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Abstract. In this article, we introduce a new graph theoretic structure associated with a finite commu-
tative ring, called nil clean divisor graph. For a ring R, nil clean divisor graph is denoted by GN (R),
where the vertex set is {x ∈ R : x ̸= 0, ∃ y(̸= 0, ̸= x) ∈ R such that xy is nil clean}, two vertices x and
y are adjacent if xy is a nil clean element. We prove some interesting results of nil clean divisor graph of
a ring.
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1 Introduction

In this article, rings are finite commutative rings with non zero identity. Diesl [4], intro-
duced the concept of nil clean ring as a subclass of clean ring in 2013. He defined that an
element x of a ring R to be a nil clean element if it can be written as a sum of an idempotent
element and a nilpotent element of R. R is called a nil clean ring if every element of R is nil
clean. Also in 2015, Kosan and Zhou [8], developed the concept of weakly nil clean ring as
a generalization of nil clean ring. An element x of a ring R is said to be a weakly nil clean
if x = n + e or x = n − e, where n is a nilpotent element and e is an idempotent element
of R. The set of nilpotent elements, set of unit elements, nil clean elements and weakly
nil clean elements of a ring R are denoted by Nil(R), U(R), NC(R) and WNC(R) re-
spectively. By graph, we consider simple undirected graph. For a graph G, the set of edges
and the set of vertices are denoted by E(G) and V (G) respectively. The concept of zero-
divisor graph of a commutative ring was introduced by Beck [3] to discuss the coloring
of rings. In 1999, Anderson and Livingston [1], introduced zero divisor graph Γ (R) of a
commutative ring R. They defined, the vertex set of Γ (R) to be the set of all non-zero zero
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divisors of R and two vertices x and y are adjacent if xy = 0. Li et al.[9], developed a
kind of graph structure of a ring R, called nilpotent divisor graph of R, whose vertex set is
{x ∈ R : x ̸= 0, ∃ y( ̸= 0) ∈ R such that xy ∈ Nil(R)} and two vertices x and y are
adjacent if xy ∈ Nil(R). In 2018, Kimball and LaGrange [7], generalized the concept of
zero divisor graph to idempotent divisor graph. For any idempotent e ∈ R, they defined the
idempotent divisor graph Γe(R) associated with e, where V (Γe(R)) = {a ∈ R : there
exists b ∈ R with ab = e} and two vertices a and b are adjacent if ab = e.

In this article, we introduce nil clean divisor graph GN (R) associated with a finite
commutative ring R. We define the nil clean divisor graph GN (R) of a ring R by tak-
ing V (GN (R)) = {x ∈ R : x ̸= 0, ∃ y(̸= 0, ̸= x) ∈ R such that xy ∈ NC(R)} as the
vertex set and two vertices x and y are adjacent if and only if xy is a nil clean element of
R. Clearly nil clean divisor graph is a generalization of both idempotent divisor graph and
nilpotent divisor graph. The properties like girth, clique number, diameter and dominating
number etc. of GN (R) have been studied.

To start with, we recall some preliminaries about graph theory. For a graph G, the degree
of a vertex v ∈ G is the number of edges incident to v, denoted by deg(v). The neighbour-
hood of a vertex v ∈ G is the set of all vertices incident to v, denoted by Av. A graph
G is said to be connected, if for any two distinct vertices of G, there is a path in G con-
necting them. Number of edges on the shortest path between vertices x and y is called the
distance between x and y and is denoted by d(x, y). If there is no path between x and y,
then we say d(x, y) = ∞. The diameter of a graph G, denoted by diam(G), is the max-
imum of distances of each pair of distinct vertices in G. If G is not connected, then we
say diam(G) = ∞. Also girth of G is the length of the shortest cycle in G, denoted by
gr(G) and if there is no cycle in G, then we say gr(G) = ∞. A complete graph is a simple
undirected graph in which every pair of distinct vertices is connected by an edge.

A clique is a subset a of set of vertices of a graph such that its induced subgraph is
complete. A clique having n number of vertices is called an n-clique. The maximal clique
of a graph is a clique such that there is no clique with more vertices. The clique number of
a graph G is denoted by ω(G) and defined as the number of vertices in a maximal clique of
G.

2 Nil clean divisor graph

Motivated by the concepts of nilpotent divisor graph and idempotent divisor graph, we
introduce nil clean divisor graph as follows:

Definition 2.1 For a ring R, nil clean divisor graph, denoted by GN (R) is defined as a
graph with vertex set {x ∈ R : x ̸= 0, ∃ y( ̸= 0, ̸= x) ∈ R such that xy ∈ NC(R)} and
two vertices x and y are adjacent if xy ∈ NC(R).

From the above definition, we observe that nil clean divisor graph is a generalization of
nilpotent divisor graph, which is again a generalization of zero divisor graph. For any idem-
potent e ∈ R, nil clean divisor graph of R is also a generalization of Γe(R). As an example,
the nil clean divisor graph GN (Z6) is shown below:
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Theorem 2.1 The nil clean divisor graph GN (R) is complete if and only if R is a nil clean
ring.

Proof. Let GN (R) is a complete and x ∈ R. If x = 0, then x is nil clean, if x ̸= 0 then
x.1 = x is nil clean as 1 ∈ V (GN (R)). Converse is clear from the definition of nil clean
divisor graph.

If F is a finite field of order n, then clearly NC(F) = {0, 1}. Hence for any x(̸= 0) ∈ F,
x is adjacent to only x−1, provided x ̸= x−1. Hence the nil-clean divisor graph of F is as
follows:

Note that xi ̸= x−1
i and yi ̸= y−1

i , otherwise we may get some isolated point as well in
the graph.

Corollary 2.1 For a field F of order n, where n > 2. If A = {a ∈ F : a = a−1} then the
following hold.

1 Diameter of GN (F) is infinite.
2 Gr(GN (F)) = ∞ and ω(GN (F)) = 2.
3 |V (GN (F))| = n− |A| − 1.

Theorem 2.2 If R has a non trivial idempotent or a non trivial nilpotent element, then the
girth of GN (R) is 3.

Proof. If R has a non trivial idempotent e, then {0, 1, e, 1−e} ⊂ NC(R) and we get a cycle
1−e−(1−e)−1 in GN (R). Also if R has a non trivial nilpotent n, then {0, 1, n, n+1} ⊂
NC(R). In this case 1− n− (n+ 1)− 1 is a cycle in GN (R).

Theorem 2.3 If R has only trivial idempotents and trivial nilpotent, then girth of GN (R)
is infinite.

Proof. Since R has only trivial idempotents and trivial nilpotent so by Lemma 2.6 [2], R is
a field. Hence the result.
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Theorem 2.4 Let R be a ring. Then the following hold.

1 Either R is a field or GN (R) is connected.
2 diam(GN (R)) = ∞ or diam(GN (R)) ≤ 3.
3 gr(GN (R)) = ∞ or gr(GN (R)) = 3.

Proof. Suppose R is a reduced ring.
Case (I): If R has no non trivial idempotent, then R is a field.
Case (II): If R has a non trivial idempotent, say e ∈ Idem(R), then for any x, y ∈
V (GN (R)), there exist x1, y1 ∈ V (GN (R)), such that xx1, yy1 ∈ NC(R) = Idem(R).
So, we have a path x− x1e− y1(1− e)− y from x to y.

If R is not a reduced ring, then there exists n ∈ Nil(R), such that x−n−y is a path from
x to y, for any x, y ∈ V (GN (R)). Hence (1) and (2) follow from the above observations
and Figure 2.
(3) If R is reduced, then either R is a field or there exists a non trivial idempotent e ∈ R,
such that 1 − e − (1 − e) − 1 is a cycle. So, gr(GN (R)) = ∞ or gr(GN (R)) = 3. If R
is a non reduced ring, then since nilpotent graph is a subgraph of nil clean divisor graph, so
from Theorem 2.1 [9], gr(GN (R)) = 3.

Corollary 2.2 If R is not a reduced ring, then diam(GN (R)) ≤ 2.

Corollary 2.3 A ring R is a field if and only if nil clean divisor graph of R is bipartite.

Proof. ⇒ Trivial.
⇐ If nil clean divisor graph of R is bipartite then gr(GN (R)) ̸= 3. So from Theorem 2.4,
gr(GN (R)) = ∞ and hence R is a field.

Theorem 2.5 For a ring R, the following are equivalent.

1 GN (R) is a star graph.
2 R ∼= Z5.

Proof. The result follows from the fact that gr(GN (R)) = ∞ if and only if R is a field.

Theorem 2.6 For any ring R, ω(GN (R)) ≥ max{|Nil(R)|, |Idem(R)| − 1}.

Proof. From the definition of nil clean divisor graph, we observe that Nil(R) and Idem(R)
respectively induce a complete subgraph of GN (R).

Next we strudy about nil clean divisor graph of weakly nil clean ring.

Theorem 2.7 Let R be a weakly nil clean ring which is not nil clean. Then

1 ω(GN (R)) ≥ [ |R|
2 ], where [x] is the greatest integer function.

2 If |R|(> 3) is even then diam(R) = 2.

Proof. As x ∈ WNC(R) implies −x ∈ NC(R), so if |R| is even, then |NC(R)| ≥ |R|
2

and if |R| is odd, then |NC(R)| ≥ |R|+1
2 . Since R is commutative, so product of any two

nil clean element is also a nil clean element. Hence ω(GN (R)) ≥ [ |R|
2 ].

Since |R| > 3, so R is not a field and hence GN (R) is connected. As |R\{0}| is odd, so
there exists an element a ∈ R such that x ∈ NC(R)∩WNC(R). Hence for any x, y ∈ R,
x− a− y is a path in GN (R) and diam(GN (R)) = 2 as R is not a nil clean ring.
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3 Nil clean divisor graph of Z2p and Z3p, for any odd prime p

In this section we study the structures of GN (Z2p) and GN (Z3p), for any odd prime p.

Lemma 3.1 If a ∈ V (GN (Z2p)), where p is an odd prime, then the following hold.

1 If a = p, then deg(a) = 2p− 2.
2 If a ∈ {1, p− 1, p+ 1, 2p− 1}, then deg(a) = 2.
3 Otherwise deg(a) = 3

Proof. Clearly NC(Z2p) = {0, 1, p, p+ 1}.

1 If a = p, then for any y ∈ V (GN (Z2p)), either yp = p or yp = 0. Hence every element
of V (GN (Z2p)) is adjacent to p.

2 It is easy to observe that, A1 = {p, p + 1}, Ap−1 = {p, 2p − 1}, Ap+1 = {1, p} and
A2p−1 = {p− 1, p}.

3 Let a ∈ Z2p \ {0, 1, p− 1, p, p+ 1, 2p− 1}.
Case (I): Let a be an even number. If ax = 0 in Z2p, then it has two solutions 0 and p. If
ax = 1 in Z2p, then it has no solution, since gcd(2p, a) = 2 - 1. If ax = p in Z2p, then
also it has no solution, since gcd(2p, a) = 2 - p. If ax = p + 1 in Z2p, then it has two
distinct solutions x1 and x2 in Z2p, since gcd(2p, a) = 2 | p + 1. Hence we conclude
that Aa = {p, x1, x2}.
Case (II): Let a be an odd number. If ax = 0 in Z2p, then it has a unique solution x = 0.
If ax = 1 in Z2p, then it has unique odd solution x = y1 in Z2p, since gcd(2p, a) = 1 | 1.
If ax = p in Z2p, then it has unique solution x = p, since gcd(2p, a) = 1 | p. If ax =
p+1 in Z2p, then it has unique even solution x = y2 in Z2p, since gcd(2p, a) = 1 | p+1.
Hence Aa = {p, y1, y2}
From the above cases it follows deg(a) = 3.

Remark 3.1 In the proof of Lemma 3.1 (3), Case(I), since ax1 = ax2 in Z2p, so x1−x2 =
0 or p, but x1 − x2 ̸= 0 as x1 and x2 are distinct. Hence if x1 is odd, then x2 is even and if
x1 is even, then x2 is odd.

From Lemma 3.1 and Remark 3.1, for any prime p > 2, the nil clean divisor graph of Z2p

is the following:

In Figure 3, ai and bi are even numbers from Z2p \ {0, 1, p − 1, p, p + 1, 2p − 1} such
that aibi = p+ 1, for 1 ≤ i ≤ p−3

2 . Also ci = ai + p and di = bi + p, for 1 ≤ i ≤ p−3
2 .

From the above observations we conclude the following:

Theorem 3.1 The following hold for nil clean divisor graph GN (Z2p), for any odd prime
p.

1 Clique number of GN (Z2p) is 3.
2 Diameter of GN (Z2p) is 2.
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3 Girth of GN (Z2p) is 3.
4 {p} is the unique smallest dominating set for GN (Z2p), that is, dominating number of

the graph is 1.

Next we discuss about nil clean divisor graph of Z3p.

Lemma 3.2 In GN (Z3p); where p ≡ 2(mod 3), the following hold.

1 deg(3k) = 5 if 3k /∈ {p+ 1, 2p− 1}, for 1 ≤ k ≤ p− 1.
2 deg(p+ 1) = deg(2p− 1) = 4.

Proof. Here NC(Z3p) = {0, 1, p + 1, 2p}. Observe that 3k.x ≡ 1(mod 3p) and 3k.x ≡
2p(mod 3p) has no solution, as gcd(3k, 3p) = 3 does not divide 1 and 2p. The congruence
3k.x ≡ 0(mod 3p) has three incongruent solutions {0, p, 2p} in Z3p. Also 3k.x ≡ p +
1(mod 3p) has three distinct incongruent solutions in Z3p, as gcd(3k, 3p) = 3 divides p+1.

1 As x2 ≡ p+1(mod 3p), has two solutions p+1 and 2p−1, hence if 3k /∈ {p+1, 2p−1},
then deg(3k) = 6− 1 = 5, as 0 /∈ V (GN (Z3p)).

2 If 3k ∈ {p + 1, 2p − 1}, then deg(3k) = 6 − 2, as 0 /∈ V (GN (Z3p)) and we do not
consider any loop.

Lemma 3.3 In GN (Z3p), where p ≡ 2(mod 3) the following hold.

1 deg(p) = deg(2p) = 2p− 2.
2 For x ∈ {1, p− 1, 3p− 1, 2p+ 1}, deg(x) = 2.
3 For x ∈ Z3p \ L, deg(x) = 3, where L = {3k : 1 ≤ k ≤ p − 1} ∪ {1, p − 1, 2p +
1, 3p− 1, p, 2p}.

Proof. Here NC(Z3p) = {0, 1, p+ 1, 2p}.

1 Clearly p.x ≡ 1(mod 3p) and p.x ≡ p + 1(mod 3p) have no solution as gcd(3p, p)
does not divide 1 and p + 1. Also p.x ≡ 0(mod 3p) has p incongruent solutions {3k :
0 ≤ k ≤ p − 1} and p.x ≡ 2p(mod 3p) has p incongruent solutions {3k + 2 :
0 ≤ k ≤ p − 1}. Since 0 /∈ V (GN (Z3p)) and p is of the form 3i + 2, for some
0 ≤ i ≤ p − 1, hence deg(p) = 2p − 2. Now 2p.x ≡ 0(mod 3p) has p incongruent
solutions {3k : 0 ≤ k ≤ p − 1} and 2p.x ≡ 2p(mod 3p) has p incongruent solutions
{3k + 1 : 0 ≤ k ≤ p − 1}. But 2p.x ≡ 1(mod 3p) and 2p.x ≡ p + 1(mod 3p)
have no solutions. Hence deg(2p) = 2p − 2, since 2p is of the form 3i + 1, for some
1 ≤ i ≤ p− 1.

2 Since x ≡ a(mod 3p), has only one solution a, hence deg(1) = 2. Also (3p − 1).x ≡
c(mod 3p) has only one solution (3p−1)a, hence deg(3p−1) = 2, as 0 /∈ V (GN (Z3p))
and 3p − 1 ∈ U(Z3p). Equation (p − 1).x ≡ 1(mod 3p) and (2p + 1).x ≡ c(mod 3p)
have a unique solutions, where c ∈ {0, 1, 2p, p+ 1}. Since p− 1, 2p+ 1 ∈ U(Z3p), so
deg(p− 1) = deg(2p+ 1) = 2.

3 Let a ∈ Z3p \ L. As gcd(a, 3p) = 1, so a.x ≡ 0(mod 3p) has a unique solution
x = 0. Also a.x ≡ c(mod 3p), where c ∈ {1, 2p, p + 1} has a unique solution. Hence
deg(a) = 3.

From Lemma 3.2 and Lemma 3.3, for any prime p > 3 with p ≡ 2(mod 3), the nil clean
divisor graph of Z3p is the following:



152 Nil clean divisor graph

In Figure 3, {li, ki} ⊆ {3k : 1 ≤ k ≤ p − 1}, aici ≡ 1(mod 3p), bidi ≡ 1(mod 3p)

and aiki ≡ cili ≡ biki ≡ dili ≡ p+1(mod 3p), for 1 ≤ i ≤ p−3
2 . Also ai ≡ ci ≡ 1(mod 3)

and bi ≡ di ≡ 2(mod 3), for 1 ≤ i ≤ p−3
2 .

Theorem 3.2 For any pri me p, where p ≡ 2(mod 3), the following hold:

1 Girth of GN (Z3p) is 3.
2 Clique number of GN (Z3p) is 3.
3 Diameter of GN (Z3p) is 3.
4 {p, 2p} is the unique smallest dominating set for GN (Z3p), that is, dominating number

of the graph is 2.

Proof. Clearly NC(Z3p) = {0, 1, p+ 1, 2p}.

1 Since p− (p+ 1)− (2p+ 1)− p is a cycle of GN (Z3p), so girth of GN (Z3p) is 3.
2 If possible, let ω((GN (Z3p)) = 4. Then there exists A = {zi : 1 ≤ i ≤ 4} ⊂
V (GN (Z3p)) such that A forms a complete subgraph of GN (Z3p). If x ∈ Z3p\{p, 2p, 3k :
1 ≤ k ≤ p − 1}, then deg(x) ≤ 3, otherwise x is adjacent to either p or 2p, x−1 and
3i, for some 1 ≤ i ≤ p − 1. But x−1 is also adjacent to 3j, for some 1 ≤ j ≤ p − 1
such that i ̸= j. So A ⊆ {p, 2p, 3k : 1 ≤ k ≤ p − 1}. Suppose z1 = 3k, for some
1 ≤ k ≤ p−1. From Figure 3, Az1 ⊆ {p, 2p, 3i+1, 3j+2, 3s}, where 1 ≤ i, j, s ≤ p−1,
also 3s /∈ A3i+1, 3s /∈ A3j+2, 3i + 1 /∈ A3j+2, p /∈ A2p, 2p /∈ A3j+2 and p /∈ N3i+1.
Therefore zi /∈ {3k : 1 ≤ k ≤ p − 1}, a contradiction. Hence ω((GN (Z3p)) = 3, as
{p, 2p− 1, 3p− 1} forms a complete subgraph of GN (Z3p).

3 From Figure 3; 1 and 2 are connected by a path 1− (p+1)− p− 2, so by Theorem 2.4,
diam(GN (Z3p)) = 3.

4 Since every element of GN (Z3p) \ {p, 2p} is adjacent to either p or 2p. Hence proof
follows from Figure 3.

Lemma 3.4 In GN (Z3p), where p ≡ 1(mod 3), the following hold.

1 deg(3k) = 5 if 3k /∈ {p− 1, 2p+ 1}, for 1 ≤ k ≤ p− 1.
2 deg(p− 1) = deg(2p+ 1) = 4.

Proof. Proof is similar to the proof of Lemma 3.2.

Lemma 3.5 In Z3p, where p ≡ 1(mod 3), the following hold.

1 deg(p) = deg(2p) = 2p− 2.
2 For x ∈ {1, p+ 1, 3p− 1, 2p− 1}, deg(x) = 2.
3 For x ∈ Z3p \ L, deg(x) = 3, where L = {3k : 1 ≤ k ≤ p − 1} ∪ {1, p, 2p, p +
1, 2p− 1, 3p+ 1}.

Proof. Proof is similar to the proof Lemma 3.3.
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From Lemma 3.4 and Lemma 3.5, the nil clean divisor graph of Z3p, where p ≡ 1(mod 3)
is the following:

In Figure 3, {li, ki} ⊆ {3k : 1 ≤ k ≤ p − 1}, aici ≡ 1(mod 3p), bidi ≡ 1(mod 3p)

and aiki ≡ cili ≡ biki ≡ dili ≡ 2p + 1(mod 3p), for 1 ≤ i ≤ p−3
2 . Also ai ≡ ci ≡

2(mod 3) and bi ≡ di ≡ 1(mod 3), for 1 ≤ i ≤ p−3
2 . Hence we get the following theorem:

Theorem 3.3 If p ≡ 1(mod 3) then

1 Girth of GN (Z3p) is 3.
2 Clique number of GN (Z3p) is 3.
3 Diameter of GN (Z3p) is 3.
4 {p, 2p} is the unique smallest dominating set for GN (Z3p), that is, dominating number

of the graph is 2.

Proof. Since Figure 3 and Figure 3 are similar, hence the proof is similar to the proof of
Theorem 3.2.

References

1. Anderson, D. F., Livingston, P. S.: The zero-divisor graph of a commutative ring, J.
Algebra 217, 434–447, (1999).

2. Basnet D. K., Bhattacharyya J.: Nil clean graphs of rings, Algebra Colloq. 24, 481–
492, (2017).

3. Beck, I.: Coloring of commutative rings, J. Algebra 116, 208–226, (1988).
4. Diesl, A. J.: Nil clean rings, J. Algebra 383, 197–211, (2013).
5. Diestel R.: Graph Theory. Springer-Verlag, New York (1997).
6. Grimaldi R. P.: Graphs from rings, Proceedings of the 20th Southeastern Conference

on Combinatorics, Graph Theory, and Computing 71, 95-103, (1990).
7. Kimball, C. F., LaGrange J. D.: The idempotent-divisor graphs of a commutative ring,

Comm. Algebra 46, 3899–3912, (2018).
8. Kosan, M., Zhou, Y.: On weakly nil-clean rings, Front. Math. China 11, 949–955,

(2016).
9. Li, A., Li, Q.: A kind of graph structure on von-Neumann regular rings, Int. J. Algebra

4, 291–302, (2010).


