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Abstract. In this article, we present some results concerning the existence of bounded weak solutions
for some functional implicit differential equations of Hadamard fractional derivative. The main results
are proved by applying Mönch’s fixed point theorem associated with the technique of measure of weak
noncompactness and the diagonalization method.
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1 Introduction

Fractional differential equations have been applied in various areas of engineering, mathe-
matics, physics and bio-engineering, and other applied sciences [23,32]. For some funda-
mental results in the theory of fractional calculus and fractional differential equations we
refer the reader to monographs of Abbas et al. [4,5], Kilbas et al. [25] and Zhou [35]. Re-
cently, considerable attention has been given to the existence of solutions of initial and
boundary value problems for fractional differential equations with Hadamard fractional
derivative; see [1–3,7,33]. Implicit functional differential equations have been considered
by many authors [6,12,27,34].
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The measure of weak noncompactness was introduced by De Blasi [19]. The strong mea-
sure of noncompactness was developed first by Banas̀ and Goebel [11] and subsequently
developed and used in many papers; see for example, Akhmerov et al. [8], Alvàrez [9],
Benchohra et al. [17], Guo et al. [21], and the references therein. In [17,29] the authors
considered some existence results by applying the techniques of the measure of noncom-
pactness. Recently, several researchers obtained other results by application of the technique
of measure of weak noncompactness; see [5,14,15], and the references therein.

In [10,13,16], the authors used the diagonalization method to prove some existence of
bounded solutions for several classes of scalar fractional differential equations ion the half
line. In this paper, we discuss the existence of bounded weak solutions for the following
implicit Hadamard fractional differential equation of the form

(HDr
1u)(t) = f(t, u(t), (HDr

1u)(t)); t ∈ J := [1,∞),

(HI1−r1 u)(t)|t=1 = φ, u is bounded on J,
(1.1)

where φ ∈ E, f : J ×E×E → E is a given continuous function, E is a real (or complex)
reflexive Banach space with norm ‖ · ‖E and dual E∗, such that E is the dual of a weakly
compactly generated Banach space X, HIr1 is the left-sided mixed Hadamard integral of
order r ∈ (0, 1], and HDr

1 is the Hadamard fractional derivative of order r.

Our goal in this work is to give some existence results for implicit Hadamard fractional
differential equations on an unbounded domain by applying the diagonalization method.
This paper initiates the use of measure of weak noncompactness and the diagonalization
process for the study of more general fractional differential equations.

2 Preliminaries

Let In := [1, n], n ∈ N∗ and Cn := C(In) be the Banach space of all continuous functions
v from In into E with the supremum (uniform) norm

‖v‖n := sup
t∈In
‖v(t)‖E .

As usual, AC(In) denotes the space of absolutely continuous functions from In into E. By
Cr,ln(In), we denote the weighted space of continuous functions defined by

Cr,ln(In) = {w(t) : (ln t)rw(t) ∈ Cn}

with norm
‖w‖Cr,ln

:= sup
t∈In
‖(ln t)rw(t)‖E .

In the following we denote ‖w‖Cr,ln
by ‖w‖C . Let (E,w) = (E, σ(E,E∗)) be the Banach

space E with its weak topology.

Definition 2.1 A Banach space X is called weakly compactly generated (WCG, for short)
if it contains a weakly compact set whose linear span is dense in X.

Definition 2.2 A function h : E → E is said to be weakly sequentially continuous if h
takes each weakly convergent sequence in E to a weakly convergent sequence in E (i.e., for
any (un) in E with un → u in (E,w) then h(un)→ h(u) in (E,w)).
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Definition 2.3 [30] The function u : In → E is said to be Pettis integrable on I if and only
if there is an element uJ ∈ E corresponding to each J ⊂ I such that φ(uJ) =

∫
J φ(u(s))ds

for all φ ∈ E∗, where the integral on the right hand side is assumed to exist in the sense of
Lebesgue, (by definition, uJ =

∫
J u(s)ds).

LetP (In, E) be the space of allE−valued Pettis integrable functions on I, andL1(In,R)
be the Banach space of Lebesgue integrable functions u : In → R. Define the class
P1(In, E) by

P1(In, E) = {u ∈ P (In, E) : ϕ(u) ∈ L1(In,R); for every ϕ ∈ E∗}.

The space P1(In, E) is normed by

‖u‖P1 = sup
ϕ∈E∗, ‖ϕ‖≤1

∫ n

1
|ϕ(u(x))|dλx,

where λ stands for a Lebesgue measure on In.
The following result is due to Pettis (see [[30], Theorem 3.4 and Corollary 3.41]).

Proposition 2.1 [30] If u ∈ P1(I, E) and h is a measurable and essentially bounded real-
valued function, then uh ∈ P1(J,E).

For all that follows, the symbol “
∫

” denotes the Pettis integral.

Theorem 2.1 [31] A subset of a reflexive Banach space is weakly compact if and only if it
is closed in the weak topology and bounded in the norm topology.

Theorem 2.2 [26] Let D be a weakly compact subset of C(In, E). Then D(t) is weakly
compact subset of E for each t ∈ In.

Let us recall some definitions and properties of Hadamard fractional integration and differ-
entiation. We refer to [22,25] for a more detailed analysis.

Definition 2.4 [22,25] The Hadamard fractional integral of order q > 0 for a function
g ∈ L1(In, E), is defined as

(HIq1g)(x) =
1

Γ (q)

∫ x

1

(
ln
x

s

)q−1 g(s)
s
ds,

provided the integral exists, where Γ (·) is the (Euler’s) Gamma function defined by

Γ (ξ) =

∫ ∞
0

tξ−1e−tdt; ξ > 0.

Example 1 Let 0 < q < 1. Then

HIq1 ln t =
1

Γ (2 + q)
(ln t)1+q, for a.e. t ∈ [1, e].

Remark 2.1 Let g ∈ P1(In, E). For every ϕ ∈ E∗, we have

ϕ(HIq1g)(x) = (HIq1ϕg)(x), for a.e. x ∈ In.
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Analogous to the Riemann–Liouville fractional calculus, the Hadamard fractional deriva-
tive is defined in terms of the Hadamard fractional integral in the following way. Set

δ = x
d

dx
, q > 0, n = [q] + 1,

where [q] is the integer part of q, and

ACnδ := {u : In → E : δn−1[u(x)] ∈ AC(In)}.

Definition 2.5 [22,25] The Hadamard fractional derivative of order q applied to the func-
tion w ∈ ACnδ is defined as

(HDq
1w)(x) = δn(HIn−q1 w)(x).

Example 2 Let 0 < q < 1. Then

HDq
1 ln t =

1

Γ (2− q)
(ln t)1−q, for a.e. t ∈ [1, e].

It has been proved (see e.g. Kilbas [[24], Theorem 4.8]) that in the space L1(I, E),
the Hadamard fractional derivative is the left-inverse operator to the Hadamard fractional
integral, i.e.

(HDq
1)(

HIq1w)(x) = w(x).

From Theorem 2.3 of [25], we have

(HIq1)(
HDq

1w)(x) = w(x)− (HI1−q1 w)(1)

Γ (q)
(lnx)q−1.

Lemma 2.1 Let h : In → E be a continuous function. Then the equation

(HDq
1w)(t) = h(t),

has solutions w ∈ L1(In, E) defined by

w(t) =
(HI1−q1 u)(1)

Γ (q)
(ln t)q−1 + (HIq1h)(t).

From the above lemma and Lemma 1 of [6], we have the following lemma.

Lemma 2.2 Let f(t, u, z) : In×E×E → E be a continuous function. Then problem (1.1)
is equivalent to the problem of obtaining the solution of the equation

g(t) = f

(
t,

φ

Γ (r)
(ln t)r−1 + (HIr1g)(t), g(t)

)
,

and if g(·) ∈ Cn is the solution of this equation, then

u(t) =
φ

Γ (r)
(ln t)r−1 + (HIr1g)(t).

Definition 2.6 [19] Let E be a Banach space, ΩE the bounded subsets of E and B1 the
unit ball of E. The De Blasi measure of weak noncompactness is the map β : ΩE → [0,∞)
defined by

β(X) = inf{ε > 0 : there exists a weakly compact Ω ⊂ E such that X ⊂ εB1 +Ω}.
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The De Blasi measure of weak noncompactness satisfies the following properties:

(a) A ⊂ B ⇒ β(A) ≤ β(B),
(b) β(A) = 0⇔ A is relatively weakly compact,
(c) β(A ∪B) = max{β(A), β(B)},
(d) β(Aω) = β(A), (Aω denotes the weak closure of A),
(e) β(A+B) ≤ β(A) + β(B),
(f) β(λA) = |λ|β(A),
(g) β(conv(A)) = β(A),

The next result follows directly from the Hahn–Banach theorem.

Proposition 2.2 Let E be a normed space, and x0 ∈ E with x0 6= 0. Then, there exists
ϕ ∈ E∗ with ‖ϕ‖ = 1 and ϕ(x0) = ‖x0‖.

For a given set V of functions v : I → E let us denote by

V (t) = {v(t) : v ∈ V }; t ∈ I,

and
V (I) = {v(t) : v ∈ V, t ∈ I}.

Lemma 2.3 [21] Let H ⊂ C be a bounded and equicontinuous subset. Then the function
t→ β(H(t) is continuous on I, and

βC(H) = max
t∈I

β(H(t)),

and

β

(∫
I
u(s)ds

)
≤
∫
I
β(H(s))ds,

where H(s) = {u(s) : u ∈ H, s ∈ I}, and βC is the De Blasi measure of weak noncom-
pactness defined on the bounded sets of C.

For our purpose we will need the following fixed point theorem:

Theorem 2.3 [28] Let Q be a nonempty, closed, convex and equicontinuous subset of a
metrizable locally convex vector space C(J,E) such that 0 ∈ Q. Suppose T : Q → Q is
weakly-sequentially continuous. If the implication

V = conv({0} ∪ T (V ))⇒ V is relatively weakly compact, (2.1)

holds for every subset V ⊂ Q, then the operator T has a fixed point.

3 Existence Results

Let us start by defining what we mean by a weak solution of the problem (1.1).

Definition 3.1 By a bounded weak solution of the problem (1.1) we mean a measurable
bounded function that satisfies the condition (HI1−r1 u)(t)|t=1 = φ, and the equation (HDr

1u)(t) =
f(t, u(t), (HDr

1u)(t)) on J.

The following hypotheses will be used in the sequel.

(H1) For a.e. t ∈ In, the functions v → f(t, v, ·) and w → f(t, ·, w) are weakly sequentially
continuous.
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(H2) For each v, w ∈ E, the function t→ f(t, v, w) is Pettis integrable on In.
(H3) There exists pn ∈ C(In, [0,∞)) such that for all ϕ ∈ E∗, we have

|ϕ(f(t, u, v))| ≤ pn(t)‖ϕ‖, for a.e. t ∈ In, and each u, v ∈ E.
(H4) For each bounded and measurable set B ⊂ E and for each t ∈ In, we have

β(f(t, B,H Dr
1B) ≤ (ln t)1−rpn(t)β(B),

where HDr
1B = {HDr

1w : w ∈ B}.

Set
p∗n = sup

t∈In
pn(t).

Theorem 3.1 Assume that the hypotheses (H1)− (H4) hold. If

Ln :=
p∗n lnn

Γ (1 + r)
< 1, (3.1)

then the problem (1.1) has at least one bounded weak solution defined on J.

Proof. The proof will be given in two parts. Fix n ∈ N∗ and consider the problem
(HDr

1u)(t) = f(t, u(t), (HDr
1u)(t)); t ∈ In,

(HI1−r1 u)(t)|t=1 = φ.

(3.2)

Part 1: We begin by showing that (3.2) has a solution un ∈ Cn with |un| ≤ Rn for each
t ∈ In, where

Rn >
p∗n lnn

Γ (1 + r)
.

Transform the integral equation (3.2) into a fixed point equation. Consider the operator
N : Cn → Cn defined by:

(Nu)(t) =
φ

Γ (r)
(ln t)r−1 +

∫ t

1

(
ln
t

s

)r−1 g(s)

sΓ (r)
ds, (3.3)

where g(·) ∈ Cn with

g(t) = f

(
t,

φ

Γ (r)
(ln t)r−1 + (HIr1g)(t), g(t)

)
.

First notice that, the hypotheses imply that t 7→
(
ln t

s

)r−1 g(s)
s , for a.e. t ∈ In, is Pettis

integrable, and for each u ∈ C, the function

t 7→ f

(
t,

φ

Γ (r)
(ln t)r−1 + (HIr1g)(t), g(t)

)
is Pettis integrable over In. Thus, the operator N is well defined. Consider the set

Q =
{
u ∈ Cn : ‖u‖n ≤ Rn and ‖(ln t2)1−ru(t2)− (ln t1)

1−ru(t1)‖E

≤ p∗n
Γ (1 + r)

(lnn)1−r
∣∣∣∣ln t2t1

∣∣∣∣r
+

p∗n
Γ (r)

∫ t1

1

∣∣∣∣∣(ln t2)1−r
(
ln
t2
s

)r−1
− (ln t1)

1−r
(
ln
t1
s

)r−1∣∣∣∣∣ ds, t1, t2 ∈ In
}
.
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Clearly, the subset Q is closed, convex end equicontinuous. We shall show that the oper-
atorN satisfies all the assumptions of Theorem 2.3. The proof will be given in several steps.

Step 1: N maps Q into itself.
Let u ∈ Q, t ∈ In and assume that (Nu)(t) 6= 0. Then there exists ϕ ∈ E∗ such that
‖(ln t)1−r(Nu)(t)‖E =

∣∣ϕ(|(ln t)1−r(Nu)(t))∣∣ . Thus

‖(ln t)1−r(Nu)(t)‖E =

∣∣∣∣∣ϕ
(

φ

Γ (r)
+

(ln t)1−r

Γ (r)

∫ t

1

(
ln
t

s

)r−1 g(s)
s
ds

)∣∣∣∣∣ ,
where g(·) ∈ Cn with

g(t) = f

(
t,

φ

Γ (r)
(ln t)r−1 + (HIr1g)(t), g(t)

)
.

Then

‖(ln t)1−r(Nu)(t)‖E ≤
(ln t)1−r

Γ (r)

∫ t

1

(
ln
t

s

)r−1 |ϕ(g(s))|
s

ds

≤ p∗n(lnn)
1−r

Γ (r)

∫ t

1

(
ln
t

s

)r−1 ds
s

≤ p∗n lnn

Γ (1 + r)

≤ R.

Next, let t1, t2 ∈ I such that t1 < t2 and let u ∈ Q, with

(ln t2)
1−r(Nu)(t2)− (ln t1)

1−r(Nu)(t1) 6= 0.

Then there exists ϕ ∈ E∗ such that

‖(ln t2)1−r(Nu)(t2)−(ln t1)1−r(Nu)(t1)‖E =
∣∣ϕ((ln t2)1−r(Nu)(t2)− (ln t1)

1−r(Nu)(t1))
∣∣ ,

and ‖ϕ‖ = 1. Then

‖(ln t2)1−r(Nu)(t2)− (ln t1)
1−r(Nu)(t1)‖E

=
∣∣ϕ((ln t2)1−r(Nu)(t2)− (ln t1)

1−r(Nu)(t1))
∣∣

≤

∣∣∣∣∣ϕ
(
(ln t2)

1−r
∫ t2

1

(
ln
t2
s

)r−1 g(s)

sΓ (r)
ds− (ln t1)

1−r
∫ t1

1

(
ln
t1
s

)r−1 g(s)

sΓ (r)
ds

)∣∣∣∣∣ ,
where g(·) ∈ Cn with

g(t) = f

(
t,

φ

Γ (r)
(ln t)r−1 + (HIr1g)(t), g(t)

)
.
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Then

‖(ln t2)1−r(Nu)(t2)− (ln t1)
1−r(Nu)(t1)‖E

≤ (ln t2)
1−r
∫ t2

t1

∣∣∣∣ln t2s
∣∣∣∣r−1 |ϕ(g(s))|sΓ (r)

ds

+

∫ t1

1

∣∣∣∣∣(ln t2)1−r
(
ln
t2
s

)r−1
− (ln t1)

1−r
(
ln
t1
s

)r−1∣∣∣∣∣ |ϕ(g(s))|sΓ (r)
ds

≤ (ln t2)
1−r
∫ t2

t1

∣∣∣∣ln t2s
∣∣∣∣r−1 pn(s)Γ (r)

ds

+

∫ t1

1

∣∣∣∣∣(ln t2)1−r
(
ln
t2
s

)r−1
− (ln t1)

1−r
(
ln
t1
s

)r−1∣∣∣∣∣ pn(s)Γ (r)
ds.

Thus, we get

‖(ln t2)1−r(Nu)(t2)− (ln t1)
1−r(Nu)(t1)‖E

≤ p∗n
Γ (1 + r)

(lnn)1−r
∣∣∣∣ln t2t1

∣∣∣∣r
+

p∗n
Γ (r)

∫ t1

1

∣∣∣∣∣(ln t2)1−r
(
ln
t2
s

)r−1
− (ln t1)

1−r
(
ln
t1
s

)r−1∣∣∣∣∣ ds.
Hence N(Q) ⊂ Q.

Step 2: N is weakly-sequentially continuous.
Let (um) be a sequence in Q and let (um(t)) → u(t) in (E,ω) for each t ∈ In. Fix
t ∈ In, since f satisfies the assumption (H1), we have f(t, um(t),H D1um(t)) converges
weakly to f(t, u(t),H D1u(t)). Hence the Lebesgue dominated convergence theorem for
Pettis integral (see [20]) implies (Num)(t) converges weakly to (Nu)(t) in (E,ω), for each
t ∈ In. Thus, N(um)→ N(u). Hence, N : Q→ Q is weakly-sequentially continuous.

Step 3: The implication (2.1) holds.
Let V be a subset of Q such that V = conv(N(V ) ∪ {0}). Obviously

V (t) ⊂ conv(NV )(t)) ∪ {0}), ∀t ∈ In.

Further, as V is bounded and equicontinuous, by Lemma 3 in [18] the function t→ v(t) =
β(V (t)) is continuous on In. From (H3), (H4), Lemma 2.3 and the properties of the mea-
sure β, for any t ∈ I, we have

(ln t)1−rv(t) ≤ β((ln t)1−r(NV )(t) ∪ {0})
≤ β((ln t)1−r(NV )(t))

≤ (lnn)1−r

Γ (r)

∫ t

1

∣∣∣∣ln ts
∣∣∣∣r−1 pn(s)β(V (s))

s
ds

≤ (lnn)1−r

Γ (r)

∫ t

1

∣∣∣∣ln ts
∣∣∣∣r−1 (ln s)1−rpn(s)v(s)s

ds

≤ p∗n lnn

Γ (1 + r)
‖v‖Cn .

Thus
‖v‖Cn ≤ Ln‖v‖Cn .
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From (3.1), we get ‖v‖Cn = 0, that is v(t) = β(V (t)) = 0, for each t ∈ In and then by
Theorem 2 in [26], V is weakly relatively compact in Cn. Applying now Theorem 2.3, we
conclude that N has a fixed point which is a weak solution of the problem (3.2).

Part 2: The diagonalization process.
Now, we use the following diagonalization process. For k ∈ N∗ let{

wk(t) = unk
(t); t ∈ [1, nk],

wk(t) = unk
(nk); t ∈ [nk,∞).

Here {nk}k∈N∗ is a sequence of numbers satisfying

1 < n1 < n2 < . . . nk < . . . ↑ ∞.

Let S = {wk}∞k=1. Notice that

|wnk
(t)| ≤ Rn : for t ∈ [1, n1], k ∈ N∗.

Also, if k ∈ N∗ and t ∈ [1, n1], we have

wnk
(t) =

φ

Γ (r)
(ln t)r−1 +

∫ n1

1

(
ln
t

s

)r−1 g(s)

sΓ (r)
ds,

where g(·) ∈ Cn1 with

g(t) = f

(
t,

φ

Γ (r)
(ln t)r−1 + (HIr1g)(t), g(t)

)
.

Thus, for k ∈ N∗ and t, x ∈ [1, n1], we have

|(ln t)1−γwnk
(t)− (lnx)1−γwnk

(x)| ≤
∫ n1

1

∣∣∣∣∣
(
ln
t

s

)r−1
−
(
ln
x

s

)r−1∣∣∣∣∣ g(s)sΓ (r)
ds.

Hence

|(ln t)1−γwnk
(t)− (lnx)1−γwnk

(x)| ≤ p∗1
Γ (r)

∫ n1

1

∣∣∣∣∣
(
ln
t

s

)r−1
−
(
ln
x

s

)r−1∣∣∣∣∣ dss .
From the above and Step 3, Arzelà–Ascoli theorem guarantees that there is a subsequence
P ∗1 of N∗ and a function z1 ∈ C([1, n1], E) with wnk

→ z1 as k → ∞ in C([1, n1], E)
through P ∗1 . Let P1 = P ∗1 − {2}.
Notice that

|wnk
(t)| ≤ Rn : for t ∈ [1, n2], k ∈ N∗.

Also, if k ∈ N∗ and t, x ∈ [1, n2], we have

|(ln t)1−γwnk
(t)− (lnx)1−γwnk

(x)| ≤ p∗2
Γ (r)

∫ n2

1

∣∣∣∣∣
(
ln
t

s

)r−1
−
(
ln
x

s

)r−1∣∣∣∣∣ dss .
The Arzelà–Ascoli theorem guarantees that there is a subsequence P ∗2 of P1 and a function
z2 ∈ C([1, n2], E) with wnk

→ z2 as k → ∞ in C([1, n2], E) through P ∗2 . Note that
z1 = z2 on [1, n1] since P ∗2 ⊂ P1. Let P2 = P ∗2 − {3}. Proceed inductively to obtain
for m = 4, 5, . . . a subsequence P ∗m of Pm−1 and a function zm ∈ C([1, nm], E) with
wnk
→ zm as k →∞ in C([1, nm], E) through P ∗m. Let Pm = P ∗m − {m+ 1}.
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Define a function u as follows. Fix t ∈ (1,∞) and let m ∈ N∗ with t ≤ nm. Then
define u(t) = zm(t). Then u ∈ C((1,∞), E)) and |u(t)| ≤ Rn : for t ∈ [1,∞).
Again fix t ∈ (1,∞) and let m ∈ N∗ with t ≤ nm. Then for n ∈ Nm we have

unk
(t) =

φ

Γ (r)
(ln t)r−1 +

∫ nm

1

(
ln
t

s

)r−1 g(s)

sΓ (r)
ds,

where g(·) ∈ Cnm with

g(t) = f

(
t,

φ

Γ (r)
(ln t)r−1 + (HIr1g)(t), g(t)

)
.

Let nk →∞ through Nm to obtain

zm(t) =
φ

Γ (r)
(ln t)r−1 +

∫ nm

1

(
ln
t

s

)r−1 g(s)

sΓ (r)
ds.

We can use this method for each t ∈ [1, nm] and for each m ∈ N∗. Thus

(HDr
1u)(t) = f(t, u(t), (HDr

1u)(t)); for t ∈ [1, nm]

for each m ∈ N∗ and the constructed function u is a bounded weak solution of the problem
(1.1).

4 An Example

Let

E = l1 =

{
u = (u1, u2, . . . , um, . . .),

∞∑
m=1

|um| <∞

}
be the Banach space with the norm

‖u‖E =
∞∑
m=1

|um|.

We consider the following problem of implicit Hadamard fractional differential equation(HD
1
2
1 un)(t) = fm(t, u(t), (

HD
1
2
1 u)(t)), t ∈ [1,∞),

(HI
1
2
1 u)(t)|t=1 = 0, u is bounded on [1,∞),

(4.1)

where

fm(t, u(t), (
HD

1
2
1 u)(t)) =

cnt
2

2(1 + t2)(1 + ‖u(t)‖E + ‖HD
1
2
1 u(t)‖E)

(
e−7 + e−t−5

)
um(t),

for each t ∈ [1, n]; n ∈ N∗ − {1}, with

u = (u1, u2, . . . , um, . . .), and cn :=
e4

8 lnn
Γ

(
1

2

)
; n ∈ N∗ − {1}.

Set
f = (f1, f2, . . . , fm, . . .).
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For each u ∈ E and t ∈ [1, n], we have

|fm(t, u(t), (HD
1
2
1 u)(t))| ≤

cnt
2

2(1 + t2)

(
e−7 + e−t−5

) |um(t)|

1 + ‖u(t)‖E + ‖(HD
1
2
1 u)(t))‖E

.

This gives

‖f(t, u(t), (HD
1
2
1 )(t))‖E ≤

cnt
2

2(1 + t2)

(
e−7 + e−t−5

)
.

Thus, for all ϕ ∈ E∗ = l∞, we have

|ϕ(f(t, u(t), (HD
1
2
1 )(t)))| ≤

cnt
2

2(1 + t2)

(
e−7 + e−t−5

)
‖ϕ‖; for a.e. t ∈ [1, n] and each u ∈ E.

Hence, the hypothesis (H3) is satisfied with

pn(t) =
cnt

2

2(1 + t2)

(
e−7 + e−t−5

)
.

So; p∗n = cne
−4. Condition (3.1) holds, indeed,

p∗n lnn

Γ (1 + r)
=

cn lnn

e4Γ (32)
=

1

4
< 1.

Simple computations show that all conditions of Theorem 3.1 are satisfied. It follows that
the problem (4.1) has at least one bounded weak solution on [1,∞).
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Appl. 7 (2), 1-12 (2016).

2. Abbas, S., Benchohra, M.: Fractional order integral equations of two independent
variables, Appl. Math. Comput. 227, 755–761 (2014).

3. Abbas, S., Benchohra, M., Henderson, J.: Partial Hadamard fractional integral equa-
tions Adv. Dyn. Syst. Appl. 10 (2), 97-107 (2015).
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9. Alvàrez, J.C.: Measure of noncompactness and fixed points of nonexpansive condens-
ing mappings in locally convex spaces, Rev. Real. Acad. Cienc. Exact. Fis. Natur.
Madrid 79, 53-66 (1985).



14 Bounded weak solutions for implicit Hadamard fractional differential equations . . .

10. Arara, A., Benchohra, M., Hamidi, N., Nieto, J.J.: Fractional order differential equa-
tions on an unbounded domain, Nonlinear Anal. 72, 580-586 (2010).

11. Banas̀, J., Goebel, K.: Measures of Noncompactness in Banach Spaces, Marcel
Dekker, New York, (1980).

12. Benavides, T.D.: An existence theorem for implicit differential equations in a Banach
space, Ann. Mat. Pura Appl. 4, 119-130 (1978).
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