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Nil clean divisor graph
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Abstract. In this article, we introduce a new graph theoretic structure associated with a finite commu-
tative ring, called nil clean divisor graph. For a ring R, nil clean divisor graph is denoted by G (R),
where the vertex setis {x € R : © # 0, Jy(# 0,# x) € R such that xy is nil clean}, two vertices x and
y are adjacent if xy is a nil clean element. We prove some interesting results of nil clean divisor graph of
a ring.
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1 Introduction

In this article, rings are finite commutative rings with non zero identity. Diesl [4], intro-
duced the concept of nil clean ring as a subclass of clean ring in 2013. He defined that an
element x of aring R to be a nil clean element if it can be written as a sum of an idempotent
element and a nilpotent element of R. R is called a nil clean ring if every element of R is nil
clean. Also in 2015, Kosan and Zhou [8], developed the concept of weakly nil clean ring as
a generalization of nil clean ring. An element = of a ring R is said to be a weakly nil clean
if xt =n+ eorx =n — e, where n is a nilpotent element and e is an idempotent element
of R. The set of nilpotent elements, set of unit elements, nil clean elements and weakly
nil clean elements of a ring R are denoted by Nil(R), U(R), NC(R) and WNC(R) re-
spectively. By graph, we consider simple undirected graph. For a graph G, the set of edges
and the set of vertices are denoted by E(G) and V (G) respectively. The concept of zero-
divisor graph of a commutative ring was introduced by Beck [3] to discuss the coloring
of rings. In 1999, Anderson and Livingston [1], introduced zero divisor graph I'(R) of a
commutative ring R. They defined, the vertex set of I'(R) to be the set of all non-zero zero
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divisors of R and two vertices x and y are adjacent if xy = 0. Li et al.[9], developed a
kind of graph structure of a ring R, called nilpotent divisor graph of R, whose vertex set is
{r € R: x+#0,3y(# 0) € R such that xzy € Nil(R)} and two vertices = and y are
adjacent if zy € Nil(R). In 2018, Kimball and LaGrange [7], generalized the concept of
zero divisor graph to idempotent divisor graph. For any idempotent e € R, they defined the
idempotent divisor graph I.(R) associated with e, where V(I.(R)) = {a € R : there
exists b € R with ab = e} and two vertices a and b are adjacent if ab = e.

In this article, we introduce nil clean divisor graph Gy (R) associated with a finite
commutative ring R. We define the nil clean divisor graph G (R) of a ring R by tak-
ing V(Gy(R)) ={z € R : © #0,3y(# 0,# x) € Rsuchthat zy € NC(R)} as the
vertex set and two vertices x and y are adjacent if and only if zy is a nil clean element of
R. Clearly nil clean divisor graph is a generalization of both idempotent divisor graph and
nilpotent divisor graph. The properties like girth, clique number, diameter and dominating
number etc. of G (R) have been studied.

To start with, we recall some preliminaries about graph theory. For a graph G, the degree
of a vertex v € G is the number of edges incident to v, denoted by deg(v). The neighbour-
hood of a vertex v € G is the set of all vertices incident to v, denoted by A,. A graph
( is said to be connected, if for any two distinct vertices of G, there is a path in G con-
necting them. Number of edges on the shortest path between vertices = and y is called the
distance between x and y and is denoted by d(z,y). If there is no path between = and y,
then we say d(z,y) = oco. The diameter of a graph G, denoted by diam(G), is the max-
imum of distances of each pair of distinct vertices in G. If G is not connected, then we
say diam(G) = oo. Also girth of G is the length of the shortest cycle in G, denoted by
gr(G) and if there is no cycle in G, then we say gr(G) = co. A complete graph is a simple
undirected graph in which every pair of distinct vertices is connected by an edge.

A clique is a subset a of set of vertices of a graph such that its induced subgraph is
complete. A clique having n number of vertices is called an n-clique. The maximal clique
of a graph is a clique such that there is no clique with more vertices. The clique number of
a graph G is denoted by w(G) and defined as the number of vertices in a maximal clique of

2 Nil clean divisor graph

Motivated by the concepts of nilpotent divisor graph and idempotent divisor graph, we
introduce nil clean divisor graph as follows:

Definition 2.1 For a ring R, nil clean divisor graph, denoted by G (R) is defined as a
graph with vertex set {x € R : x # 0, 3y(# 0,# =) € R such that vy € NC(R)} and
two vertices x and y are adjacent if vy € NC(R).

From the above definition, we observe that nil clean divisor graph is a generalization of
nilpotent divisor graph, which is again a generalization of zero divisor graph. For any idem-
potent e € R, nil clean divisor graph of R is also a generalization of I, (R). As an example,
the nil clean divisor graph G y(Zg) is shown below:
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Fraure 1. Nil clean divisor graph of Zg.

Theorem 2.1 The nil clean divisor graph G n(R) is complete if and only if R is a nil clean
ring.

Proof. Let G (R) is a complete and x € R. If z = 0, then z is nil clean, if x # 0 then
xz.1 = zisnil clean as 1 € V(Gy(R)). Converse is clear from the definition of nil clean
divisor graph.

If F is a finite field of order n, then clearly NC(IF) = {0, 1}. Hence for any z:(# 0) € F,
 is adjacent to only !, provided = # x—'. Hence the nil-clean divisor graph of F is as
follows:
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Fraure 2. Nil clean divisor graph of F.

Note that z; # x; Land y; # Ui 1 otherwise we may get some isolated point as well in
the graph.

Corollary 2.1 For a field F of order n, wheren > 2. If A={a € F : a = a~'} then the
following hold.

1 Diameter of G (F) is infinite.
2 Gr(GN(F)) = o0 and w(G N (F)) = 2.
3 V(GN(F))| =n—|A] - 1.

Theorem 2.2 If R has a non trivial idempotent or a non trivial nilpotent element, then the
girthof GN(R) is 3.

Proof. If R has anon trivial idempotent e, then {0, 1,e,1—e} C NC(R) and we get acycle
l—e—(1—e)—1in Gy (R). Alsoif R has a non trivial nilpotent n, then {0,1,n,n+1} C
NC(R).Inthiscase 1 —n — (n+ 1) — lisacyclein Gy (R).

Theorem 2.3 [f R has only trivial idempotents and trivial nilpotent, then girth of G n(R)
is infinite.

Proof. Since R has only trivial idempotents and trivial nilpotent so by Lemma 2.6 [2], R is
a field. Hence the result.
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Theorem 2.4 Let R be a ring. Then the following hold.

1 Either R is a field or Gy (R) is connected.
2 diam(Gn(R)) = oo or diam(Gn(R)) < 3.
3 gr(GN(R)) = o0 orgr(Gn(R)) = 3.

Proof. Suppose R is a reduced ring.
Case (I): If R has no non trivial idempotent, then R is a field.
Case (II): If R has a non trivial idempotent, say e € Idem(R), then for any x,y €
V(GnN(R)), there exist z1,y1 € V(Gn(R)), such that zz1,yy1 € NC(R) = Idem(R).
So, we have a path z — x1e — y1(1 — e) — y from x to y.

If R is not a reduced ring, then there exists n € Nil(R), such that z —n—y is a path from
x toy, forany z,y € V(Gn(R)). Hence (1) and (2) follow from the above observations
and Figure 2.
(3) If R is reduced, then either R is a field or there exists a non trivial idempotent e € R,
such that 1 —e — (1 —e) — 1 is acycle. So, gr(GN(R)) = oo or gr(Gny(R)) = 3. If R
is a non reduced ring, then since nilpotent graph is a subgraph of nil clean divisor graph, so
from Theorem 2.1 [9], gr(Gn(R)) = 3.

Corollary 2.2 If R is not a reduced ring, then diam(Gy(R)) < 2.
Corollary 2.3 A ring R is a field if and only if nil clean divisor graph of R is bipartite.

Proof. = Trivial.
< If nil clean divisor graph of R is bipartite then gr(Gn(R)) # 3. So from Theorem 2.4,
gr(Gn(R)) = oo and hence R is a field.

Theorem 2.5 For a ring R, the following are equivalent.

1 GN(R) is a star graph.
2 R=1Zs.

Proof. The result follows from the fact that gr (G (R)) = oo if and only if R is a field.
Theorem 2.6 For any ring R, w(Gn(R)) > max{|Nil(R)|, |Idem(R)| — 1}.

Proof. From the definition of nil clean divisor graph, we observe that Nil(R) and Idem(R)
respectively induce a complete subgraph of G (R).

Next we strudy about nil clean divisor graph of weakly nil clean ring.
Theorem 2.7 Let R be a weakly nil clean ring which is not nil clean. Then

I w(GN(R)) > [@] where [x] is the greatest integer function.
2 If |[R|(> 3) is even then diam(R) = 2.

Proof. As x € WNC(R) implies —z € NC(R), so if |R| is even, then [NC(R)| > @
and if | R| is odd, then [NC(R)| > |R‘TH. Since R is commutative, so product of any two
nil clean element is also a nil clean element. Hence w(Gy(R)) > [‘—12?"]

Since |R| > 3, so R is not a field and hence Gy (R) is connected. As |R\ {0} is odd, so

there exists an element @ € R such that x € NC(R) "W NC(R). Hence for any z,y € R,
x —a —yisapathin Gy (R) and diam(Gy(R)) = 2 as R is not a nil clean ring.
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3 Nil clean divisor graph of Zs,;, and Z3,,, for any odd prime p

In this section we study the structures of G'n(Zg,,) and G n(Zsy,), for any odd prime p.
Lemma 3.1 If a € V(GN(Zap)), where p is an odd prime, then the following hold.

1 If a = p, then deg(a) = 2p — 2.
2 Ifae{l,p—1,p+1,2p— 1}, then deg(a) = 2.
3 Otherwise deg(a) = 3

Proof. Clearly NC(Zs,) = {0,1,p,p + 1}

1 If @ = p, then for any y € V(G n(Z2p)), either yp = p or yp = 0. Hence every element
of V(G n(Zgp)) is adjacent to p.

2 It is easy to observe that, Ay = {p,p+ 1}, Ap—1 = {p,2p — 1}, Apy1 = {1,p} and
Agp—1={p—1,p}.

3 Leta€Zy\{0,1,p—1,p,p+1,2p—1}.
Case (I): Let a be an even number. If az = 0 in Zg,,, then it has two solutions 0 and p. If
ax = 1 in Zy,,, then it has no solution, since gcd(2p,a) = 2 1 1. If ax = p in Zy,, then
also it has no solution, since gcd(2p,a) = 2 { p. If az = p + 1 in Zy,, then it has two
distinct solutions x; and x9 in Zs,, since ged(2p,a) = 2 | p + 1. Hence we conclude
that A, = {p, x1,z2}.
Case (II): Let a be an odd number. If ax = 0 in Zy), then it has a unique solution x = 0.
If ax = 11in Zyy, then it has unique odd solution z = y; in Zy,, since gcd(2p,a) = 1| 1.
If az = p in Zgp, then it has unique solution z = p, since ged(2p,a) =1 | p. If ax =
p+11in Zsyy, then it has unique even solution x = ys in Zgy, since ged(2p,a) =1 | p+1.
Hence A, = {p,y1, 92}
From the above cases it follows deg(a) = 3.

Remark 3.1 In the proof of Lemma 3.1 (3), Case(l), since ax1 = ax in Zsgy, S0 1 — T2 =
0 or p, but 1 — x2 # 0 as z1 and x4 are distinct. Hence if 1 is odd, then x5 is even and if
1 18 even, then x5 is odd.

From Lemma 3.1 and Remark 3.1, for any prime p > 2, the nil clean divisor graph of Z,
is the following:
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F1GUure 3. Nil clean divisor graph of Za,,.

In Figure 3, a; and b; are even numbers from Zy, \ {0,1,p — 1,p,p+ 1,2p — 1} such
that a;b; = p+1,for1 <i < %.Alsoci =a;+pandd; = b; +p,forl <i < %.
From the above observations we conclude the following:

Theorem 3.1 The following hold for nil clean divisor graph G n(Zsap), for any odd prime
D.

1 Clique number of G n(Zap) is 3.

2 Diameter of Gn(Zap) is 2.
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3 Girth of GN(Zayp) is 3.
4 {p} is the unique smallest dominating set for G n(Zap), that is, dominating number of
the graph is 1.

Next we discuss about nil clean divisor graph of Zg,.

Lemma 3.2 In G (Zsp); where p = 2(mod 3), the following hold.

1 deg(3k)=5if3k¢ {p+1,2p— 1}, forl <k <p-—1
2 deg(p+1) =deg(2p—1) =4

Proof. Here NC(Z3,) = {0,1,p + 1,2p}. Observe that 3k.z = 1(mod 3p) and 3k.x =
2p(mod 3p) has no solution, as gcd(3k, 3p) = 3 does not divide 1 and 2p. The congruence
3k.z = 0(mod 3p) has three incongruent solutions {0, p, 2p} in Zs,. Also 3k.x = p +
1(mod 3p) has three distinct incongruent solutions in Zs,,, as ged(3k, 3p) = 3 divides p+1.

1 As 22 = p+1(mod 3p), has two solutions p-+1 and 2p—1, hence if 3k ¢ {p+1,2p—1},
then deg(3k) =6 —1=05,as 0 ¢ V(Gn(Z3p)).

21If3k € {p+1,2p — 1}, then deg(3k) = 6 — 2, as 0 ¢ V(Gn(Zsp,)) and we do not
consider any loop.

Lemma 3.3 In G (Zs,), where p = 2(mod 3) the following hold.

1 deg(p) = deg(2p) = 2p — 2.

2 Forxe{l,p—1,3p—1,2p+ 1}, deg(z) = 2.

3 Forx € Zspy \ L, deg(x) = 3, where L = {3k : 1<k <p—-1}U{l,p—1,2p+
173p_ 17p7 2p}

Proof. Here NC(Z3,) = {0,1,p + 1, 2p}.

1 Clearly p.x = 1(mod3p) and p.x = p + 1(mod 3p) have no solution as ged(3p, p)
does not divide 1 and p + 1. Also p.z = 0(mod 3p) has p incongruent solutions {3k :
0 < k < p-—1} and p.x = 2p(mod3p) has p incongruent solutions {3k + 2
0 <k < p-—1}. Since 0 ¢ V(Gn(Z3p)) and p is of the form 3i + 2, for some
0 < i < p—1, hence deg(p) = 2p — 2. Now 2p.x = 0(mod 3p) has p incongruent
solutions {3k : 0 < k < p — 1} and 2p.x = 2p(mod 3p) has p incongruent solutions
{3k+1 : 0 <k <p-—1} But2p.x = 1(mod3p) and 2p.x = p + 1(mod 3p)
have no solutions. Hence deg(2p) = 2p — 2, since 2p is of the form 3i + 1, for some
1<:<p—1.

2 Since z = a(mod 3p), has only one solution a, hence deg(1) = 2. Also (3p — 1).z =
c(mod 3p) has only one solution (3p—1)a, hence deg(3p—1) = 2,as 0 ¢ V(G n(Z3p))
and 3p — 1 € U(Zs)p). Equation (p — 1).x = 1(mod3p) and (2p + 1).z = c(mod 3p)
have a unique solutions, where ¢ € {0,1,2p,p + 1}. Since p — 1,2p + 1 € U(Zs,), so
deg(p—1) =deg(2p+ 1) = 2.

3Leta € Z3p \ L. As gcd(a,3p) = 1, so a.x = 0(mod3p) has a unique solution
z = 0. Also a.xz = ¢(mod 3p), where ¢ € {1,2p, p + 1} has a unique solution. Hence
deg(a) = 3.

From Lemma 3.2 and Lemma 3.3, for any prime p > 3 with p = 2(mod 3), the nil clean
divisor graph of Zg,, is the following:
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FIGURE 4. Nil clean divisor graph of Zs,, where p = 2(mod 3).

In Figure 3, {l;,k;} C {3k : 1 <k <p—1}, ajc; = 1(mod 3p), bid; = 1(mod 3p)
and a;k; = ¢;l; = bik; = d;l; = p+1(mod 3p), forl < i < %. Also a; = ¢; = 1(mod 3)
and b; = d; = 2(mod 3), for 1 <1i < %.

Theorem 3.2 For any pri me p, where p = 2(mod 3), the following hold:

1 Girth of Gn(Zsp) is 3.

2 Cligue number of G (Zsp) is 3.

3 Diameter of Gn(Zsp) is 3.

4 {p,2p} is the unique smallest dominating set for G n(Zs3p), that is, dominating number
of the graph is 2.

Proof. Clearly NC(Z3,) = {0,1,p+ 1, 2p}.

1 Sincep— (p+1) — (2p+ 1) — pis acycle of Gn(Zs3p), so girth of G (Zsp) is 3.

2 If possible, let w((Gn(Zsp)) = 4. Then there exists A = {z; : 1 < i < 4} C
V(Gn(Zsp)) such that A forms a complete subgraph of Gy (Zsp). If © € Z3,\{p, 2p, 3k :
1 < k < p— 1}, then deg(x) < 3, otherwise z is adjacent to either p or 2p, ! and
34, for some 1 < i < p — 1. But 7! is also adjacent to 35, forsome 1 < j < p —1
such that ¢ # j.So A C {p,2p,3k : 1 < k < p — 1}. Suppose z; = 3k, for some
1 <k <p—1.FromFigure3, A,, C {p,2p,3i+1,3j+2,3s},where 1 < i,j, s < p—1,
also 3s ¢ Agz‘_,_l, 3s ¢ A3j+2, 3t +1 ¢ A3j+2, P ¢ Agp, 2p ¢ A3j+2 andp ¢ Ngi_;,_l.
Therefore z; ¢ {3k : 1 < k < p — 1}, a contradiction. Hence w((Gn(Z3p)) = 3, as
{p,2p —1,3p — 1} forms a complete subgraph of Gy (Zs,,).

3 From Figure 3; 1 and 2 are connected by a path 1 — (p+ 1) — p — 2, so by Theorem 2.4,
diam(Gn(Zsp)) = 3.

4 Since every element of Gy (Zs3p) \ {p,2p} is adjacent to either p or 2p. Hence proof
follows from Figure 3.

Lemma 3.4 In G(Zsp), where p = 1(mod 3), the following hold.
1 deg(3k) =5if3k ¢ {p—1,2p+ 1}, for 1<k <p-1
2 deg(p—1) =deg(2p+1) =4.

Proof. Proof is similar to the proof of Lemma 3.2.

Lemma 3.5 In Zs,, where p = 1(mod 3), the following hold.

I deg(p) = deg(2p) = 2p — 2.

2 Forze{l,p+1,3p—1,2p — 1}, deg(x) =2

3 Forx € Zgp \ L, deg(x) = 3, where L = {3k : 1 <k <p—-1}U{l,p,2p,p+
1,2p—1,3p+1}.

Proof. Proof is similar to the proof Lemma 3.3.
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From Lemma 3.4 and Lemma 3.5, the nil clean divisor graph of Zs,,, where p = 1(mod 3)
is the following:

: : kp-:
ay k a; ks b, aps 22 bss 1
'% 2p+
2p é p+1 P
3p—1
"'%:%: p
~~
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c’x Co s C“T' p—3
: Iy : b : = T 2p—1

F1GURE 5. Nil clean divisor graph of Zs,, where p = 1(mod 3).

In Figure 3, {l;,k;} C {3k : 1 <k <p—1}, aic; = 1(mod 3p), b;d; = 1(mod 3p)
and a;k; = ¢l; = bik; = dil; = 2p + 1(mod 3p), for 1 < i < pg?’. Also a; = ¢; =
2(mod 3) and b; = d; = 1(mod 3), for 1 < i < %. Hence we get the following theorem:

Theorem 3.3 Ifp = 1(mod 3) then

1 Girth OfGN(ng) is 3.

2 Clique number of G (Zsp) is 3.

3 Diameter of G (Z3p) is 3.

4 {p,2p} is the unique smallest dominating set for G n(Zsp), that is, dominating number
of the graph is 2.

Proof. Since Figure 3 and Figure 3 are similar, hence the proof is similar to the proof of
Theorem 3.2.
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