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On the Outer Connected Geodetic Number of a Graph
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Abstract. For a connected graphG of order at least two, aconnected outer connected geodetic setS of
G is an outer connected geodetic set such that the subgraph induced byS is connected. The minimum
cardinality of a connected outer connected geodetic set ofG is theconnected outer connected geodetic
numberof G and is denoted bycgco(G). We determine bounds for it and characterize graphs which realize
these bounds. Some realization results on the connected outer connected geodetic number of a graph are
studied.
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1 Introduction

By a graphG = (V,E), we mean a finite simple undirected connected graph. The order
and size ofG are denoted byp andq, respectively. For basic graph theoretic terminology
we refer to Harary [1,8]. For any two verticesx andy in a connected graphG, the distance
d(x, y) is the length of a shortestx− y path inG. A x − y path of lengthd(x, y) is called
x − y geodesic. A vertex v of G is said to lie on ax − y geodesicP if v is a vertex of
P including the verticesx andy. For any vertexu of G, the eccentricity ofu is defined as
e(u) = max{d(u, v) : v ∈ V (G)}. The radiusrad(G) and diameterdiam(G) of G are
defined asrad(G) = min{e(v) : v ∈ V (G)} anddiam(G) = max{e(v) : v ∈ V (G)},
respectively. Theneighborhood of a vertexv is the setN(v) consisting of all verticesu
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which are adjacent withv. A vertexv of G is called anextreme vertexof G if the subgraph
induced by its neighbors is complete.

The closed interval I[x, y] consists of all vertices lying on somex − y geodesic of
G, while for S ⊆ V, I[S] =

⋃

x,y∈S

I[x, y]. A setS of vertices ofG is a geodetic set if

I[S] = V , and the minimum cardinality of a geodetic set ofG is thegeodetic number
g(G) of G. The geodetic number of a graph and its variants have been studied by several
authors in [2–6,9,10]. A setS of vertices in a graphG is said to be anouter connected
geodetic setif S is a geodetic set ofG and eitherS = V or the subgraph induced byV −S
is connected. The minimum cardinality of an outer connectedgeodetic set ofG is theouter
connected geodetic numberof G and is denoted bygoc(G). The outer connected geodetic
number of a graph was introduced and studied in [7]. This concept can be mainly used in
fault-tolerant in communication network design [7].

The following theorems will be used in the sequel.

Theorem 1.1 [7] Each extreme vertex of a connected graphG belongs to every outer con-
nected geodetic set ofG.

Theorem 1.2 [7] For the complete graphKp(p ≥ 2), goc(Kp) = p.

Theorem 1.3 [7] If T is a tree withk endvertices, thengoc(T ) = k.

Throughout this paperG denotes a connected graph with at least two vertices.

2 Main Results

Definition 2.1 A connected outer connected geodetic setS of G is an outer connected
geodetic set such that the subgraph induced byS is connected. The minimum cardinality
of a connected outer connected geodetic set ofG is theconnected outer connected geodetic
numberof G and is denoted bycgco(G).

Example 1For the graphG given in Figure2.1, it is clear that no 2-element subset of
V (G) is an outer connected geodetic set ofG. It is easily verified thatS = {v2, v4, v6}
is the unique minimum outer connected geodetic set ofG and sogoc(G) = 3. Since the
subgraph induced byS is not connected,S is not a connected outer connected geodetic set
of G. Clearly,S1 = S ∪ {v3} is a minimum connected outer connected geodetic set ofG
so thatcgco(G) = 4. Thus the outer connected geodetic number and the connectedouter
connected geodetic number of a graph are different.
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Figure 2.1:G

Theorem 2.1 Each extreme vertex of a connected graphG belongs to every connected
outer connected geodetic set ofG.

Proof. Since every connected outer connected geodetic set ofG is also an outer connected
geodetic set ofG, the result follows from Theorem 1.1.

Corollary 2.1 For the complete graphKp(p ≥ 2), cgco(Kp) = p.
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Theorem 2.2 Let G be any connected graph with cut-vertices and letS be a connected
outer connected geodetic set ofG. If v is a cut-vertex ofG, then every component ofG− v
contains an element ofS.

Proof. Let v be a cut-vertex ofG andS be a connected outer connected geodetic set ofG.
Suppose that there exists a component, sayG1 of G − v such thatG1 contains no vertex
of S. Letu be a vertex ofG1. Since by Theorem 2.1,S contains all the extreme vertices of
G, u is not an extreme vertex ofG. SinceS is a connected outer connected geodetic set of
G, there exists a pair of verticesx, y ∈ S such thatu is an internal vertex of somex − y
geodesicP : x = u0, u1, ..., u, ...un = y in G. Sincev is a cut-vertex ofG, thex−u subpath
of P andu− y subpath ofP both containv, and it follows thatP is not a path, which is a
contradiction.

Theorem 2.3 Every cut-vertex of a connected graphG belongs to every connected outer
connected geodetic set ofG.

Proof. Let S be a connected outer connected geodetic set ofG and letv be a cut-vertex of
G. LetG1, G2, . . . , Gr(r ≥ 2) be the component ofG− v. By Theorem 2.2,S contains at
least one vertex from eachGi(1 ≤ i ≤ r). Since the subgraph induced byS is connected
andv is a cut-vertex ofG, it follows thatv ∈ S.

The next corollaries follows from Theorems 2.1 and 2.3

Corollary 2.2 For the starK1,p−1(p ≥ 1), cgco(K1,p−1) = p.

Corollary 2.3 For a connected graphG with k extreme vertices andl cut-vertices,max{2,
k + l} ≤ cgco(G) ≤ p.

Corollary 2.4 For any non-trivial treeT of orderp, cgco(G) = p.

For any realx, ⌊X⌋ denotes the largest integer less than or equal toX.

Theorem 2.4 For any cycleCp(p ≥ 3), cgco(Cp) =

{ p
2
+ 1 if p is even

⌊

p
2

⌋

+ 2 if p is odd.

Proof. We prove this theorem by considering two cases.
Case 1.Suppose thatp is even. Letp = 2n. LetC2n : v1, v2, v3, . . . , v2n, v1 be a cycle of
order2n. LetS = {v1, v2, v3, . . . , vn+1}. It is clear thatS is an outer connected geodetic set
of Cp and the subgraph induced byS is connected. ThusS is a connected outer connected
geodetic set ofG, cgco(G) ≤ n + 1. It is easily verified thatG has no connected outer
connected geodetic set ofG with cardinality at mostn. Hencecgco(Cp) = n+ 1.
Case 2.Suppose thatp is odd. Letp = 2n + 1. Let C2n+1 : v1, v2, v3, . . . , v2n+1, v1 be
a cycle of order2n + 1. Let S = {v1, v2, v3, ..., vn+1, vn+2}. Then, similar to Case 1, it
is easily verified thatS is a minimum connected outer connected geodetic set ofCp and
cgco(Cp) = n+ 2.

Theorem 2.5 For a connected graphG of orderp ≥ 2, 2 ≤ goc(G) ≤ cgco(G) ≤ p.

Proof. Any outer connected geodetic set ofG needs at least two vertices and sogoc(G) ≥ 2.
Since every connected outer connected geodetic set ofG is an outer connected geodetic set
of G, it follows thatgoc(G) ≤ cgco(G). Also,V (G) is a connected outer connected geodetic
set ofG, it is clear thatcgco(G) ≤ p. Hence2 ≤ goc(G) ≤ cgco(G) ≤ p.

Corollary 2.5 Let G be a connected graphG of order p(p ≥ 2). If cgco(G) = 2 then
goc(G) = 2.
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For any non-trivial pathPn(n ≥ 3), the outer connected geodetic number is2 and the
connected outer connected geodetic number isn. This shows that the converse of Corollary
2.5 need not be true.

Remark 2.1 The bounds in Theorem 2.5 are sharp. For any non-trivial pathPn(n ≥ 3),
goc(Pn) = 2 and cgco(Pn) = n. Also, all the inequalities in Theorem 2.5 can be strict.
For the graphG given in Figure2.1, goc(G) = 3, cgco(G) = 4 andp = 6. Thus, we have
2 < goc(G) < cgco(G) < p.

Now we proceed to characterize graphsG for which the bounds in Theorem 2.5 are attained.

Theorem 2.6 Let G be a connected graph of orderp(p ≥ 2). Then every vertex ofG is
either an extreme vertex or a cut-vertex if and only ifcgco(G) = p.

Proof. LetG be a connected graph with every vertex ofG either an extreme vertex or a cut-
vertex. Then the result follows from Theorems 2.1 and 2.3. Conversely, letcgco(G) = p.
Suppose that there is a vertexx in G which is neither a cut-vertex nor an extreme vertex.
Sincex is not an extreme vertex, the subgraph induced byN(x) is not complete. Then there
exists two verticesu andv in N(x) such thatd(u, v) ≥ 2. It is clear thatx lies on au − v
geodesic inG. Sincex is not a cut-vertex ofG, G − x is connected. Clearly,V − {x} is a
connected outer connected geodetic set ofG and socgco(G) ≤ |V − {x}| = p − 1, which
is a contradiction.

Theorem 2.7 For any connected graphG of orderp ≥ 2, cgco(G) = 2 if and only if G =
K2.

Proof. If G = K2, thencgco(G) = 2. Conversely, letcgco(G) = 2. Let S = {u, v} be a
minimum connected outer connected geodetic set ofG. Thenuv is an edge. It is clear that
a vertex different fromu andv cannot lie on au− v geodesic and soG = K2.

3 Some realization results

In view of Theorem 2.5, we have the following realization result.

Theorem 3.1 If p, a and b are integers such that3 ≤ a < b ≤ p, then there exists a
connected graphG of orderp with goc(G) = a andcgco(G) = b.

Proof. We prove this theorem by considering two cases.
Case 1.3 ≤ a < b = p. LetG be any tree of orderp with a end-vertices. Then by Theorem
1.3 and Corollary 2.4,goc(G) = a andcgco(G) = p.
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Case 2.3 ≤ a < b < p. LetPb−a+2: u1, u2, ..., ub−a+2 be a path of orderb − a + 2. Add
p− b+ a− 2 new verticesv1, v2, ..., va−2, w1, w2, ..., wp−b toPb−a+2 and join eachvi(1 ≤
i ≤ a− 2) with the vertexu2; and join eachwi(1 ≤ i ≤ p− b) with the verticesu1, u2, u3;
and also join eachwi(1 ≤ i ≤ p− b− 1) to eachwj(i+1 ≤ j ≤ p− b), thereby producing
the graphG of orderp, shown in Figure3.1. Let S = {v1, v2, ..., va−2, u1, ub−a+2} be the
set of all extreme vertices ofG. By Theorems 1.1 and 2.1, every outer connected geodetic
set and every connected outer connected geodetic set ofG containS. It is clear thatS is the
unique minimum outer connected geodetic set ofG and sogoc(G) = a. Since the subgraph
induced byS is not connected,S is not a connected outer connected geodetic set ofG. Let
S1 = S ∪ {u2, u3, u4, ..., ub−a+1} be the set of all extreme vertices and cut-vertices ofG.
By Theorems 2.1 and 2.3, every connected outer connected geodetic set ofG containS1,
and the subgraph induced byS1 is connected. It is clear thatS1 is the unique minimum
connected outer connected geodetic set ofG and socgco(G) = b.

For any connected graphG, rad(G) ≤ diam(G) ≤ 2rad(G). Ostrand[11] showed that
every two positive integersa andb with a ≤ b ≤ 2a are realizable as the radius and diameter
respectively, of some connected graph. Now, Ostrands theorem can be extended so that the
connected outer connected geodetic number can also be prescribed.

Theorem 3.2 For any three integersr, d andk ≥ d + 1 with r ≤ d ≤ 2r there exists a
connected graphG with rad(G) = r, diam(G) = d andcgco(G) = k.

Proof. We prove this theorem by considering three cases.
Case 1.If r = 1, thend = 1 or 2. If d = 1, letG = Kk. Then by Corollary 2.1,cgco(G) =
k. If d = 2, letG = K1,k−1. Then by Corollary 2.2,cgco(G) = k.
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Case 2.r ≥ 2 andr = d. First, letk ≥ r + 1. Let C2r : u1, u2, ..., u2r, u1 be a cycle
of order2r. Let G be the graph obtained fromC2r by adding ‘k − r + 1’ new vertices
v1, v2, ..., vk−r−1 and joining eachvi(1 ≤ i ≤ k − r − 1) with the verticesu1 andu2 of
C2r. The graphG is shown in Figure 3.2. It is easily verified that the eccentricity of each
vertex ofG is r so thatrad(G) = diam(G) = r. Let S = {v1, v2, ..., vk−r−1} be the set
of all extreme vertices ofG. By Theorem 2.1, every connected outer connected geodetic
set ofG containsS. It is clear thatS is not a connected outer connected geodetic set ofG.
It follows from Theorems 2.1 and 2.4 thatS ∪ {u1, u2, ..., ur+1} is a minimum connected
outer connected geodetic set ofG and socgco(G) = k.
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Case 3.r ≥ 2 andr < d ≤ 2r. Let C2r : u1, u2, ..., u2r , u1 be a cycle of order2r and let
Pd−r+1: v0, v1, ..., vd−r be a path of orderd− r+1. LetH be the graph obtained fromC2r

andPd−r+1 by identifying the vertexv0 of Pd−r+1 and the vertexu1 of C2r and joining
the vertexur+2 to the vertexur. LetG be the graph obtained fromH by addingk − d− 1
new verticesw1, w2, ..., wk−d−1 and joining each vertexwi(1 ≤ i ≤ k − d − 1) to the
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vertexvd−r−1. The graphG is shown in Figure3.3. It is easy to verify thatr ≤ e(x) ≤ d
for any vertexx in G ande(u1) = r ande(vd−r) = d = e(ur+1). Thenrad(G) = r and
diam(G) = d. Let S = {u1, v1, v2, ..., vd−r−1, vd−r, ur+1, w1, w2, ..., wk−d−1} be the set
of all cut-vertices and extreme vertices ofG. By Theorems 2.1 and 2.3, every connected
outer connected geodetic set ofG containS. It is clear thatS is an outer connected geodetic
set ofG and the subgraph induced byS is not connected,S is not a connected outer con-
nected geodetic set ofG. It is easily verify thatS∪{u2, u3, ..., ur} is a minimum connected
outer connected geodetic set ofG and socgco(G) = k.
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Theorem 3.3 If p, d andk are integers such that3 ≤ d ≤ k − 1 andp ≥ k + 1, then there
exists a connected graphG of orderp, diameterd andcgco(G) = k.

Proof. LetPd : u1, u2, . . . , ud be a path of orderd. Addp−d new verticesv1, v2, . . . , vp−k,
w1, w2, . . . , wk−d to Pd and join eachvi(1 ≤ i ≤ p − k) with the verticesu1 andu3; and
join eachwj(1 ≤ j ≤ k − d) with the vertexud and also join eachvi(1 ≤ i ≤ p − k − 1)
with vj(i + 1 ≤ j ≤ p − k), thereby producing the graphG of orderp with diameterd is
shown in Figure 3.4. LetS = {w1, w2, . . . , wk−d, u3, u4, . . . , ud} be the set of all extreme
vertices and cut-vertices ofG. By Theorems 2.1 and 2.3 every connected outer connected
geodetic set ofG containS. It is clear thatS is not a connected outer connected geodetic set
of G. Also, for any vertexx ∈ V −S, S ∪ {x} is not a connected outer connected geodetic
set ofG. It is easily verified thatS1 = S∪{u1, u2} is a connected outer connected geodetic
set ofG so thatcgco(G) = k.
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