Nil clean divisor graph

A. Sharma * . D. K. Basnet

Received: 15.04.2020 / Revised: 28.09.2020 / Accepted: 27.11.2020

Abstract

In this article, we introduce a new graph theoretic structure associated with a finite commutative ring, called nil clean divisor graph. For a ring R, nil clean divisor graph is denoted by $G_{N}(R)$, where the vertex set is $\{x \in R: x \neq 0, \exists y(\neq 0, \neq x) \in R$ such that $x y$ is nil clean $\}$, two vertices x and y are adjacent if $x y$ is a nil clean element. We prove some interesting results of nil clean divisor graph of a ring.

Keywords. nil clean ring, weakly nil clean ring, nil clean divisor graph, idempotent divisor graph.
Mathematics Subject Classification (2010): 16N40, 16U99

1 Introduction

In this article, rings are finite commutative rings with non zero identity. Diesl [4], introduced the concept of nil clean ring as a subclass of clean ring in 2013. He defined that an element x of a ring R to be a nil clean element if it can be written as a sum of an idempotent element and a nilpotent element of $R . R$ is called a nil clean ring if every element of R is nil clean. Also in 2015, Kosan and Zhou [8], developed the concept of weakly nil clean ring as a generalization of nil clean ring. An element x of a ring R is said to be a weakly nil clean if $x=n+e$ or $x=n-e$, where n is a nilpotent element and e is an idempotent element of R. The set of nilpotent elements, set of unit elements, nil clean elements and weakly nil clean elements of a ring R are denoted by $N i l(R), U(R), N C(R)$ and $W N C(R)$ respectively. By graph, we consider simple undirected graph. For a graph G, the set of edges and the set of vertices are denoted by $E(G)$ and $V(G)$ respectively. The concept of zerodivisor graph of a commutative ring was introduced by Beck [3] to discuss the coloring of rings. In 1999, Anderson and Livingston [1], introduced zero divisor graph $\Gamma(R)$ of a commutative ring R. They defined, the vertex set of $\Gamma(R)$ to be the set of all non-zero zero

[^0][^1]divisors of R and two vertices x and y are adjacent if $x y=0$. Li et al.[9], developed a kind of graph structure of a ring R, called nilpotent divisor graph of R, whose vertex set is $\{x \in R: x \neq 0, \exists y(\neq 0) \in R$ such that $x y \in N i l(R)\}$ and two vertices x and y are adjacent if $x y \in N i l(R)$. In 2018, Kimball and LaGrange [7], generalized the concept of zero divisor graph to idempotent divisor graph. For any idempotent $e \in R$, they defined the idempotent divisor graph $\Gamma_{e}(R)$ associated with e, where $V\left(\Gamma_{e}(R)\right)=\{a \in R$: there exists $b \in R$ with $a b=e\}$ and two vertices a and b are adjacent if $a b=e$.

In this article, we introduce nil clean divisor graph $G_{N}(R)$ associated with a finite commutative ring R. We define the nil clean divisor graph $G_{N}(R)$ of a ring R by taking $V\left(G_{N}(R)\right)=\{x \in R: x \neq 0, \exists y(\neq 0, \neq x) \in R$ such that $x y \in N C(R)\}$ as the vertex set and two vertices x and y are adjacent if and only if $x y$ is a nil clean element of R. Clearly nil clean divisor graph is a generalization of both idempotent divisor graph and nilpotent divisor graph. The properties like girth, clique number, diameter and dominating number etc. of $G_{N}(R)$ have been studied.

To start with, we recall some preliminaries about graph theory. For a graph G, the degree of a vertex $v \in G$ is the number of edges incident to v, denoted by $\operatorname{deg}(v)$. The neighbourhood of a vertex $v \in G$ is the set of all vertices incident to v, denoted by A_{v}. A graph G is said to be connected, if for any two distinct vertices of G, there is a path in G connecting them. Number of edges on the shortest path between vertices x and y is called the distance between x and y and is denoted by $d(x, y)$. If there is no path between x and y, then we say $d(x, y)=\infty$. The diameter of a graph G, denoted by $\operatorname{diam}(G)$, is the maximum of distances of each pair of distinct vertices in G. If G is not connected, then we say $\operatorname{diam}(G)=\infty$. Also girth of G is the length of the shortest cycle in G, denoted by $\operatorname{gr}(G)$ and if there is no cycle in G, then we say $\operatorname{gr}(G)=\infty$. A complete graph is a simple undirected graph in which every pair of distinct vertices is connected by an edge.

A clique is a subset a of set of vertices of a graph such that its induced subgraph is complete. A clique having n number of vertices is called an n-clique. The maximal clique of a graph is a clique such that there is no clique with more vertices. The clique number of a graph G is denoted by $\omega(G)$ and defined as the number of vertices in a maximal clique of G.

2 Nil clean divisor graph

Motivated by the concepts of nilpotent divisor graph and idempotent divisor graph, we introduce nil clean divisor graph as follows:

Definition 2.1 For a ring R, nil clean divisor graph, denoted by $G_{N}(R)$ is defined as a graph with vertex set $\{x \in R: x \neq 0, \exists y(\neq 0, \neq x) \in R$ such that $x y \in N C(R)\}$ and two vertices x and y are adjacent if $x y \in N C(R)$.

From the above definition, we observe that nil clean divisor graph is a generalization of nilpotent divisor graph, which is again a generalization of zero divisor graph. For any idempotent $e \in R$, nil clean divisor graph of R is also a generalization of $\Gamma_{e}(R)$. As an example, the nil clean divisor graph $G_{N}\left(\mathbb{Z}_{6}\right)$ is shown below:

Figure 1. Nil clean divisor graph of \mathbb{Z}_{6}.

Theorem 2.1 The nil clean divisor graph $G_{N}(R)$ is complete if and only if R is a nil clean ring.

Proof. Let $G_{N}(R)$ is a complete and $x \in R$. If $x=0$, then x is nil clean, if $x \neq 0$ then $x .1=x$ is nil clean as $1 \in V\left(G_{N}(R)\right)$. Converse is clear from the definition of nil clean divisor graph.

If \mathbb{F} is a finite field of order n, then clearly $N C(\mathbb{F})=\{0,1\}$. Hence for any $x(\neq 0) \in \mathbb{F}$, x is adjacent to only x^{-1}, provided $x \neq x^{-1}$. Hence the nil-clean divisor graph of \mathbb{F} is as follows:

Figure 2. Nil clean divisor graph of \mathbb{F}.
Note that $x_{i} \neq x_{i}^{-1}$ and $y_{i} \neq y_{i}^{-1}$, otherwise we may get some isolated point as well in the graph.
Corollary 2.1 For a field \mathbb{F} of order n, where $n>2$. If $A=\left\{a \in \mathbb{F}: a=a^{-1}\right\}$ then the following hold.
1 Diameter of $G_{N}(\mathbb{F})$ is infinite.
$2 \operatorname{Gr}\left(G_{N}(\mathbb{F})\right)=\infty$ and $\omega\left(G_{N}(\mathbb{F})\right)=2$.
$3\left|V\left(G_{N}(\mathbb{F})\right)\right|=n-|A|-1$.
Theorem 2.2 If R has a non trivial idempotent or a non trivial nilpotent element, then the girth of $G_{N}(R)$ is 3 .

Proof. If R has a non trivial idempotent e, then $\{0,1, e, 1-e\} \subset N C(R)$ and we get a cycle $1-e-(1-e)-1$ in $G_{N}(R)$. Also if R has a non trivial nilpotent n, then $\{0,1, n, n+1\} \subset$ $N C(R)$. In this case $1-n-(n+1)-1$ is a cycle in $G_{N}(R)$.

Theorem 2.3 If R has only trivial idempotents and trivial nilpotent, then girth of $G_{N}(R)$ is infinite.

Proof. Since R has only trivial idempotents and trivial nilpotent so by Lemma 2.6 [2], R is a field. Hence the result.

Theorem 2.4 Let R be a ring. Then the following hold.
1 Either R is a field or $G_{N}(R)$ is connected.
$2 \operatorname{diam}\left(G_{N}(R)\right)=\infty$ or $\operatorname{diam}\left(G_{N}(R)\right) \leq 3$.
$3 \operatorname{gr}\left(G_{N}(R)\right)=\infty \operatorname{or} \operatorname{gr}\left(G_{N}(R)\right)=3$ 。
Proof. Suppose R is a reduced ring.
Case (I): If R has no non trivial idempotent, then R is a field.
Case (II): If R has a non trivial idempotent, say $e \in \operatorname{Idem}(R)$, then for any $x, y \in$ $V\left(G_{N}(R)\right)$, there exist $x_{1}, y_{1} \in V\left(G_{N}(R)\right)$, such that $x x_{1}, y y_{1} \in N C(R)=\operatorname{Idem}(R)$. So, we have a path $x-x_{1} e-y_{1}(1-e)-y$ from x to y.

If R is not a reduced ring, then there exists $n \in \operatorname{Nil}(R)$, such that $x-n-y$ is a path from x to y, for any $x, y \in V\left(G_{N}(R)\right)$. Hence (1) and (2) follow from the above observations and Figure 2.
(3) If R is reduced, then either R is a field or there exists a non trivial idempotent $e \in R$, such that $1-e-(1-e)-1$ is a cycle. So, $g r\left(G_{N}(R)\right)=\infty$ or $g r\left(G_{N}(R)\right)=3$. If R is a non reduced ring, then since nilpotent graph is a subgraph of nil clean divisor graph, so from Theorem 2.1 [9], $\operatorname{gr}\left(G_{N}(R)\right)=3$.

Corollary 2.2 If R is not a reduced ring, then $\operatorname{diam}\left(G_{N}(R)\right) \leq 2$.
Corollary 2.3 A ring R is a field if and only if nil clean divisor graph of R is bipartite.
Proof. \Rightarrow Trivial.
\Leftarrow If nil clean divisor graph of R is bipartite then $\operatorname{gr}\left(G_{N}(R)\right) \neq 3$. So from Theorem 2.4, $\operatorname{gr}\left(G_{N}(R)\right)=\infty$ and hence R is a field.

Theorem 2.5 For a ring R, the following are equivalent.
$1 G_{N}(R)$ is a star graph.
$2 R \cong \mathbb{Z}_{5}$.
Proof. The result follows from the fact that $\operatorname{gr}\left(G_{N}(R)\right)=\infty$ if and only if R is a field.
Theorem 2.6 For any ring $R, \omega\left(G_{N}(R)\right) \geq \max \{|N i l(R)|,|\operatorname{Idem}(R)|-1\}$.
Proof. From the definition of nil clean divisor graph, we observe that $\operatorname{Nil}(R)$ and $\operatorname{Idem}(R)$ respectively induce a complete subgraph of $G_{N}(R)$.

Next we strudy about nil clean divisor graph of weakly nil clean ring.
Theorem 2.7 Let R be a weakly nil clean ring which is not nil clean. Then
$1 \omega\left(G_{N}(R)\right) \geq\left[\frac{|R|}{2}\right]$, where $[x]$ is the greatest integer function.
2 If $|R|(>3)$ is even then $\operatorname{diam}(R)=2$.
Proof. As $x \in W N C(R)$ implies $-x \in N C(R)$, so if $|R|$ is even, then $|N C(R)| \geq \frac{|R|}{2}$ and if $|R|$ is odd, then $|N C(R)| \geq \frac{|R|+1}{2}$. Since R is commutative, so product of any two nil clean element is also a nil clean element. Hence $\omega\left(G_{N}(R)\right) \geq\left[\frac{|R|}{2}\right]$.

Since $|R|>3$, so R is not a field and hence $G_{N}(R)$ is connected. As $|R \backslash\{0\}|$ is odd, so there exists an element $a \in R$ such that $x \in N C(R) \cap W N C(R)$. Hence for any $x, y \in R$, $x-a-y$ is a path in $G_{N}(R)$ and $\operatorname{diam}\left(G_{N}(R)\right)=2$ as R is not a nil clean ring.

3 Nil clean divisor graph of $\mathbb{Z}_{2 p}$ and $\mathbb{Z}_{3 p}$, for any odd prime p

In this section we study the structures of $G_{N}\left(\mathbb{Z}_{2 p}\right)$ and $G_{N}\left(\mathbb{Z}_{3 p}\right)$, for any odd prime p.
Lemma 3.1 If $a \in V\left(G_{N}\left(\mathbb{Z}_{2 p}\right)\right)$, where p is an odd prime, then the following hold.
1 If $a=p$, then $\operatorname{deg}(a)=2 p-2$.
2 If $a \in\{1, p-1, p+1,2 p-1\}$, then $\operatorname{deg}(a)=2$.
3 Otherwise $\operatorname{deg}(a)=3$
Proof. Clearly $N C\left(\mathbb{Z}_{2 p}\right)=\{0,1, p, p+1\}$.
1 If $a=p$, then for any $y \in V\left(G_{N}\left(\mathbb{Z}_{2 p}\right)\right)$, either $y p=p$ or $y p=0$. Hence every element of $V\left(G_{N}\left(\mathbb{Z}_{2 p}\right)\right)$ is adjacent to p.
2 It is easy to observe that, $A_{1}=\{p, p+1\}, A_{p-1}=\{p, 2 p-1\}, A_{p+1}=\{1, p\}$ and $A_{2 p-1}=\{p-1, p\}$.
3 Let $a \in \mathbb{Z}_{2 p} \backslash\{0,1, p-1, p, p+1,2 p-1\}$.
Case (I): Let a be an even number. If $a x=0$ in $\mathbb{Z}_{2 p}$, then it has two solutions 0 and p. If $a x=1$ in $\mathbb{Z}_{2 p}$, then it has no solution, since $g c d(2 p, a)=2 \nmid 1$. If $a x=p$ in $\mathbb{Z}_{2 p}$, then also it has no solution, since $\operatorname{gcd}(2 p, a)=2 \nmid p$. If $a x=p+1$ in $\mathbb{Z}_{2 p}$, then it has two distinct solutions x_{1} and x_{2} in $\mathbb{Z}_{2 p}$, since $\operatorname{gcd}(2 p, a)=2 \mid p+1$. Hence we conclude that $A_{a}=\left\{p, x_{1}, x_{2}\right\}$.
Case (II): Let a be an odd number. If $a x=0$ in $\mathbb{Z}_{2 p}$, then it has a unique solution $x=0$. If $a x=1$ in $\mathbb{Z}_{2 p}$, then it has unique odd solution $x=y_{1}$ in $\mathbb{Z}_{2 p}$, since $g c d(2 p, a)=1 \mid 1$. If $a x=p$ in $\mathbb{Z}_{2 p}$, then it has unique solution $x=p$, since $g c d(2 p, a)=1 \mid p$. If $a x=$ $p+1$ in $\mathbb{Z}_{2 p}$, then it has unique even solution $x=y_{2}$ in $\mathbb{Z}_{2 p}$, since $g c d(2 p, a)=1 \mid p+1$. Hence $A_{a}=\left\{p, y_{1}, y_{2}\right\}$
From the above cases it follows $\operatorname{deg}(a)=3$.
Remark 3.1 In the proof of Lemma 3.1 (3), Case(I), since $a x_{1}=a x_{2}$ in $\mathbb{Z}_{2 p}$, so $x_{1}-x_{2}=$ 0 or p, but $x_{1}-x_{2} \neq 0$ as x_{1} and x_{2} are distinct. Hence if x_{1} is odd, then x_{2} is even and if x_{1} is even, then x_{2} is odd.

From Lemma 3.1 and Remark 3.1, for any prime $p>2$, the nil clean divisor graph of $\mathbb{Z}_{2 p}$ is the following:

Figure 3. Nil clean divisor graph of $\mathbb{Z}_{2 p}$.
In Figure 3, a_{i} and b_{i} are even numbers from $\mathbb{Z}_{2 p} \backslash\{0,1, p-1, p, p+1,2 p-1\}$ such that $a_{i} b_{i}=p+1$, for $1 \leq i \leq \frac{p-3}{2}$. Also $c_{i}=a_{i}+p$ and $d_{i}=b_{i}+p$, for $1 \leq i \leq \frac{p-3}{2}$. From the above observations we conclude the following:
Theorem 3.1 The following hold for nil clean divisor graph $G_{N}\left(\mathbb{Z}_{2 p}\right)$, for any odd prime p.

1 Clique number of $G_{N}\left(\mathbb{Z}_{2 p}\right)$ is 3 .
2 Diameter of $G_{N}\left(\mathbb{Z}_{2 p}\right)$ is 2 .

3 Girth of $G_{N}\left(\mathbb{Z}_{2 p}\right)$ is 3.
$4\{p\}$ is the unique smallest dominating set for $G_{N}\left(\mathbb{Z}_{2 p}\right)$, that is, dominating number of the graph is 1 .

Next we discuss about nil clean divisor graph of $\mathbb{Z}_{3 p}$.
Lemma 3.2 In $G_{N}\left(\mathbb{Z}_{3 p}\right)$; where $p \equiv 2(\bmod 3)$, the following hold.
$1 \operatorname{deg}(3 k)=5$ if $3 k \notin\{p+1,2 p-1\}$, for $1 \leq k \leq p-1$.
$2 \operatorname{deg}(p+1)=\operatorname{deg}(2 p-1)=4$.
Proof. Here $N C\left(\mathbb{Z}_{3 p}\right)=\{0,1, p+1,2 p\}$. Observe that $3 k \cdot x \equiv 1(\bmod 3 p)$ and $3 k \cdot x \equiv$ $2 p(\bmod 3 p)$ has no solution, as $g c d(3 k, 3 p)=3$ does not divide 1 and $2 p$. The congruence $3 k . x \equiv 0(\bmod 3 p)$ has three incongruent solutions $\{0, p, 2 p\}$ in $\mathbb{Z}_{3 p}$. Also $3 k \cdot x \equiv p+$ $1(\bmod 3 p)$ has three distinct incongruent solutions in $\mathbb{Z}_{3 p}$, as $g c d(3 k, 3 p)=3$ divides $p+1$.

1 As $x^{2} \equiv p+1(\bmod 3 p)$, has two solutions $p+1$ and $2 p-1$, hence if $3 k \notin\{p+1,2 p-1\}$, then $\operatorname{deg}(3 k)=6-1=5$, as $0 \notin V\left(G_{N}\left(\mathbb{Z}_{3 p}\right)\right)$.
2 If $3 k \in\{p+1,2 p-1\}$, then $\operatorname{deg}(3 k)=6-2$, as $0 \notin V\left(G_{N}\left(\mathbb{Z}_{3 p}\right)\right)$ and we do not consider any loop.

Lemma 3.3 In $G_{N}\left(\mathbb{Z}_{3 p}\right)$, where $p \equiv 2(\bmod 3)$ the following hold.

```
\(1 \operatorname{deg}(p)=\operatorname{deg}(2 p)=2 p-2\).
2 For \(x \in\{1, p-1,3 p-1,2 p+1\}, \operatorname{deg}(x)=2\).
3 For \(x \in \mathbb{Z}_{3 p} \backslash L\), \(\operatorname{deg}(x)=3\), where \(L=\{3 k: 1 \leq k \leq p-1\} \cup\{1, p-1,2 p+\)
    \(1,3 p-1, p, 2 p\}\).
```

Proof. Here $N C\left(\mathbb{Z}_{3 p}\right)=\{0,1, p+1,2 p\}$.
1 Clearly $p \cdot x \equiv 1(\bmod 3 p)$ and $p \cdot x \equiv p+1(\bmod 3 p)$ have no solution as $\operatorname{gcd}(3 p, p)$ does not divide 1 and $p+1$. Also $p \cdot x \equiv 0(\bmod 3 p)$ has p incongruent solutions $\{3 k$: $0 \leq k \leq p-1\}$ and $p \cdot x \equiv 2 p(\bmod 3 p)$ has p incongruent solutions $\{3 k+2$: $0 \leq k \leq p-1\}$. Since $0 \notin V\left(G_{N}\left(\mathbb{Z}_{3 p}\right)\right)$ and p is of the form $3 i+2$, for some $0 \leq i \leq p-1$, hence $\operatorname{deg}(p)=2 p-2$. Now $2 p . x \equiv 0(\bmod 3 p)$ has p incongruent solutions $\{3 k: 0 \leq k \leq p-1\}$ and $2 p . x \equiv 2 p(\bmod 3 p)$ has p incongruent solutions $\{3 k+1: 0 \leq k \leq p-1\}$. But $2 p \cdot x \equiv 1(\bmod 3 p)$ and $2 p \cdot x \equiv p+1(\bmod 3 p)$ have no solutions. Hence $\operatorname{deg}(2 p)=2 p-2$, since $2 p$ is of the form $3 i+1$, for some $1 \leq i \leq p-1$.
2 Since $x \equiv a(\bmod 3 p)$, has only one solution a, hence $\operatorname{deg}(1)=2$. Also $(3 p-1) \cdot x \equiv$ $c(\bmod 3 p)$ has only one solution $(3 p-1) a$, hence $\operatorname{deg}(3 p-1)=2$, as $0 \notin V\left(G_{N}\left(\mathbb{Z}_{3 p}\right)\right)$ and $3 p-1 \in U\left(\mathbb{Z}_{3 p}\right)$. Equation $(p-1) \cdot x \equiv 1(\bmod 3 p)$ and $(2 p+1) \cdot x \equiv c(\bmod 3 p)$ have a unique solutions, where $c \in\{0,1,2 p, p+1\}$. Since $p-1,2 p+1 \in U\left(\mathbb{Z}_{3 p}\right)$, so $\operatorname{deg}(p-1)=\operatorname{deg}(2 p+1)=2$.
3 Let $a \in \mathbb{Z}_{3 p} \backslash L$. As $\operatorname{gcd}(a, 3 p)=1$, so $a . x \equiv 0(\bmod 3 p)$ has a unique solution $x=0$. Also $a \cdot x \equiv c(\bmod 3 p)$, where $c \in\{1,2 p, p+1\}$ has a unique solution. Hence $\operatorname{deg}(a)=3$.

From Lemma 3.2 and Lemma 3.3, for any prime $p>3$ with $p \equiv 2(\bmod 3)$, the nil clean divisor graph of $\mathbb{Z}_{3 p}$ is the following:

Figure 4. Nil clean divisor graph of $\mathbb{Z}_{3 p}$, where $p \equiv 2(\bmod 3)$.
In Figure $3,\left\{l_{i}, k_{i}\right\} \subseteq\{3 k: 1 \leq k \leq p-1\}, a_{i} c_{i} \equiv 1(\bmod 3 p), b_{i} d_{i} \equiv 1(\bmod 3 p)$ and $a_{i} k_{i} \equiv c_{i} l_{i} \equiv b_{i} k_{i} \equiv d_{i} l_{i} \equiv p+1(\bmod 3 p)$, for $1 \leq i \leq \frac{p-3}{2}$. Also $a_{i} \equiv c_{i} \equiv 1(\bmod 3)$ and $b_{i} \equiv d_{i} \equiv 2(\bmod 3)$, for $1 \leq i \leq \frac{p-3}{2}$.
Theorem 3.2 For any pri me p, where $p \equiv 2(\bmod 3)$, the following hold:
1 Girth of $G_{N}\left(\mathbb{Z}_{3 p}\right)$ is 3 .
2 Clique number of $G_{N}\left(\mathbb{Z}_{3 p}\right)$ is 3 .
3 Diameter of $G_{N}\left(\mathbb{Z}_{3 p}\right)$ is 3 .
$4\{p, 2 p\}$ is the unique smallest dominating set for $G_{N}\left(\mathbb{Z}_{3 p}\right)$, that is, dominating number of the graph is 2 .

Proof. Clearly $N C\left(\mathbb{Z}_{3 p}\right)=\{0,1, p+1,2 p\}$.
1 Since $p-(p+1)-(2 p+1)-p$ is a cycle of $G_{N}\left(\mathbb{Z}_{3 p}\right)$, so girth of $G_{N}\left(\mathbb{Z}_{3 p}\right)$ is 3 .
2 If possible, let $\omega\left(\left(G_{N}\left(\mathbb{Z}_{3 p}\right)\right)=4\right.$. Then there exists $A=\left\{z_{i}: 1 \leq i \leq 4\right\} \subset$ $V\left(G_{N}\left(\mathbb{Z}_{3 p}\right)\right)$ such that A forms a complete subgraph of $G_{N}\left(\mathbb{Z}_{3 p}\right)$. If $x \in \mathbb{Z}_{3 p} \backslash\{p, 2 p, 3 k:$ $1 \leq k \leq p-1\}$, then $\operatorname{deg}(x) \leq 3$, otherwise x is adjacent to either p or $2 p, x^{-1}$ and $3 i$, for some $1 \leq i \leq p-1$. But x^{-1} is also adjacent to $3 j$, for some $1 \leq j \leq p-1$ such that $i \neq j$. So $A \subseteq\{p, 2 p, 3 k: 1 \leq k \leq p-1\}$. Suppose $z_{1}=3 k$, for some $1 \leq k \leq p-1$. From Figure $3, A_{z_{1}} \subseteq\{p, 2 p, 3 i+1,3 j+2,3 s\}$, where $1 \leq i, j, s \leq p-1$, also $3 s \notin A_{3 i+1}, 3 s \notin A_{3 j+2}, 3 i+1 \notin A_{3 j+2}, p \notin A_{2 p}, 2 p \notin A_{3 j+2}$ and $p \notin N_{3 i+1}$. Therefore $z_{i} \notin\{3 k: 1 \leq k \leq p-1\}$, a contradiction. Hence $\omega\left(\left(G_{N}\left(\mathbb{Z}_{3 p}\right)\right)=3\right.$, as $\{p, 2 p-1,3 p-1\}$ forms a complete subgraph of $G_{N}\left(\mathbb{Z}_{3 p}\right)$.
3 From Figure 3; 1 and 2 are connected by a path $1-(p+1)-p-2$, so by Theorem 2.4, $\operatorname{diam}\left(G_{N}\left(\mathbb{Z}_{3 p}\right)\right)=3$.
4 Since every element of $G_{N}\left(\mathbb{Z}_{3 p}\right) \backslash\{p, 2 p\}$ is adjacent to either p or $2 p$. Hence proof follows from Figure 3.

Lemma 3.4 In $G_{N}\left(\mathbb{Z}_{3 p}\right)$, where $p \equiv 1(\bmod 3)$, the following hold.
$1 \operatorname{deg}(3 k)=5$ if $3 k \notin\{p-1,2 p+1\}$, for $1 \leq k \leq p-1$.
$2 \operatorname{deg}(p-1)=\operatorname{deg}(2 p+1)=4$.
Proof. Proof is similar to the proof of Lemma 3.2.
Lemma 3.5 In $\mathbb{Z}_{3 p}$, where $p \equiv 1(\bmod 3)$, the following hold.
$1 \operatorname{deg}(p)=\operatorname{deg}(2 p)=2 p-2$.
2 For $x \in\{1, p+1,3 p-1,2 p-1\}, \operatorname{deg}(x)=2$.
3 For $x \in \mathbb{Z}_{3 p} \backslash L$, $\operatorname{deg}(x)=3$, where $L=\{3 k: 1 \leq k \leq p-1\} \cup\{1, p, 2 p, p+$ $1,2 p-1,3 p+1\}$.
Proof. Proof is similar to the proof Lemma 3.3.

From Lemma 3.4 and Lemma 3.5, the nil clean divisor graph of $\mathbb{Z}_{3 p}$, where $p \equiv 1(\bmod 3)$ is the following:

Figure 5. Nil clean divisor graph of $\mathbb{Z}_{3 p}$, where $p \equiv 1(\bmod 3)$.
In Figure $3,\left\{l_{i}, k_{i}\right\} \subseteq\{3 k: 1 \leq k \leq p-1\}, a_{i} c_{i} \equiv 1(\bmod 3 p), b_{i} d_{i} \equiv 1(\bmod 3 p)$ and $a_{i} k_{i} \equiv c_{i} l_{i} \equiv b_{i} k_{i} \equiv d_{i} l_{i} \equiv 2 p+1(\bmod 3 p)$, for $1 \leq i \leq \frac{p-3}{2}$. Also $a_{i} \equiv c_{i} \equiv$ $2(\bmod 3)$ and $b_{i} \equiv d_{i} \equiv 1(\bmod 3)$, for $1 \leq i \leq \frac{p-3}{2}$. Hence we get the following theorem:

Theorem 3.3 If $p \equiv 1(\bmod 3)$ then
1 Girth of $G_{N}\left(\mathbb{Z}_{3 p}\right)$ is 3 .
2 Clique number of $G_{N}\left(\mathbb{Z}_{3 p}\right)$ is 3 .
3 Diameter of $G_{N}\left(\mathbb{Z}_{3 p}\right)$ is 3 .
$4\{p, 2 p\}$ is the unique smallest dominating set for $G_{N}\left(\mathbb{Z}_{3 p}\right)$, that is, dominating number of the graph is 2 .

Proof. Since Figure 3 and Figure 3 are similar, hence the proof is similar to the proof of Theorem 3.2.

References

1. Anderson, D. F., Livingston, P. S.: The zero-divisor graph of a commutative ring, J. Algebra 217, 434-447, (1999).
2. Basnet D. K., Bhattacharyya J.: Nil clean graphs of rings, Algebra Colloq. 24, 481492, (2017).
3. Beck, I.: Coloring of commutative rings, J. Algebra 116, 208-226, (1988).
4. Diesl, A. J.: Nil clean rings, J. Algebra 383, 197-211, (2013).
5. Diestel R.: Graph Theory. Springer-Verlag, New York (1997).
6. Grimaldi R. P.: Graphs from rings, Proceedings of the 20th Southeastern Conference on Combinatorics, Graph Theory, and Computing 71, 95-103, (1990).
7. Kimball, C. F., LaGrange J. D.: The idempotent-divisor graphs of a commutative ring, Comm. Algebra 46, 3899-3912, (2018).
8. Kosan, M., Zhou, Y.: On weakly nil-clean rings, Front. Math. China 11, 949-955, (2016).
9. Li, A., Li, Q.: A kind of graph structure on von-Neumann regular rings, Int. J. Algebra 4, 291-302, (2010).

[^0]: * Corresponding author

 The first Author was supported by Government of India under DST(Department of Science and Technology), DST-INSPIRE registration no IF160671.

[^1]: A. Sharma

 Department of Mathematical Sciences, Tezpur University, Napaam, Sonitpur, Assam, India, 784028
 E-mail: ajaybimsharma@gmail.com
 D. K. Basnet

 Department of Mathematical Sciences, Tezpur University, Napaam, Sonitpur, Assam, India, 784028
 E-mail: dbasnet@tezu.ernet.in

