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Abstract. In this paper, we give some new characterizations of the Lipschitz spaces via the Spanne-
Guliyev and Adams-Guliyev type boundedness of the commutators associated with the parametric Marcinkiewicz
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1 Introduction

As a generalization of Lp(Rn), the Orlicz spaces were introduced by Birnbaum-Orlicz in
[2] and Orlicz in [40], since then, the theory of the Orlicz spaces themselves has been well
developed and the spaces have been widely used in probability, statistics, potential theory,
partial differential equations, as well as harmonic analysis and some other fields of analysis.

The classical Morrey spaces were introduced by Morrey [35] to study the local behavior
of solutions to second-order elliptic partial differential equations. Moreover, various Mor-
rey spaces are defined in the process of study. Guliyev, Mizuhara and Nakai [21,34,36]
introduced generalized Morrey spaces Mp,ϕ(Rn) (see, also [22,23,43]).

It is well-known that the commutator is an important integral operator and it plays a key
role in harmonic analysis. In 1965, Calderon [3,4] studied a kind of commutators, appearing
in Cauchy integral problems of Lip-line. Let T be a Calderón-Zygmund singular integral
operator and b ∈ BMO(Rn). A well known result of Coifman, Rochberg and Weiss [8]
states that the commutator operator [b, T ]f = T (bf) − b Tf is bounded on Lp(Rn) for
1 < p < ∞. The commutator of Calderón-Zygmund operators plays an important role in
studying the regularity of solutions of elliptic partial differential equations of second order
(see, for example, [5–7,10,12,28,29]).
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Suppose that Sn−1 be the unit sphere in Rn (n ≥ 2) equipped with the normalized
Lebesgue measure dσ = dσ(x′). Let Ω is a homogeneous function of degree zero on Rn
satisfying Ω ∈ L1(Sn−1) and the following property∫

Sn−1

Ω(x′)dσ(x′) = 0,

where x′ = x/|x| for any x 6= 0.
The parametric Marcinkiewicz integral is defined by Hörmander [32] as follows.

µρΩ(f)(x) =

∫ ∞
0

∣∣∣∣∣ 1

tρ

∫
|x−y|≤t

Ω(x− y)

|x− y|n−ρ
f(y)dy

∣∣∣∣∣
2
dt

t

1/2

,

where 0 < ρ < n. When ρ = 1, we simply denote it by µΩ(f). It is well-known that the
operator µΩ(f) is defined by Stein in [45].

Let b be a locally integrable function on Rn; the commutator generated by the parametric
Marcinkiewicz integral µρΩ and b is defined by

µρΩ,b(f)(x) =

∫ ∞
0

∣∣∣∣∣ 1

tρ

∫
|x−y|≤t

Ω(x− y)

|x− y|n−ρ
(b(x)− b(y))f(y)dy

∣∣∣∣∣
2
dt

t

1/2

.

In [13], Deringoz et al. introduced generalized Orlicz-Morrey spaces as an extension of
generalized Morrey spaces. Other definitions of generalized Orlicz-Morrey spaces can be
found in [37] and [42]. In words of [27], our generalized Orlicz-Morrey space is the third
kind and the ones in [37] and [42] are the first kind and second kind, respectively. According
to the examples in [20], one can say that the generalized Orlicz-Morrey space of first kind
and second kind are different and that second kind and third kind are different. However, it
is not known that relation between first and second kind.

Boundedness of commutators of classical operators of harmonic analysis on general-
ized Orlicz-Morrey spaces were recently studied in various papers, see for example [14,
24,25]. In [15,17], the authors consider the boundedness of the parametric Marcinkiewicz
integral operator and its commutator on generalized Orlicz-Morrey space of the third kind,
see also [1,9,31,38,39,44]. In this paper, we give some new characterizations of the Lips-
chitz spaces via the Spanne-Guliyev and Adams-Guliyev type boundedness of the commu-
tators associated with the parametric Marcinkiewicz integral on generalized Orlicz-Morrey
spaces.

Everywhere in the sequelB(x, r) is the ball in Rn of radius r centered at x and |B(x, r)| =
vnr

n is its Lebesgue measure, where vn is the volume of the unit ball in Rn. By A . B we
mean that A ≤ CB with some positive constant C independent of appropriate quantities. If
A . B and B . A, we write A ≈ B and say that A and B are equivalent.

2 Preliminaries

We recall the definition of Young functions.

Definition 2.1 A function Φ : [0,∞) → [0,∞] is called a Young function if Φ is convex,
left-continuous, lim

r→+0
Φ(r) = Φ(0) = 0 and lim

r→∞
Φ(r) =∞.
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From the convexity and Φ(0) = 0 it follows that any Young function is increasing. If
there exists s ∈ (0,∞) such that Φ(s) = ∞, then Φ(r) = ∞ for r ≥ s. The set of Young
functions such that

0 < Φ(r) <∞ for 0 < r <∞
will be denoted by Y. If Φ ∈ Y , then Φ is absolutely continuous on every closed interval in
[0,∞) and bijective from [0,∞) to itself.

For a Young function Φ and 0 ≤ s ≤ ∞, let

Φ−1(s) = inf{r ≥ 0 : Φ(r) > s}.

If Φ ∈ Y , then Φ−1 is the usual inverse function of Φ. We note that

Φ(Φ−1(r)) ≤ r ≤ Φ−1(Φ(r)) for 0 ≤ r <∞.

It is well known that

r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for r ≥ 0, (2.1)

where Φ̃(r) is defined by

Φ̃(r) =

{
sup{rs− Φ(s) : s ∈ [0,∞)} , r ∈ [0,∞)

∞ , r =∞.

A Young function Φ is said to satisfy the ∆2-condition, denoted also as Φ ∈ ∆2, if

Φ(2r) ≤ kΦ(r) for r > 0

for some k > 1. If Φ ∈ ∆2, then Φ ∈ Y . A Young function Φ is said to satisfy the ∇2-
condition, denoted also by Φ ∈ ∇2, if

Φ(r) ≤ 1

2k
Φ(kr), r ≥ 0,

for some k > 1.
We will also use the numerical characteristics

aΦ := inf
t∈(0,ı)

tΦ′(t)

Φ(t)
, bΦ := sup

t∈(0,ı)

tΦ′(t)

Φ(t)
.

of Young functions.

Remark 2.1 It is known that Φ ∈ ∆2 ∩∇2 if and only if 1 < aΦ ≤ bΦ < ı, see [30].

Definition 2.2 (Orlicz Space). For a Young function Φ, the set

LΦ(Rn) =

{
f ∈ L1

loc(Rn) :

∫
Rn
Φ(k|f(x)|)dx <∞ for some k > 0

}
is called Orlicz space. If Φ(r) = rp, 1 ≤ p < ∞, then LΦ(Rn) = Lp(Rn). If Φ(r) =
0, (0 ≤ r ≤ 1) and Φ(r) = ∞, (r > 1), then LΦ(Rn) = L∞(Rn). The space LΦloc(Rn) is
defined as the set of all functions f such that fχB ∈ LΦ(Rn) for all balls B ⊂ Rn.

LΦ(Rn) is a Banach space with respect to the norm

‖f‖LΦ = inf

{
λ > 0 :

∫
Rn
Φ
( |f(x)|

λ

)
dx ≤ 1

}
.

By elementary calculations we have the following.
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Lemma 2.1 Let Φ be a Young function and B a set in Rn with finite Lebesgue measure.
Then

‖χB‖LΦ =
1

Φ−1 (|B|−1)
.

In the next sections where we prove our main estimates, we use the following lemma.

Lemma 2.2 [13] For a Young function Φ, the following inequality is valid∫
B(x,r)

|f(y)|dy ≤ 2|B(x, r)|Φ−1
(
|B(x, r)|−1

)
‖f‖LΦ(B(x,r)),

where ‖f‖LΦ(B(x,r)) = ‖fχB‖LΦ .

Various versions of generalized Orlicz-Morrey spaces were introduced in [37], [42] and
[13]. We used the definition of [13] which runs as follows.

Definition 2.3 Let ϕ(x, r) be a positive measurable function on Rn × (0,∞) and Φ any
Young function. We denote byMΦ,ϕ(Rn) the generalized Orlicz-Morrey space, the space
of all functions f ∈ LΦloc(Rn) for which

‖f‖MΦ,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1Φ−1(|B(x, r)|−1)‖f‖LΦ(B(x,r)) <∞.

3 Auxiliary Results

A function ϕ : (0,∞)→ (0,∞) is said to be almost increasing (resp. almost decreasing) if
there exists a constant C > 0 such that

ϕ(r) ≤ Cϕ(s) (resp. ϕ(r) ≥ Cϕ(s)) for r ≤ s.

For a Young function Φ, we denote by GΦ the set of all almost decreasing functions
ϕ : (0,∞)→ (0,∞) such that t ∈ (0,∞) 7→ 1

Φ−1(t−n)
ϕ(t) is almost increasing.

Lemma 3.1 [16] Let B be a ball in Rn. If ϕ ∈ GΦ, then there exist C > 0 such that

1

ϕ(rB)
≤ ‖χB‖MΦ,ϕ ≤

C

ϕ(rB)
,

where rB denotes the radius of the ball.

In the next sections where we prove our main estimates, we use the following results.

Theorem 3.1 [16,23] (Adams-Guliyev type result)
Let 0 < α < n, Φ ∈ Y , γ ∈ (0, 1) and η(t) ≡ ϕ(t)γ and Ψ(t) ≡ Φ(t1/γ).
1. If Φ ∈ ∇2 and ϕ(t) satisfies

sup
r<t<∞

Φ−1
(
t−n
)

ess inf
t<s<∞

ϕ(s)

Φ−1
(
s−n

) ≤ C ϕ(r), (3.1)

then the condition
tαϕ(t) +

∫ ∞
t

rα ϕ(r)
dr

r
≤ Cϕ(t)γ

for all t > 0, where C > 0 does not depend on t, is sufficient for the boundedness of Iα
fromMΦ,ϕ(Rn) toMΨ,η(Rn).
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2. If ϕ ∈ GΦ, then the condition

tαϕ(t) ≤ Cϕ(t)γ (3.2)

for all t > 0, where C > 0 does not depend on t, is necessary for the boundedness of Iα
fromMΦ,ϕ(Rn) toMΨ,η(Rn).

3. Let Φ ∈ ∇2. If ϕ ∈ GΦ satisfies the regularity condition∫ ∞
t

rα ϕ(r)
dr

r
≤ Ctαϕ(t)

for all t > 0, where C > 0 does not depend on t, then the condition (3.2) is necessary and
sufficient for the boundedness of Iα fromMΦ,ϕ(Rn) toMΨ,η(Rn).

Theorem 3.2 [16,23,24] (Spanne-Guliyev type result)
Let Φ, Ψ ∈ Y and 0 < α < n.
1. Let Φ ∈ ∇2. If the functions (Φ, Ψ) satisfy the condition

rαΦ−1
(
r−n

)
+

∫ ∞
r

Φ−1
(
t−n
)
tα
dt

t
≤ CΨ−1

(
r−n

)
, (3.3)

then the condition ∫ ı

t
ess inf
r<s<ı

ϕ1(s)

Φ−1
(
s−n

)Ψ−1
(
r−n

)dr
r
≤ C ϕ2(t) (3.4)

for all t > 0, where C > 0 does not depend on t, is sufficient for the boundedness of Iα
fromMΦ,ϕ1(Rn) toMΨ,ϕ2(Rn).

2. If the function ϕ1 ∈ GΦ, then the condition

tαϕ1(t) ≤ Cϕ2(t) (3.5)

for all t > 0, where C > 0 does not depend on t, is necessary for the boundedness of Iα
fromMΦ,ϕ1(Rn) toMΨ,ϕ2(Rn).

3. Let Φ ∈ ∇2. Let also the functions (Φ, Ψ) satisfy the condition (3.3). If ϕ1 ∈ GΦ
satisfies the regularity type condition∫ ∞

t

Ψ−1
(
r−n

)
Φ−1

(
r−n

) ϕ1(r)
dr

r
≤ Ctαϕ1(t)

for all t > 0, where C > 0 does not depend on t, then the condition (3.5) is necessary and
sufficient for the boundedness of Iα fromMΦ,ϕ1(Rn) toMΨ,ϕ2(Rn).

4 Main Results

In this section, as an application of theorems of the previous section we consider the bound-
edness of µρΩ,b on generalized Orlicz-Morrey spaces when b belongs to the Lipschitz space,
by which some new characterizations of the Lipschitz spaces are given. Such a characteriza-
tion was given in [26] for the boundedness of [b, Iα] and [b, T ] on generalized Orlicz-Morrey
spaces.

We recall the definition of Lipschitz space Λ̇β(Rn).
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Definition 4.1 Let 0 < β ≤ 1, we say a function b belongs to the Lipschitz space Λ̇β(Rn)
if there exists a constant C such that for all x, y ∈ Rn,

|b(x)− b(y)| ≤ C|x− y|β.

The smallest such constant C is called the Λ̇β(Rn) norm of b and is denoted by ‖b‖Λ̇β(Rn).

To prove the theorems, we need auxiliary results. The first one is the following charac-
terizations of Lipschitz space, which is due to DeVore and Sharply [18].

Lemma 4.1 Let 0 < β ≤ 1, we have

‖f‖Λ̇β(Rn) ≈ sup
B

1

|B|1+β/n

∫
B
|f(x)− fB|dx.

Lemma 4.2 Let 0 < β ≤ 1 and b ∈ Λ̇β(Rn), then the following pointwise estimate holds:

µρΩ,b(f)(x) . ‖b‖Λ̇β(Rn) Iβ(|f |)(x).

Proof.

µρΩ,b(f)(x) ≤
(∫ ∞

0

(∫
|x−y|≤t

|Ω(x− y)|
|x− y|n−ρ

|b(x)− b(y)| |f(y)|dy
)2 dt

t2ρ+1

)1/2

≤
∫
Rn

|Ω((x− y)′)|
|x− y|n−ρ

|b(x)− b(y)| |f(y)|
(∫ ∞
|x−y|

dt

t2ρ+1

)1/2
dy

≤ C‖b‖Λ̇β(Rn)

∫
Rn

|f(y)|
|x− y|n−ρ

|x− y|β

|x− y|ρ
dy

. ‖b‖Λ̇β(Rn) Iβ(|f |)(x).

The following result concerning the boundedness of commutator of parametric Marcinkiewicz
integral operator µρΩ,b on Lp spaces.

Theorem 4.1 Let Ω is a homogeneous function of degree zero on Rn satisfying Ω ∈
L∞(Sn−1), 0 < ρ < n, 0 < β ≤ 1, b ∈ Λ̇β(Rn), 1 < p < q <∞ and 1/p− 1/q = β/n.
Then, there is a constant C independent of f such that

‖µρΩ,b(f)‖Lq(Rn) ≤ C‖f‖Lp(Rn).

The following interpolation result is from [11, Theorem 2.2].

Lemma 4.3 Let α ∈ [0, 1), pi, qi ∈ (0,∞) satisfy 1/qi = 1/pi − α for i ∈ {1, 2}, p1 < p2

and T be a sublinear operator of weak type (pi, qi) for i ∈ {1, 2}. Then T is bounded from
LΦ(Rn) to LΨ (Rn), where Φ and Ψ are Young function satisfying that 1 < p1 < aΦ ≤ bΦ <
p2 <∞, 1 < q1 < aΨ ≤ bΨ < q2 <∞ and, for all t ∈ (0,∞), Ψ−1(t) = Φ−1(t) t−α.

As a consequence of Lemma 4.3 and Theorem 4.1, we get the following result.

Corollary 4.1 Let Ω is a homogeneous function of degree zero on Rn satisfying Ω ∈
L∞(Sn−1), 0 < β ≤ 1, b ∈ Λ̇β(Rn), Φ, Ψ be a Young function and 0 < ρ < n. If
Φ, Ψ ∈ ∆2 ∩ ∇2 and Ψ−1(t−n) = Φ−1(t−n) rβ , then µρΩ,b is bounded from LΦ(Rn) to
LΨ (Rn).

The following Adams-Guliyev type boundedness of the commutators associated with
the parametric Marcinkiewicz integral on generalized Orlicz-Morrey spaces is valid.
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Theorem 4.2 (Adams-Guliyev type result) Let Ω is a homogeneous function of degree zero
on Rn, 0 < β ≤ 1, 0 < γ < 1, b ∈ L1

loc(Rn), Φ ∈ Y , η(t) ≡ ϕ(t)γ and Ψ(t) ≡ Φ(t1/γ).
1. If Ω ∈ L∞(Sn−1), Φ ∈ ∇2 and ϕ(t) satisfies (3.1) and∫ ∞

t
rβ ϕ(r)

dr

r
≤ Ctβϕ(t), (4.1)

tβϕ(t) ≤ Cϕ(t)γ

hold for all t > 0, where C > 0 does not depend on t, then the condition b ∈ Λ̇β(Rn) is
sufficient for the boundedness of µρΩ,b fromMΦ,ϕ(Rn) toMΨ,η(Rn).

2. If ϕ ∈ GΦ, Ω satisfy

|Ω(x′)−Ω(y′)| .
(

log(2/|x′ − y′|)
)−µ

, µ > 1, x′, y′ ∈ Sn−1 (4.2)

and the condition
ϕ(t)γ ≤ tβϕ(t)

holds for all t > 0, where C > 0 does not depend on t, then the condition b ∈ Λ̇β(Rn) is
necessary for the boundedness of µρΩ,b fromMΦ,ϕ(Rn) toMΨ,η(Rn).

3. If Ω satisfy condition (4.2), Φ ∈ ∇2, ϕ ∈ GΦ, condition (4.1) holds and ϕ(t)γ ≈
tβϕ(t), then the condition b ∈ Λ̇β(Rn) is necessary and sufficient for the boundedness of
µρΩ,b fromMΦ,ϕ(Rn) toMΨ,η(Rn).

Proof. (1) The first statement of the theorem follows from Theorem 3.1 and Lemma 4.2.
(2) We shall now prove the second part. We use the idea given in [33] (see also [19,26,

41]). Choose z0 ∈ Rn and δ > 0 such that in the neighborhood {z : |z − z0| <
√
nδ},

function |z|n−β can be represented as a Fourier series which absolutely converges. That is

|z|n−β =

∞∑
k=0

ake
iνk·z.

Let z1 = z0
δ . For any ball B = B(x0, r), let y0 = x0 − 2rz1 and B′ = B(y0, r). Then for

x ∈ B and y ∈ B′, we have that∣∣∣∣x− y2r
− z1

∣∣∣∣ ≤ ∣∣∣∣x− x0

2r

∣∣∣∣+

∣∣∣∣y − y0

2r

∣∣∣∣ ≤ 1.

Since Ω is homogeneous function of degree zero, and satisfies (4.2), then there exists a
positive constant A with 0 < A < 1, for x, y ∈ Rn, x 6= y,

Ω(x− y) = Ω((x− y)′) ≥ C
(

log(2/A)
)−µ

. (4.3)

Now set s(x) = [sgn(b(x)− bB′)]χB (x), then∫
B
|b(x)− bB′ |dx =

∫
B

(b(x)− bB′)s(x)dx =
1

|B′|

∫
B

∫
B′

(b(x)− b(y))s(x)dydx

≈ δβ−n r−β
∫
Rn

∫
Rn

b(x)− b(y)

|x− y|n−β

∣∣∣∣δ(x− y)

2r

∣∣∣∣n−β s(x)χB(x)χB′(y)dydx

≈ r−β
∞∑
k=0

ak

∫
Rn

∫
Rn

b(x)− b(y)

|x− y|n−β
eiνk·

δ
2r

(x−y)s(x)χB(x)χB′(y)dydx.
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Taking
gk(y) = e−i(δ/2r)νk·yχB′(y) and hk(x) = ei(δ/2r)νk·xs(x)χB(x),

applying the Minkowski inequality, Hölder inequality and (4.3), we obtain∫
B
|b(x)− bB′ |dx ≈ r−β

∞∑
k=0

ak

∫
Rn

∫
Rn

b(x)− b(y)

|x− y|n−β
gk(y)hk(x)dydx

≤ Cr−β
∞∑
k=0

|ak|
∫
Rn

∣∣[b, Iβ]gk(x)
∣∣ |hk(x)|dx

= Cr−β
∞∑
k=0

|ak|
∫
B

∣∣∣ ∫
Rn

b(x)− b(y)

|x− y|n−β
gk(y)dy

∣∣∣dx
≤ Cr−β

∞∑
k=0

|ak|
∫
B

dx

|x− y0|ρ−β
∣∣∣ ∫

Rn

b(x)− b(y)

|x− y|n−ρ
gk(y)dy

∣∣∣
≤ Cr−β (log(2/A))µ

(log(2/A))µ

∞∑
k=0

|ak|
∫
B

dx

|x− y0|ρ−β
∣∣∣ ∫

Rn

b(x)− b(y)

|x− y|n−ρ
gk(y)dy

∣∣∣
≤ Cr−β

∞∑
k=0

|ak|
∫
B

dx

|x− y0|ρ−β
∣∣∣ 1

(log(2/A))µ

∫
Rn

b(x)− b(y)

|x− y|n−ρ
gk(y)dy

∣∣∣
≤ Cr−β

∞∑
k=0

|ak|
∫
B

dx

|x− y0|ρ−β
∣∣∣ ∫

Rn

Ω((x− y)′)

|x− y|n−ρ
(b(x)− b(y)) gk(y)dy

∣∣∣
≤ Cr−β

∞∑
k=0

|ak|
∫
B
|x− y0|βdx

∣∣∣ ∫
Rn

Ω(x− y)

|x− y|n−ρ
(b(x)− b(y)) gk(y)dy

∣∣∣
×
(∫
|x−y0|≤t,|x−y|≤t

dt

t2ρ+1

)(∫
|x−y0|≤t,|x−y|≤t

dt

t2ρ+1

)− 1
2

≤ Cr−β
∞∑
k=0

|ak|
∫
B
|x− y0|βdx

(∫ ∞
|x−y0|

∣∣∣ ∫
Rn

Ω(x− y)

|x− y|n−ρ
(b(x)− b(y)) gk(y)χ

B(x,t)
(y)dy

∣∣∣
× dt

t2ρ+1

)(∫
|x−y0|≤t,|x−y|≤t

dt

t2ρ+1

)− 1
2

≤ Cr−β
∞∑
k=0

|ak|
∫
B
|x− y0|βdx

(∫ ∞
|x−y0|

∣∣∣ ∫
B(x,t)

Ω(x− y)

|x− y|n−ρ
(b(x)− b(y)) gk(y)dy

∣∣∣2 dt

t2ρ+1

) 1
2

≤ Cr−β
∞∑
k=0

|ak|
∫
B
|x− y0|βµρΩ,b(gk)(x)dx.

If y0 ∈ B = B(x0, r), then |x− y0| < r and applying Lemma 2.2, we have

∫
B
|b(x)− bB′ |dx . r−β

∞∑
k=0

|ak|
∫
B
|x− y0|βµρΩ,b(gk)(x)dx

.
∞∑
k=0

|ak|
∫
B
µρΩ,bgk(x)dx .

∞∑
k=0

|ak| |B|Ψ−1
(
|B|−1

)
‖µρΩ,bgk‖LΨ (B)
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.
∞∑
k=0

|ak| |B| η(r) ‖µρΩ,bgk‖MΨ,η(Rn) .
∞∑
k=0

|ak| |B| η(r) ‖gk‖MΦ,ϕ(Rn)

.
∞∑
k=0

|ak| |B|ϕ(r)γ−1 ≤
∞∑
k=0

|ak| rn+β,

since ‖gk‖MΦ,ϕ(Rn) . ϕ(r)−1 by Lemma 3.1.
Thus we have obtained

1

|B|1+ β
n

∫
B
|b(x)− c0|dx ≤

2

|B|1+ β
n

∫
B
|b(x)− bB′ |dx .

∞∑
k=0

|ak| . 1.

If y0 /∈ B = B(x0, r) and |x0 − y0| ≤ 2r, then with an argument that used in the case
y0 ∈ B = B(x0, r), it is not difficult to obtain that

1

|B|1+ β
n

∫
B
|b(x)− c0|dx ≤

2

|B|1+ β
n

∫
B
|b(x)− bB′ |dx .

∞∑
k=0

|ak| . 1.

If y0 /∈ B = B(x0, r) and |x0 − y0| > 2r. Since y0 = x0 − 2rz1 and z1 = z0
δ , then

|x0−y0|
2r = |z1| = |z0|

δ <
√
n, that is, |x0 − y0| ≤ 2

√
nr. Thus∫

B
|b(x)− bB′ |dx . r−β

∞∑
k=0

|ak|
∫
B
|x− y0|βµρΩ,b(gk)(x)dx

. r−β
∞∑
k=0

|ak||x0 − y0|
∫
B
µρΩ,bgk(x)dx .

∞∑
k=0

|ak| |B|Ψ−1
(
|B|−1

)
‖µρΩ,bgk‖LΨ (B)

.
∞∑
k=0

|ak| |B| η(r) ‖µρΩ,bgk‖MΨ,η(Rn) .
∞∑
k=0

|ak| |B| η(r) ‖gk‖MΦ,ϕ(Rn)

.
∞∑
k=0

|ak| |B|ϕ(r)γ−1 ≤
∞∑
k=0

|ak| rn+β.

Thus, we get

1

|B|1+ β
n

∫
B
|b(x)− c0|dx ≤

2

|B|1+ β
n

∫
B
|b(x)− bB′ |dx .

∞∑
k=0

|ak| . 1,

which completes the proof of second parts of the theorem.
(3) The third statement of the theorem follows from the first and second parts of the

theorem.

Similar to the reasoning used in the proof of Theorem 4.2, one can also obtain the follow-
ing Spanne-Guliyev type boundedness of the commutators associated with the parametric
Marcinkiewicz integral on generalized Orlicz-Morrey spaces.

Theorem 4.3 (Spanne-Guliyev type result) LetΩ is a homogeneous function of degree zero
on Rn, 0 < β ≤ 1, b ∈ L1

loc(Rn), Φ, Ψ ∈ Y .
1. If Ω ∈ L∞(Sn−1), Φ ∈ ∇2, (Φ, Ψ) satisfy the condition (3.4) and

rβΦ−1
(
r−n

)
+

∫ ∞
r

Φ−1
(
t−n
)
tβ
dt

t
≤ CΨ−1

(
r−n

)
, (4.4)
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hold for all t > 0, where C > 0 does not depend on t, then the condition b ∈ Λ̇β(Rn) is
sufficient for the boundedness of µρΩ,b fromMΦ,ϕ1(Rn) toMΨ,ϕ2(Rn).

2. If ϕ ∈ GΦ, Ω satisfy (4.2) and the condition

ϕ2(t) ≤ Ctβϕ1(t)

holds for all t > 0, where C > 0 does not depend on t, then the condition b ∈ Λ̇β(Rn) is
necessary for the boundedness of µρΩ,b fromMΦ,ϕ1(Rn) toMΨ,ϕ2(Rn).

3. Let Ω satisfy condition (4.2), Φ ∈ ∇2, (Φ, Ψ) satisfy the condition (4.4) and ϕ2(t) ≈
tβϕ1(t). If ϕ1 ∈ GΦ satisfies the regularity type condition∫ ∞

t

Ψ−1
(
r−n

)
Φ−1

(
r−n

) ϕ1(r)
dr

r
≤ Ctβϕ1(t)

for all t > 0, where C > 0 does not depend on t, then the condition b ∈ Λ̇β(Rn) is
necessary and sufficient for the boundedness of µρΩ,b fromMΦ,ϕ1(Rn) toMΨ,ϕ2(Rn).
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