (G, p, h) was investigated in [22, pp.122-
133], [19], [21, Sect.5.3], [23], [18], [2]-[9] (see, also, references therein) and others. In [9]
this problem was investigated for p > 1 and for regions bounded by piecewise Dini-smooth
boundary without cusps. For some regions and the weight function h(z) analogous of (1.4)
results were obtained: in [10] (h(z) = 1) and [14] (h(z) # 1) for p > 0 and for regions
bounded by quasiconformal curve; in [8] for p > 1 and for regions bounded by piecewise
smooth curve without cusps; in [13] for p > 0 and for regions bounded by asymptotically
conformal curve.

Now, we investigate this problem for p > 0 and for finite region bounded by piecewise
Dini-smooth boundary having interior zero angles and for weight function h (z) , defined in
(1.1).

Let us give some definitions and notations that will be used later in the text. In what
follows, we always assume that p > 0 and the constants c, cg, c1, c2, ... are positive and
constants €p, €1, €2, ... are sufficiently small positive (generally, are different in different
relations), which depends on G in general and, on parameters inessential for the argument,
otherwise, the dependence will be explicitly stated. Also note that, for any k¥ > 0 and m >
k, notation j = k,m denotes j =k, k+1,...,m.

Let S be a rectifiable Jordan curve or arc and z = z(s), s € [0, |S|], |S| :== mes S,
denote the natural representation of S.

Definition 1.1 [25, p.48](see also [17, p.32])We say that a Jordan curve or arc S called
Dini-smooth, if it has a parametrization z = z(s), 0 < s < |S|, such that z' (s) # 0, 0 <
s <|S|and |z (s2) — z/(sl)‘ < g(s2 — s1), 81 < S2, where g is an increasing function for
which

T

1
Mgcoo.
0/d<
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Definition 1.2 [9] We say that a Jordan region G € PDS(A1, ..., A\m), 0 < N <2, 5=

I,m, if L = OG consists of the union of finite Dini-smooth arcs {L; };”:1 , such that L

is locally Dini-smooth at zg € L\ {z; };n:l and have exterior (with respect to G) angles
m

Ajm, 0 < Aj <2, at the corner points {z;};" | € L, where two arcs meet.

Without loss of generality, we assume that these points on the curve L = 0G are located
in the positive direction such that, G has exterior \;j7, 0 < \; < 2, j = 0, m1, angle at the
points {z; };.":11, m1 < m, and interior zero angle (i.e. \; = 2—interior cusps) at the points
{zj };n:ml +1°

It is clear from Definition 1.2, the each region G € PDS (A1, ..., A\p,), 0 < \; < 2, j =
1, m, may have exterior nonzero \;m, 0 < \; < 2, angles at the points {z; }Tzll € L, and
interior zero angles (\; = 2 ) at the points {Zj}?:mﬁl € L. If m; = m = 0, then the
region G doesn’t have such angles, and in this case we will write: G € DS;ifm; =m > 1,
then G has only A\;m, 0 < \; < 2, ¢ = 1, my, exterior nonzero angles, and in this case we
will write: G € PDS()\;);if m; = 0and m > 1, then G has only interior zero angles, and
in this case we will write: G € PDS(2).

Throughout this work, we will assume that the points {z; };”:1 € L defined in (1.1) and
Definition 1.2 are identical and w; := &(z;).

For simplicity of exposition, without loss of generality, we will take m; = 1, m = 2.
Then, after this assumption, in the future we will have region G € PDS(\1,2), 0 < A\; <
2, such that at the point z; € L region G have exterior nonzero A\iw, 0 < A\; < 2, and at
the point zo € L - interior zero angle 27, i.e. Ay = 2.

Now we can state our new results.

Theorem 1.1 Let G € PDS()\1,2), for some 0 < A1 < 2; h(z) be defined as in (1.1).
Then, for any P,, € pn, n € N,and v; > -2, j = 1,2, we have:

[Pl < c1Ana [Pl (1.5)

where c1 = ¢1(G,y1,72, A1,p) > 0 is the constant, independent from z and n,
4%,
noe iy > -,
Aut =4 (nlnn)s if7 = 3, (16)
nr, ify< —%.
v :=max{0,7v1,7 }.
We can take individual cases when the curve L in the both points have the same type of
angle: exterior nonzero angle. In this case, from Theorem 1.1, we obtain the following:

Corollary 1.1 Let G € PDS (A1, \2), for some 0 < A1, A2 < 2; h(z) be defined as in
(1.1). Then, for any P,, € p,, n € N, and v; > -2, j = 1,2, we have:

|Pn(Z)| < CQA”;Q ||Pn||p7 S Ql—i—l/rm (17)

where co = co(G,y1,72,p) > 0 is the constant, independent from z and n,

(2+7)-X o~
nor L if (2479)-A>1,
1 ~
An2:= 1 (nlnn)v,if (2+7) A =1, (1.8)
1

ne, lf(2+:);))‘<17

and X == max {1; A1, Ao} .
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Corollary 1.2 Let G € PDS(2,2); h(z) be defined as in (1.1). Then, for any P, €
on, n € Nyand v; > =2, j =1,2, we have:

[Pa(2)] < e3dns || Pall, (1.9)

where c3 = c3(G,v1,72,p) > 0 is the constant, independent from z and n, and
247) | 5
n r 17 lf’y > DR
An,3 = (nlnn)? , lfA’)7 = _%’ (1.10)

l o~ 3
ne, ify<-—3.

Theorem 1.2 Let p > 0; G € PDS(\1,2), for some 0 < A\ < 2; h(z) be defined as in
(1.1). Then, for any P, € pn, n € N, v; > =2, j = 1,2, we have:

|[Pn(2j)] < cadnal[Pall, (1.11)

where ¢y = c4(G, 1,72, A\1,p) > 0 is the constant, independent of z and n;

(2+"/1)-X1 . 1
n p ) lf 71 > T - 27
1 L
Apyg = (nlnn)?,lf’ylzx— ,
1
1 .
ne, UC 7 < % )
1
forj =1, A= max {1; A1}, and
2247) 3
n p ) lf’YQ > 9
A g = L 3
nd = (nlnn)r, ifyp = —3,
1

ni’ lerZ < _%a
for j =2.

Combining Corollary 1.1 with the estimate for |P,,(z)|, z € {2, in [24, Theorem 1.1],
we can obtain estimation for | P, (z)| in the whole complex plane.

For z € Cand M C C, we set: d(z, M) = dist(z, M) :=inf{|z — (| : ( € M}, and
let R:=1+ .

Corollary 1.3 Under the conditions of Theorem 1.1, the following is true:

An,h A éR,
n+1

P < eslPl, ety o
dP (z,LR)

where ¢5 = ¢5(G, 71,72, p) > 0 is the constant, independent of z and n; By, 1 is defined as
in (1.6) and

2y

=L op o~ 1

ne, lf’Y>§7

— 1

But = (nlun)v, if 7 = 4, :
1

1 o~ 1

ner, lff)/<§7
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Analogously rezults for any points z € C we can write combining correspondingly
results for the case G € PDS(A1, A\2) and G € PDS(2,2) given above in Corollaries 1.1,
1.2 and 1.1, 1.2 from [24], respectively.

The sharpness of the estimations (1.5), (1.7) and (1.9) can be discussed by comparing
them with the following result.

Remark 1.1 [10, Theorem 1.15], [2] a) For any n € N there exist polynomials Q}, T €

n—-n
©n, such that for unit disk B and weight function h*(z) = |z — z1|? the following is true:

|Q(2)] = con [|Qr ]l ay(m)» forall z € B;
T3 (20)] = emn® | T | agne, )

b) For any n € N there exists a polynomial S;; € p,, region G* C C, compact M* &
Q\G" and constant cg = cg(G*, M*) > 0 such that

* \/ﬁ * n *
|Sh(2)] > csm 15714y 12(2)] ) for all z € M*.

2 Some auxiliary results

Throughout this work, for the nonnegative functions @ > 0 and b > 0, we shall use the
notations “a < b” (order inequality), if a < ¢b and “a =< b” are equivalent to cja < b < coa
for some constants ¢, ¢1, ¢z (independent of a and b), respectively.

Lemma 2.1 []] Let L be a K —quasiconformal curve, zy € L, z9, 23 € 2N{z : |z — 21| =
d(z1,LRy)}; wj = D(25), j =1,2,3. Then

a) The statements |z1 — z3| = |21 — 23| and |wi — wa| = |w1 — ws| are equivalent.
So statements |z1 — z2| < |21 — 23| and |wi — we| <X |w1 — ws| also equivalent;
b) If |21 — 22| = |21 — 23], then

2 -2
21 — % w] — W,
1 3 _<‘ 1 3

’wl — w3

w1, — W2 T 21 — 22| T |wp —wo
where Ry := Ro(G) is a constant, depending on G.
Corollary 2.1 Under the assumptions of Lemma 2.1, for z3 € Lg,
lwy — w2\K2 =21 — 2] 2wy — w2|K_2
Recall that for 0 < §; < dg := imin{\zi —zjl 14,7 =1,2,...,m, i # j}, we put

Qz, 6;) = 20 {z:]z—2]<8;}; 6 = Inin 4, 2(8) = ‘Ulrz(zj, §), 2 =
<j< 2

3

2\ 2(5). Additionally, let A; = ®(2(z;, ), A(S) = | D(2(zj, ), A(B) :=
j=1
A\A(9).
The following lemma is a consequence of the results given in [25, pp.41-58], [17, pp.32-
36], and estimation for the ‘J/ ‘ (see, for example, [16, Th.2.8]):

dW(r),L)

/ ~
POl = =0

2.1
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Lemma 2.2 Let a Jordan region G € PDS()\j;0), 0 < A\; <2, j =1,mq. Then,
i) for any w € A, |W(w) — W(w;)| < [w —w; ¥, W (w)] =< Jw —w; ¥
ii) for any w € A\ A, [¥(w) — ¥ (wj)| < |w—wj|, [¥'(w)] =< 1.

Let {z; };”:1 be a fixed system of the points on L and the weight function A (z) defined
asin (1.1).

Lemma 2.3 [4] Let L be a K —quasiconformal curve; h(z) is defined in (1.1). Then, for
arbitrary P, (z) € pn,any R > landn = 1,2, ..., we have

~pyl
HPnHAp(h,GR) < R"" HPn”Ap(h,G) , p>0, (2.2)

where R = 1+ ¢(R — 1) and c is independent from n and R.

Lemma 2.4 [15] Let G € PDS(A1,...,A\m), 0 < \j < 2, j = 1,m. Then, for arbitrary
P,(z) € pn, we have:

1Pl ay(hcyy ) = 1Pl 4,y s (2.3)

Proof of Theorem 1.1

We will use the standard scheme of proofs, wich used to proof analogously theorems
from the works, for example, [15], [24], supplementing it with the corresponding estimates
for the case of the PDS(A1;2) Suppose that G € PDS()\q;2), for some 0 < A\; < 2 and
h(z) be defined as in (1.1). Let {¢;}, 1 < j < m < n, be the zeros (if any exist) of P,(z)
lying on {2 and let

= P(z) — D(&))

Bj(z) = ————21 e, (2.4)
’ 1 —&(&5)9(2)
and
Bp(z) =[] Bi(2). z € 2. (2.5)
j=1

be the function Blaschke with respect to the points {¢; };n:l . Well known, that
Bu(&) =0, |Bu(2)| =1, € L; |Bu(2)| <1, z € 2. 2.6)

Since | By (2)| =1,z € L and | B, (2)| < 1, z € £2, then there exists circle
{w:|w| =Ry =1+¢,0<ey <, 0<ey <1,} such that for any j = 1,2, the fol-
lowing is true:

‘Ej(g‘)’ >1—¢e9, (€Lp,.

Then, we get:
[Bin(Q)] > (1 —e2)™ =1, ( € Lp,. (2.7)

For any p > 0, let us set:

P, (2 p/2
Gnp (2) = [Bm(z);”zrl(z)] , 2 €12 (2.8)

Clearly, the function g, , (2) is analytic in {2, continuous on {2, g, (c0) = 0 and does
not have zeros in {2. We take an arbitrary continuous branch of the g, (2) and for this
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branch, we maintain the same designation. According to Cauchy integral representation
for the unbounded region {2, we have:

1 d¢
9n,p (Z) = _2771'1' 9n,p (C) @ , 2 € QR1- (2.9)
L,
According to (2.4) - (2.8), we get:
B, gpn—s—l % p/2
P, (2)]P? = | / d 2.10

P d
f@M@P/meQQW

Lp,

Multiplying the numerator and the denominator of the last integrand by hl/2 (¢), replac-
ing the variable w = &(z) and applying the Holder inequality, we obtain:

2

p|d¢]
/ [ Pn ()] T (2.11)
L,
/ |dt‘
= (P ()) [P (2 ()7 | (8) | |dt] - - i
t|/Rl " /5:1 R (1)) (1) — ¥(w)]
/ ‘dt‘
h(¥ NP | ()| |dt] - - i
|t/Rl ’ :/R B (0) (1) ~ ¥ (w)|
|dt|
= nptpd. — A, - Fy(w),
HLV”NHnéﬁwmwwwwﬁ (w

1 N
where f, ,(t) == h? (U (1)) P, (¥ (1)) (¥ (t))7 , |t| = Ri.

Now, we will estimate each of the factors on the right-hand side separately. We begin
from A,,. For this, by separating the circle |t| = R; to n equal parts d,, with mesd,, = M
and applying the mean value theorem, we have:

%:/WNWM

|t‘*R1

—Z/WPWW—Z

klé =

’ P
Fap (tk>’ mesdy, t}, € k.

By applying mean value estimation

Jrp (tk) ‘p S e (A

// | fup (E)IP do,

|£ tel<[ti |1
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we get:

~ 5
w23t [ @t dea

Je—til <[t |1

Taking into account that at most two of the discs with center ¢ are intersecting, we have:

meso
Ay = } i // ‘fn,p ‘ da& =n- // |fnp ’ d0'§

1<|¢|<R 1<|¢|<R

Therefore, for factor A,,, according to Lemma 2.4, we get:
A, < n// (OFP doc =n- || Pully (2.12)
Gr\G

To estimate the integral F,(w), denote by w; := D(z;), p; := argwj, for any fixed p >
1,we introduce:

Al(p)::{t:rew:r>p,ipo42_(pl§9<¢1—;¢2}, (2.13)

Ag(p)lz{t=T6i02T>p, W §9<¢1;¢0};

Aj = A5(1), 2= w(4y), 2 :=¥(A;(p));
i o Yo 77l 1 _ 71 2
Di=Ln® [:=1,n2, j=1,% L=L'UL', L,= L UL

Under these notations, from (2.11) for the F,(w), we get:

!dtl
/ BOED T (2.14)

[t|=FR1

|dt|

é/

owh,) H @ (t) = @ (w;) [V |@(2) — & (w)|*

2
~ dt] e
Zi/ w;) [V 1 (t) = @ (w)[* > Fugw),

since the points {z; };”:1 € L are distinct. So, we need to evaluate the F;, j(w). For this, we
take z € Lp and introduce the notations:

2 3
®(Lp,) = UL =J & =J U E(R), (2.15)

j=1 j=1i=1
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where

Bi(Ry) = {ted(L},): |t—wl<S},

Ei(Ry) = {t € B(L, ) : % <t —wj| < cQ}

El(Ry) = {t eB(L): e <|t—wyl<ez< dmmé} Li=1,2.
Analogously,

2
o(Lp) = o(|J Ly) = U 2(Lyp) = [ U E (),
j=1 j=1 j=li=1

where

E!(R) :

; 2
{TE@(L%)Z |7 — wj| <;1},

. : 2
El(R) := {Teqs(%): ;1<|ij|<@}

Eé(R) = {7’ € @(LE) D <l |T-wj<c < diam@}, j=12

Then, after these definitions, taking arbitrary fixed w = ®(z) € ®(Lg), the quantity
F,.j(w) can be written as follows:

|dt] B 3 .
Z / )’% @ (t) — (w)|2 = ;Fm(w) (2.16)

_E’ (R1)

The quantity Ffw- (w) we will estimate for each ¢ = 1,2,3 and j = 1,2 separately,
depending of location of the w € &(LR).

Case 1. Letw € &(L},).

According to the above notations, we will make evaluations for case w € E}(R) for
eacht =1,2,3.

1.1) Let w € E{(R). In this case, we will estimate the quantity

3

Fpa(w) =) / ldt —Zng (w) @17
mi) = () — W) () — )P |

zzlEil(Rl)

for v1 > 0 and ; < 0 separately.
Foreachi: = 1,2 3andj = 1,2 we put: Ezjg(Rl) = {t € @(L{Ql) Dt —wj| > |t—fw|},
Bly(Ry) := B (R1) \ B, (Ry).
1.1.1) If 71 > 0, then
|di]
/ W () — @ (wr)| " [#(t) — ¥ (w)|”

E1(R1)

Eyy(w) = (2.18)

- o a
¥ (t) — U () — () P

Ell,l(Rl) E11,2(R1)
1,1 1,2
=: F, (w) + F,5 (w),



148 Nikolskii type inequalities in regions with piecewise Dini-smooth boundary ...

and, so Lemma 2.2 yields:

M= E (2 4y A > 1,

dt :
Foyy(w) < / % < Inn, if 24+~y)A >1,  (2.19)
2 (R |t — w) 1, it (2471) M <1,
1,1

and

|dt| n(2+71)>‘1_1,if (2+7) A1 > 1,

Fyi(w) = / — = Inn, if (24+y)A =1 (2.20)
n, - 2 A — ’ )
E! (R1) ’t_wll( R 1, if (2—!—’)’1) A < 1.
1,2

If 1 <0, then

W (t) — @ (w)| " |dt]
/ W) - v(w)P 22D

1 1

/ ’tiwl‘(*’}’l))\l |dt| . <1>(71)/\1 / \dt|
It — w]*M —\n It — w[*M

El(Ry) El(Ry)

<

Inn, if2X\ > 1,
1, if2xn <1

~ n@rrd—1 e > 1

= 1, it < i

<1>(—’Yl)/\1 n2>‘1_1, if 221 > 1,

n

1.1.2) If v > 0, then
/ |dt|
P (t) — @ (wy)™ | (t) — ¥(w)]?

E}(R1)

(2.22)

Fil(w) =

- o at
2(0) — Pw) #(6) — 0w

Ej 1 (Ra) Ej} 5(R1)

2,1 2,2
= Fn,l (’LU) + Fn,l (w)

and, so from Lemma 2.2, we get:

dt
Foi(w) = / t ‘|<2|+m1 <P Mmes By (Ry) < n@HOMTL(2.23)
—w
By, (R1)
and
59 |dt| npEtrA=1 g (2+7) A > 1,
Fop(w) = / o S Inn, if 24+y) =1, (224
|t — wi 1,  if (24y)A <1
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Therefore, from (2.22)-(2.24) for y; > 0, we have:
nCHM=L (2 4 y) A > 1,
F}i(w) < Inn, if (2431) A =1, (2.25)
1, if (2—1—’)/1))\1 < 1.
According to well known inequality
(a+b) <c(e)(a® +b),a,b>0, >0, (2.26)
and using estimations
1
[t —wi| < |t —w|+|w—w| < ]t—w|+;
and consequently,
1 (=71)M
It — wﬂ(_“))‘l < |t— w’(—%))q + ()
— n )
for v; < 0, from (2.17), we have:
W(t) — w(w)| ) |dt
F2i(w) = / () ~ () . 41 2.27)
1 (1) — w(w)
By (R
It — wi| T gy L de) |dt|
-7 [t — wf* [t —w| TN
E3j(Ry) E3(Ry) E3(Ry)
< n(2+v1)k1*1.
1.1.3) If v; > 0, then Lemma 2.2 implies:
dt
Fpq(w) = / | 5 (2.28)
’ () — W (wi)[™ [@(t) — & (w)]
E}(Ra)
— |dt| 221 -1
j CQ " / 2)\1 j n I
|t — wl
E3(R1)
and for v; < 0, also Lemma 2.4 yields:
_ dt _
Fy(w) <eg™ / il |2A1 <0t (2.29)
S Jt-w)
E3 (Rl)
1.2) Letw € E3(R).
1.2.1) For any vy; > —2
dt| |dt|
Fli(w)= / | + / 2.30)
i) () = @ (w) w0 - v

Eq 1 (Ra) B} 5(R1)

—: Fw) + Fr2(w),

n,l n,
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and so, according to Lemmas 2.1 and 2.2, we obtain:

c
1,1 |dt| dS
Fn’l (w) = / ‘t _ w’(2+'}’1))\1 = / s(2+m1)M 2.3D)
El(R1) 1/n
nCHEWMTLE (2 4 ) A\ > 1,
< Inn, if (2471) A =1,
1, if (2+’)/1))\1 <1,
and
1,2 |dt] -
Fn71 (w) j / W j n(2+71)A1m68E1172(R1) j n(2+’71))\1 1. (232)
E%,Q(Rl)

1.2.2) For any y; > —2, according to Lemmas 2.1 and 2.2, we have:

2 |dt| |dt|
2wz | ot | we e @

B} 1(R1) B} 5(R1)
. @ i
- It — w‘(2+’y1)/\1 It — w’(2+’h)>\1
E%,I(Rl) E%,Q(Rl)
c1 Cc2
= / ds n / ds
- s+y)M s@+y)M
1/n 1/n
nCEAM=LHE (2 4 y0) Ay > 1,
= Inn, if (2+’71))\1 > 1,
1, if (24+y)A <1

1.2.3) For any y; > —2, according to Lemmas 2.1 and 2.2, we get:

|dt| |dt|
Faw)z [ o [
@ (t) — ¥ (w)] [t —wl
E}(R1) E3}(R1)
P ds n2MLif oM > 1,
= / W = Inn, if2X\; =1,
1/n s 1, if2)\ <1,
1.3) Letw € Ei(R).
If v; > 0, from Lemmas 2.1 and 2.2, we get:
dt| |dt|
F! < | < — 2.34
O e i [ @39

Ej(R1) El(R1)
< pmM -mesEll(Rl) < gl
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and for y; < 0,

n

(=v1)M
Fat) = [ le—w M \dtli(1> ‘mesENR)  (235)

E1(R1)

1 (=v1)A+1
O
n

1.3.2) In this case for any y; > —2, according to Lemmas 2.1 and 2.2, we obtain:

) dt] dt]
Paw = [ W) - () / e e

E%,l(Rl) E%,Q(Rl)
- |dt| |dt|
- / ‘t _ w‘(2+71)/\1 + / ‘t _ w’(2+71)>\1
E%,I(Rl) E%,Z(Rl)
c1 c2
= / ds n / ds
- s(2+711)A s(2+7r1)A
1/n 1/n
A= E (2 4y ) A >
< Inn, if (2+51) A > 1,
1, if (24v1)A <L

1.3.3) Analogously, for any v; > —2,
dt dt
’ [ (t) — & (w)] [t —w|™
Ej(Ry) Ej(Ry)

Combining estimates (2.17)-(2.37), for w € ®#(Lp), we have:

nZHFNTLGE (24 F)) Ay > 1,
Foi = Inn, if 2+5)\ >1, (2.38)
1, if (24+71)M <1,

where 31 := max {0;71}, A := max {1; A\ }.

Case 2. Letw € &(L%).

Analogously to the Case 1, in this case we will obtain estimates for w € E3(R), w €
E3(R)and w € E3(R).

2.1) Letw € E2(R) U E3(R). We will estimate the quantity

3

Fpa(w) =) / ] —Zng (w)  (2.39)
mal) = () — W) 2 [ (t) — ()P R |

ZZIE,?(Rl)

for 1 > 0 and ; < 0 separately.
According to the estimation [26, p.181] (see, also [16]) for arbitrary continuum with
simple connected complementary, the following holds:

W (t) — W(ws)| = |t —wal?. (2.40)
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We will use this fact in evaluations in this section instead of Lemma 2.2
2.1.1) For each ¢ = 1, 2, we obtain:

2

; |dt|
Fo(w) = / (2.41)
; Z; () = W (w2)| (1) — ¥ (w)[?
E7 (R1)
(o S s (L )
B @ () — @ (w)] > @ (t) — @ (ws)| 7
11(R1) E21 R) 2 22(R1)
|dt| 2(2+72)—
S bl I 72)—1
: / / - S
1 1(R1) E21 (R1)
if y2 > 0, and
2 2 (—2)
- U(t)—w dt
i=1 i=1 9 W(t) —¥(w)|
E2(Ry
if v9 <O0.
2.1.2) For ¢ = 3 we get:
Fpo(w) = / |§lf| 5 (2.43)
W (t) = & (wo) [ [¥(t) — ¥ (w)]
E3(R1)
< 62_')’2 / LQ =< / |dt| . =< n,
W (t) — & (w)| |t — wl
E3(Ry) E3(Ry)
if y2 > 0, and
F3,(w) < n, (2.44)
if v < 0.
2.2) Let w € E3(R). For each 75 > —2, analogously to case 2.1.1, we obtain:
2 2
; |dt|
F! 5(w) = / (2.45)
2 Thal) = 2 ()~ w(w)[? 100 — ()]
B (Ra)
(S T Vet ) S )
a @ (t) — @ (w)[*2 (1) — W (wp) 772
\E%,l(Rl) E§,1(R1) 2 2 2 (R1)

IA
_l_
—

12(R1 22R1
> 1,
2+792) =1,
2+ 1) <1

A
=
;
- -U
[\

|dt| ]dt|
+
+ w’2(2+72) o 12(242)
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2.2.2) For each v5 > —2, we have:

Fjo(w) = / e 3 (2.46)
’ W (t) — ¥(wa)|™ |W(t) — ¥(w)]
EZ(Ry)
@ (t) — ¥ (w)] [t —wl
E3(R1) E3(Ra1)

Combining (2.39)-(2.46), we obtain:

n2CHR2)=1 i 2 (2 4 49) > 1,
Fpa(w) < Inn, if2(2+y) =1, (2.47)
1, if2(24) <1,

where 72 := max {0;y2} .
Therefore, comparing relations (2.14), (2.16), (2.38) and (2.47), we have:

nHDM-1if (2 4 %)gl > 1, n?CH2)=1 i 2 (2 4 49) > 1,
Fo(w) < Inn, if 2+F)\ > 1, + Inn, if2(247)=1,,
17 if (2+&’1))\1 < 1’ 17 lf2(2+72) < 1.

and consequently, from (2.10), (2.11) and (2.12), we completed the proof for any 2z € Lp.
So, it also true for z € GG, and we completed the proofs.

Proof of Theorem 1.2.

Suppose that G € PDS(A1;2), for some 0 < A; < 2; h(z) be defined as in (1.1). For
each R > 1, let w = @g(z) denotes be a univalent conformal mapping G onto the B,
normalized by pr(0) = 0, ¢/3(0) > 0, and let {(;}, 1 < j < m < n, be a zeros of P,(z)
(if any exist) lying on G. Let

b (2) 1= mEj 2 = T 28— enlG) 248
A(2) 31;[1 A(2) jI;[ll—SOR(Cj>90R(Z) 249

denotes a Blaschke function with respect to zeros {Cj} , 1 <j<m <mn,of P(2) ([27]).
Clearly,

|bm.r(2)| =1, z € Ly, and |by, r(2)| <1, z € Gp. (2.49)

For any p > 0 and z € GR, let us set:

p/2
P (2) ] (2.50)

Thp(z):= [

“r bm,Rr(2)
The function T}, ;, () is analytic in G, continuous on G and does not have zeros in Gp.
We take an arbitrary continuous branch of the 7}, ,, () and for this branch we maintain the
same designation. Then, the Cauchy integral representation for the 7}, ,, (2) at the z = z;,
7 =1,2 gives:

d
Tn,p (Zl) ! / Tn,p (C) Cé‘

21 — 2’1.
Lgr
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Then, according to (2.49), we obtain:

/
By ()" < ()P [t "
AT - 2 bm,R(

Lgr

|d¢|

2.51
- 2] 3D

)
¢)

Multiplying the numerator and the denominator of the last integrand by h'/2(¢), replacing
the variable w = &(z) and applying the Holder inequality, we obtain:

2
/'P"(C”g - 2.52)
¢ — ]
Lr
/ ‘dt|

< | h@() [Py (B (0)P @' ()] |dt] - i

tlz/R t|:/R h((t)) [@(t) — & (w))]

|dt|

= | fap @) |dt] - o

t|:/R |t|=/R h(W(t)) [@(t) — ¥ (wy)l

where f,, () has been defined as in (2.11). Since R > 1 is arbitrary, then (2.52) holds also
for R= Ry :=1+ %40 < e < 1. So, we have:

2
. |dd]
/’Pn(C)‘ K_Zj‘ e
LR,
, |dt|

<| J wotrian] | f BT (8)) 1(8) — () P

H=R, t|=R1
:ZAn'Fn(wj)7

and, A,, and F),(w;) has been defined as in (2.11) for R = R;. Therefore, from (2.51) and
(2.53), we have:

|Pn (21)] = Ay - Fr(wj), (2.54)

where, according to (2.12), the estimate
Ap =n- ||Pn“g

is satisfied. For the estimate of the quantity F},(w;) we use the notations at the estimation
of the F},(w) as in (2.14)-(2.16). Therefore, under these notations, for the F},(w;), we get:

2

d

F,(w;) = . 2.55

) =2 / @ (t) — 0 (wy) P 239
ey
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\dt| 2 3 i
= ZZ / o (t) — gp(wj)‘%w = ZZFn,j(wj)v

=1i=1_, =1 i=1
T Bl LRy e
since the points {z; };n:l € L are distinct. So, we need to evaluate the Ff‘l,j(wj) for each

j=1,2andi=1,2,3.

Case l:j = 1.
dt|
Ey(wn) + Foy (w1) = / | 2.56
1 (wr) 1 (wr) ()~ Wy B (2.56)
E}(Lg,)UE?(LR,)
/ |dt| nEPMTLGE (24 41) A > 1,
= @A — Inn, if (2+7)A =1,
t— (2471) M .
E}(Lg,)UE}(LR,) £~ ol Lo if 24+m)A <1,
and
dt| 1
Fy(wy) = / | = / \dt] < 1. (2.57)
! , () = @ (w) [T G
El(LRl) E1(LR1)
Case 2: j = 2.
dt|
Fyp(w2) + Frp(w2) = / | 2.58
’2( 2) 72( 2) |W(t) —!P(w2)’2+“/2 ( )
|dt| n2+92)71 2 (2 4+ 99) > 1,
= / — s = Inn, if2(2+7) =1,
t— 2(24”}/2) .
E}(Lr,)UE3(Lr,) £ =l Lo if2(2+9) <1,
and
dt| 1
F2 o(ws) = / | =< / \dt] < 1. (2.59)
’ , () = (w7 T 5T
EQ(LRI) E2(LR1)

Combining relations (2.54) - (2.59), we complete the proof.
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