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Abstract. The non-linear hyperbolic equation is used to model many non-linear phenomena. In this
paper, we consider an initial boundary value problem for non-linear hyperbolic equation. We determine
a time-dependent coefficient multiplying non-linear term by using an additional condition, and prove
the existence and uniqueness theorem for small times. We also propose a numerical scheme to solve the
inverse problem for non-linear hyperbolic equation, and give test examples for sine, quadratic and cubic
non-linearity.
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1 Introduction

Inverse problems for non-linear hyperbolic equations provide an important value for phys-
ical applications, but there are limited results in this area, ([3], [4], [5], [6], [14], [20], [24],
[29]). The inverse problems associated with the recovery of the coefficient for non-linear
hyperbolic equations are also scarce ([12], [30], [32]) and need more consideration for fur-
ther studies.

Consider the inverse problem of finding a pair of functions {a(t), w(x, t)} for a non-
linear hyperbolic equation

wtt(x, t) = wxx(x, t) + F (x, t; a,w), (x, t) ∈ DT , (1.1)

with the initial conditions

w(x, 0) = φ(x), wt(x, 0) = ψ(x), 0 ≤ x ≤ 1, (1.2)

and non-classical boundary conditions

w(0, t) = 0, 0 ≤ t ≤ T, (1.3)

wx(0, t) = wx(1, t), 0 ≤ t ≤ T, (1.4)
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and over determination condition

w(1, t) = h(t), 0 ≤ t ≤ T, (1.5)

where DT = {(x, t) : 0 < x < 1, 0 < t < T} for some fixed T > 0, F (x, t; a,w) =
a(t)g(w(x, t)) + f(x, t) w(x, t) represents the wave displacement at position x and time
t, g(w(x, t)) is the non-linear force and the functions φ(x), and ψ(x) are wave modes or
kinks and velocity, respectively.

Because of the presence of the non-linearity g(w), the problem (1.1) - (1.4) for the
unknown function w(x, t) is over-specified for arbitrary functions f , g, φ, and ψ. Thus
there may exist no solution w(x, t). In the case of g(w) = w, the equation (1.1) is linear.
The inverse coefficient/source problems for the linear hyperbolic equation with different
boundary conditions were satisfactorily studied in various literature, see [11], [16], [21],
[25] and more recently, [8], [9], [15], [23].

The homogeneous equation (1.1) is called sine-Gordon equation, Klein-Gordon equa-
tion with quadratic non-linearity and Klein-Gordon equation with cubic non-linearity given
by

wtt(x, t) = wxx(x, t) + sin(w(x, t)),

wtt(x, t) = wxx(x, t) + w2(x, t),

wtt(x, t) = wxx(x, t) + w3(x, t),

respectively.
The sine-Gordon equation appeared in many scientific fields such as the propagation of

fluxons in Josephson junctions between two superconductors, the motion of rigid pendula
attached to a stretched wire, solid state physics, non-linear optics, and dislocations in metals
where sinw is due to periodic structure of rows of atoms, stability of fluid motions, and in
soliton theory of DNA molecule, see [22], [33], [34], [36], [37].

The non-linear Klein-Gordon equation appears in many types of non-linearities (quadratic,
cubic, etc.). The non-linear Klein-Gordon equation arises in relativistic quantum mechan-
ics, field theory, and non-linear optics. This equation also used to model many different
phenomena, such as propagation of dislocations in crystals and behaviour of elementary
particles, [1], [2], [7], [35].

For the some numerical aspects of initial and initial-boundary value problems (IBVPs)
for the linear and non-linear hyperbolic equations are considered in [8], [9], [15], and [27],
[28], [30], respectively. It is important to note that authors compared the properties of four
explicit finite difference schemes used to integrate the non-linear Klein-Gordon equation in
the papers [13], [31] .

In this paper, we have an initial boundary value problem for non-linear hyperbolic
equation with non-classical boundary condition. Giving an over determination condition,
a time-dependent coefficient multiplying non-linear term is determined and the existence
and uniqueness theorem for small times is proved. The finite different method is also pro-
posed for solving the inverse problem. Also to achieve stable numerical solutions we will
use the mollification method which is one of the regularization procedure that is appropriate
to stabilize a variety of ill-posed problems by restoring continuity with respect to the data.
The method can also be interpreted as a simple and efficient data smoothing algorithm and,
as such, it can be used to fit noisy data (a well-posed problem) and to stabilize unstable
numerical marching schemes for well-posed parabolic and hyperbolic problems, [18].

The article is organized as following: In Section 2, we first present equivalent inverse
problem, and its auxiliary Sturm-Liouville spectral problem and its eigenvalues and eigen-
functions. Then we introduce two Banach spaces to investigate the inverse problem. In
Section 3, the numerical method for solving the direct problem of hyperbolic equation
with non-linear source based on the finite difference method is presented. In Section 4,
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the inverse problem under investigation is formulated. The existence and uniqueness of a
classical solution to the inverse IBVP is proved for small times. In Section 5, we solve
the inverse problem numerically by applying finite difference method. We present three
numerical examples intended to illustrate the behaviour of the proposed method and the
tests are performed by using MATLAB. First one of these examples is sine-Gordon case
of (1.1) that is not satisfies the conditions of existence and uniqueness theorem. Second
one is the Klein-Gordon equation with cubic non-linearity which coefficient is continuous
but non-differentiable. Third example is the Klein-Gordon equation with quadratic non-
linearity which satisfies the conditions of theoretical results. The possibly ill-posedness of
the inverse problem is regularized by employing a suitable mollification method.

2 Equivalent problem and its auxiliary spectral problem

In this section, we will introduce the equivalent inverse problem of the inverse problem
(1.1)-(1.5) and examine its auxiliary spectral problem and its properties. We will also give
two functional spaces which are Banach spaces, ([17]).

Definition 2.1 The pair {a(t), w(x, t)} from the class C[0, T ] × C2(DT ) for which the
conditions (1.1)-(1.5) are satisfied, is called a classical solution of the inverse problem
(1.1)-(1.5).

From this definition, the consistency conditions

(A0)


φ(0) = 0, φ′(0) = φ′(1),

ψ(0) = 0, ψ′(0) = ψ′(1),

h(0) = φ(1), h′(0) = ψ(1),

holds for the data φ(x), ψ(x) ∈ C1[0, 1] and h(t) ∈ C1[0, T ].
It is easy to verify that the following lemma holds ([26]):

Lemma 2.1 Let the consistency conditions (A0) holds. Moreover f(x, t) ∈ C(DT ), and
g(h(t)) ̸= 0, (∀t ∈ [0, T ]) are satisfied. Then the problem of finding the classical solu-
tion {a(t), w(x, t)} of the inverse problem (1.1)-(1.5) is equivalent to the inverse problem
composed of the equations (1.1)-(1.4) and

h′′(t) = wxx(1, t) + a(t)g(h(t)) + f(1, t), 0 ≤ t ≤ T. (2.1)

Since the equation (1.1) is non-homogeneous, we may use Fourier (Eigenfunction Ex-
pansion) Method. For using this method to the inverse problem we need to obtain the aux-
iliary spectral problem from the homogeneous part of the equation (1.1), i.e. wtt(x, t) =
wxx(x, t). Thus, the auxiliary spectral problem of equivalent inverse problem (1.1)-(1.4)
and (2.1) can be obtained as{

X ′′(x) + λX(x) = 0, 0 ≤ x ≤ 1,

X(0) = 0, X ′(0) = X ′(1).
(2.2)

This spectral problem has the eigenvalues λk = (µk)
2 with µk = 2πk, k = 0, 1, 2, ... and

corresponding eigenfunctions (see [10])

X0(x) = x, X2k−1(x) = x cos(µkx), X2k(x) = sin(µkx), k = 1, 2, .... (2.3)
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The spectral problem (2.2) is not self adjoint. The adjoint spectral problem of (2.2) is
([10]) {

Y ′′(x) + λY (x) = 0, 0 ≤ x ≤ 1,

Y ′(1) = 0, Y (0) = Y (1).
(2.4)

This spectral problem has the same eigenvalues of (2.2), and corresponding eigenfunctions
are

Y0(x) = 2, Y2k−1(x) = 4 cos(µkx), Y2k(x) = 4(1− x) sin(µkx), k = 1, 2, .... (2.5)

It is easy to verify that the systems (2.3) and (2.5) are biorthonormal on [0, 1], i.e.

(Xi(x), Yj(x)) =

∫ 1

0
Xi(x)Yj(x)dx =

{
0, i ̸= j,

1, i = j.
.

Moreover the system (2.3) forms a Riesz basis in L2[0, 1]. Then any function r(x) ∈
L2[0, 1] can be expanded in biorthogonal series

r(x) =

∞∑
k=0

rkXk(x)

where rk =
∫ 1
0 r(x)Yk(x)dx, k = 0, 1, 2, ....

Let us consider following spaces to investigate the inverse problem (1.1)-(1.4) and (2.1):

I

B3
2,T =

{
w(x, t) =

∞∑
k=0

wk(t)Xk(x) : wk(t) ∈ C[0, T ], JT (w) = ∥wo(t)∥C[0,T ]

+

( ∞∑
k=1

(µ3k ∥w2k(t)∥C[0,T ])
2

)1/2

+

( ∞∑
k=1

(µ3k ∥w2k−1(t)∥C[0,T ])
2

)1/2

< +∞

 ,

with the norm ∥w(x, t)∥B3
2,T

≡ JT (w) which is related with the Fourier coefficients of
the function w(x, t) by the eigenfunctions Xk(x), k = 0, 1, 2, ....

II E3
T = B3

2,T × C[0, T ] of the vector function z(x, t) = {a(t), w(x, t)} with the norm

∥z(x, t)∥E3
T
= ∥a(t)∥C[0,T ] + ∥w(x, t)∥B3

2,T
.

3 Direct problem

Consider the one-dimensional direct non-linear hyperbolic equation in DT given by the
equations (1.1)-(1.4). Because of the presence of the non-linearity g(w), no analytical
method is available and hence the finite difference method (FDM) is applied for numer-
ical discretization. We divide the domain (0, 1) × (0, T ) into nx and nt subintervals of
equal length hx and ht, where hx = 1/nx and ht = T/nt, respectively. We denote by
Wn

j := W (xj , tn), an := a(tn) and fnj := f(xj , tn), where xj = jhx, tn = nht for
j = 0, ..., nx, n = 0, ..., nt. Then, a central difference approximation to the equations
(1.1)-(1.3) and (2.1) at the mesh points (xj , tn) is

Wn+1
j = r2Wn

j+1 + 2(1− r2)Wn
j + r2Wn

j−1 −Wn−1
j + (ht)2(ang(Wn

j ) + fnj ), (3.1)
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j = 1, ..., nx− 1, n = 1, ..., nt− 1,

W 0
j = φj , j = 0, ..., nx,

W 1
j −W−1

j

2ht
= ψj , j = 1, ..., nx− 1, (3.2)

Wn
0 = 0,

Wn
nx −Wn

nx−1

hx
=
Wn

1 −Wn
0

hx
, n = 0, ..., nt, (3.3)

where r = ht2

hx2 . Putting n = 0 in the equation (3.1) and using (3.2), we obtain

W 1
j =

1

2
(r2φj+1+2(1−r2)φj+r

2φj−1+2htψj+(ht)2(a0g(φj)+f
0
j )), j = 1, ..., nx−1.

(3.4)
Equations (3.1)-(3.4) represent an explicit finite difference method which is stable for

r ≤ 1 when g(w) = wp, p = 1, 2, 3 and g(w) = sinw.

4 Existence and uniqueness of the classical solution of the inverse problem

In this section, we will examine the existence and uniqueness of the solution of the inverse
initial-boundary value problem for the equation (1.1) with non-classical boundary condi-
tion.

Since the system (2.3) forms Riesz basis and the systems (2.3) and (2.5) are bi-orthogonal
in L2[0, 1] and the function a(t) is time dependent, seeking the solution of the problem
(1.1)-(1.4) and (2.1) in the following form is suitable:

w(x, t) =

∞∑
k=0

wk(t)Xk(x), (4.1)

where wk(t) =
∫ 1
0 w(x, t)Yk(x)dx, k = 0, 1, 2, ....

For an arbitrary a(t) ∈ C[0, T ], the solution of the problem (1.1)-(1.4) and (2.1) can be
written as

w(x, t) = w0(t)X0(x) +
∞∑
k=1

w2k−1(t)X2k−1(x) +
∞∑
k=1

w2k(t)X2k(x).

By using the Fourier’s method,from the equations (1.1)-(1.2) we obtain

w′′
0(t) = F0(t;w, a),

w′′
2k−1(t) + µ2kw2k−1(t) = F2k−1(t;w, a), k = 1, 2, ...,

w′′
2k(t) + µ2kw2k(t) = F2k(t;w, a)− 2µkw2k−1(t), k = 1, 2, ...,

wk(0) = φk, w
′
k(0) = ψk, k = 0, 1, 2, ...,

(4.2)

whereFk(t;w, a) = a(t)gk(t)+ fk(t), fk(t) =
∫ 1
0 f(x, t)Yk(x)dx, gk(t) =

∫ 1
0 g(w)Yk(x)dx,

φk =
∫ 1
0 φ(x)Yk(x)dx, ψk =

∫ 1
0 ψ(x)Yk(x)dx, k = 0, 1, 2, ....
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Solving the Cauchy problems (4.2), we obtain

w0(t) = w0(0) + tw′
0(0) +

∫ t
0 (t− τ)w′′

0(τ)dτ

= φ0 + tψ0 +
∫ t
0 (t− τ)F0(τ ;w, a)dτ,

0 ≤ t ≤ T,

w2k−1(t) = φ2k−1 cosµkt+
1
µk
ψ2k−1 sinµkt

+ 1
µk

∫ t
0 F2k−1(τ ;w, a) sinµk(t− τ)dτ,

k = 1, 2, ...,

w2k(t) = φ2k cosµkt+
1
µk
ψ2k sinµkt+

1
µk

∫ t
0 F2k(τ ;w, a) sinµk(t− τ)dτ

−tφ2k−1 sinµkt− 1
µk
ψ2k−1

[
1
µk

sinµkt− t cosµkt
]

− 2
µk

∫ t
0

∫ τ
0 F2k−1(ξ;w, a) sinµk(τ − ξ)dξ sinµk(t− τ)dτ,

k = 1, 2, ....

(4.3)
Let substitute the expressions (4.3) into (4.1) to determine w(x, t). Then we get

w(x, t) =
(
φ0 + tψ0 +

∫ t
0 (t− τ)F0(τ ;w, a)dτ

)
X0(x)

+
∑∞

k=1

(
φ2k−1 cosµkt+

1
µk
ψ2k−1 sinµkt

+ 1
µk

∫ t
0 F2k−1(τ ;w, a) sinµk(t− τ)dτ

)
X2k−1(x)

+
∑∞

k=1

(
φ2k cosµkt+

1
µk
ψ2k sinµkt+

1
µk

∫ t
0 F2k(τ ;w, a) sinµk(t− τ)dτ

−tφ2k−1 sinµkt− 1
µk
ψ2k−1

[
1
µk

sinµkt− t cosµkt
]

− 2
µk

∫ t
0

∫ τ
0 F2k−1(ξ;w, a) sinµk(τ − ξ)dξ sinµk(t− τ)dτ

)
X2k(x). (4.4)

Consider x = 1 in the equation (1.1) to find the coefficient solution a(t). Then by using the
condition (2.1), we obtain

a(t) =
1

g(h(t))

[
h′′(t)− f(1, t) +

∞∑
k=1

µ2k

(
φ2k−1 cosµkt+

ψ2k−1

µk
sinµkt

+
1

µk

∫ t

0
F2k−1(τ ;w, a) sinµk(t− τ)dτ

)]
. (4.5)

Thus, the solution of problem (1.1)-(1.4) and (2.1) is reduced to the solution of system
(4.4) and (4.5) with respect to the unknown functions {a(t), w(x, t)}. Therefore to prove
the uniqueness of the solution of the problem (1.1)-(1.4) and (2.1) is equivalent to prove the
uniqueness of the solution of system (4.4) and (4.5).

Let us denote z = [a(t), u(x, t)]T and rewrite the system of equations (4.4) and (4.5) in
the following operator equation

z = Φ(z) (4.6)

where Φ(z) ≡ [ϕ0, ϕ1]
T and ϕ1 and ϕ0 are equal to the right hand sides of (4.4) and (4.5),

respectively as:

ϕ0(z) =
1

g(h(t))

[
h′′(t)− f(1, t) +

∞∑
k=1

µ2k

(
φ2k−1 cosµkt+

ψ2k−1

µk
sinµkt

+
1

µk

∫ t

0
F2k−1(τ ;w, a) sinµk(t− τ)dτ

)]
, (4.7)
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ϕ1(z) =
(
φ0 + tψ0 +

∫ t
0 (t− τ)F0(τ ;w, a)dτ

)
X0(x)

+
∑∞

k=1

(
φ2k−1 cosµkt+

1
µk
ψ2k−1 sinµkt

+ 1
µk

∫ t
0 F2k−1(τ ;w, a) sinµk(t− τ)dτ

)
X2k−1(x)

+
∑∞

k=1

(
φ2k cosµkt+

1
µk
ψ2k sinµkt+

1
µk

∫ t
0 F2k(τ ;w, a) sinµk(t− τ)dτ

−tφ2k−1 sinµkt− 1
µk
ψ2k−1

[
1
µk

sinµkt− t cosµkt
]

− 2
µk

∫ t
0

∫ τ
0 F2k−1(ξ;w, a) sinµk(τ − ξ)dξ sinµk(t− τ)dτ

)
X2k(x). (4.8)

Let us demonstrate that Φ maps E3
T onto itself continuously. In other words, we need

to show ϕ0(z) ∈ C[0, T ] and ϕ1(z) ∈ B3
2,T for arbitrary z = [a(t), u(x, t)]T with a(t) ∈

C[0, T ], u(x, t) ∈ B3
2,T . We will use the following assumptions on the data of problem

(1.1)-(1.4) and (2.1):

(A1) φ(x) ∈ C3[0, 1], φ(0) = φ′′(0) = 0, φ′(0) = φ′(1),
(A2) ψ(x) ∈ C2[0, 1], ψ(0) = 0, ψ′(0) = ψ′(1),
(A3) h(t) ∈ C1[0, T ], h(0) = φ(1), h′(0) = ψ(1),
(A4) f(x, t) ∈ C(DT ), fx, fxx ∈ C[0, 1], ∀t ∈ [0, T ], f(0, t) = 0, fx(0, t) = fx(1, t),

(A5)


g(w) ∈ C2(R), g(0) = 0, (g(w))x|x=1 = (g(w))x|x=0 ,

g′(h(t)) = g′(0), g(h(t)) ̸= 0 ∀t ∈ [0, T ],∣∣g(w1)− g(w2)
∣∣ ≤ d0

∣∣w1 − w2
∣∣ ,∣∣g′(w1)− g′(w2)

∣∣ ≤ d1
∣∣w1 − w2

∣∣ ,∣∣g′′(w1)− g′′(w2)
∣∣ ≤ d2

∣∣w1 − w2
∣∣ , di, i = 0, 1, 2 are positive constants.

By using integration by parts under the assumptions (A0)− (A4) and the first condition
of (A5), we have



φ2k−1 =
−
√
8

µ3
k

∫ 1
0 φ

′′′(x)
√
2 sin(µkx)dx,

ψ2k−1 =
−
√
8

µ2
k

∫ 1
0 ψ

′′(x)
√
2 cos(µkx)dx,

f2k−1(t) =
−
√
8

µ2
k

∫ 1
0 fxx(x, t)

√
2 cos(µkx)dx,

g2k−1(t) =
−
√
8

µ2
k

∫ 1
0

[
g′′(w)w2

x(x, t) + g′(w)wxx(x, t)
]√

2 cos(µkx)dx

φ2k = −
√
8

µ3
k

∫ 1
0 [φ′′′(x)(1− x)− 3φ′′(x)]

√
2 cos(µkx)dx,

ψ2k = −
√
8

µ2
k

∫ 1
0 [φ′′(x)(1− x)− 2φ′(x)]

√
2 sin(µkx)dx,

f2k(t) =
−
√
8

µ2
k

∫ 1
0 [fxx(x, t)(1− x)− 2fx(x, t)]

√
2 sin(µkx)dx,

g2k(t) =
−
√
8

µ2
k

∫ 1
0

[{
g′′(w)w2

x(x, t) + g′(w)wxx(x, t)
}
(1− x)

−2g′(w)wx(x, t)]
√
2 sin(µkx)dx.

(4.9)

First, let us show that ϕ0(z) ∈ C[0, T ]. Consider the equalities (4.9) into (4.7), we obtain

|ϕ0(z)| ≤
1

|g(h(t))|

{∣∣h′′(t)∣∣+ |f(1, t)|+
∞∑
k=1

(
1

µk
|α2k−1|+

1

µk
|β2k−1|

+
1

µk

∫ T

0
[|γ2k−1(t)|+ |a(t)| |η2k−1(t)|] dt

)}
(4.10)
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where η2k−1(t) = −
√
8
∫ 1
0

[
g′′(w)w2

x(x, t) + g′(w)wxx(x, t)
]√

2 cos(µkx)dx,
α2k−1 = −

√
8
∫ 1
0 φ

′′′(x)
√
2 sin(µkx)dx, β2k−1 = −

√
8
∫ 1
0 ψ

′′(x)
√
2 cos(µkx)dx, and

γ2k−1(t) = −
√
8
∫ 1
0 fxx(x, t)

√
2 cos(µkx)dx. Using Cauchy-Schwartz inequality

|ϕ0(z)| ≤
1

|g(h(t))|

∣∣h′′(t)∣∣+ |f(1, t)|+

( ∞∑
k=1

(
1

µk

)2
)1/2

( ∞∑
k=1

|α2k−1|2
)1/2

+

( ∞∑
k=1

|β2k−1|2
)1/2

+

∫ T

0

|a(t)|

( ∞∑
k=1

|η2k−1(t)|2
)1/2

+

( ∞∑
k=1

|γ2k−1(t)|2
)1/2

 dt


is obtained from the equation (4.10). Since

√
2 sinµnx (or

√
2 cosµnx) forms a biorthogo-

nal system of functions on [0, 1], by using Bessel’s inequality we get
∞∑
k=1

|α2k−1|2 ≤
∥∥φ′′′∥∥2

L2[0,1]
,

∞∑
k=1

|β2k−1|2 ≤
∥∥ψ′′∥∥2

L2[0,1]
,

∞∑
k=1

|η2k−1(t)|2 ≤
∥∥g′′w2

x + g′wxx

∥∥2
L2(DT )

,
∞∑
k=1

|γ2k−1(t)|2 ≤ ∥fxx∥2L2(DT ) .

Taking these estimates into account we conclude that the majorizing series (4.10) is conver-
gent. This implies that by the Weierstrass-M test, the series (4.7) are uniformly convergent
in [0, T ]. Thus ϕ0(z) is continuous in [0, T ].

Now, let us show that ϕ1(z) ∈ B3
2,T , i.e. we need to show

JT (ϕ1) = ∥ϕ1,0(t)∥C[0,T ] +

( ∞∑
k=1

(µ3k ∥ϕ1,2k(t)∥C[0,T ])
2

)1/2

+

( ∞∑
k=1

(µ3k ∥ϕ1,2k−1(t)∥C[0,T ])
2

)1/2

< +∞,

where ϕ1,0(t), ϕ1,2k(t) and ϕ1,2k−1(t) are the equal to the right hand side of w0(t), w2k(t)
andw2k−1 as in (4.3), respectively. After some manipulations under the assumptions (A0)−
(A5), we obtain

∥ϕ1,0(t)∥C[0,T ] ≤ |φ0|+ T |ψ0|+ T 2

(
max
0≤t≤T

|f0(t)|+ |a(t)| max
0≤t≤T

|g0(t)|
)
,

∑∞
k=1(µ

3
k ∥ϕ1,2k−1(t)∥C[0,T ])

2 ≤ 2
∑∞

k=1 |α2k−1|2 + 2
∑∞

k=1 |β2k−1|2

+4T 2

(
max
0≤t≤T

|a(t)|
)2∑∞

k=1

(
max
0≤t≤T

|η2k−1(t)|
)2

+ 4T 2
∑∞

k=1

(
max
0≤t≤T

|γ2k−1(t)|
)2

,∑∞
k=1(µ

3
k ∥ϕ1,2k(t)∥C[0,T ])

2 ≤ 4
∑∞

k=1 |α2k|2 + 4
∑∞

k=1 |β2k|
2

+4T 2

(
max
0≤t≤T

|a(t)|
)2∑∞

k=1

(
max
0≤t≤T

|η2k(t)|
)2

+ 4T 2
∑∞

k=1

(
max
0≤t≤T

|γ2k(t)|
)2

+4T 2
∑∞

k=1 |α2k−1|2 + 4(1 + T )2
∑∞

k=1 |β2k−1|2 + 4T 2
∑∞

k=1

(
max
0≤t≤T

|γ2k−1(t)|
)2

+4T 2

(
max
0≤t≤T

|a(t)|
)2∑∞

k=1

(
max
0≤t≤T

|η2k−1(t)|
)2

,
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where

η2k−1(t) = −
√
8

∫ 1

0

[
g′′(w)w2

x(x, t) + g′(w)wxx(x, t)
]√

2 cos(µkx)dx,

η2k(t) = −
√
8

∫ 1

0

[{
g′′(w)w2

x(x, t) + g′(w)wxx(x, t)
}
(1− x)

−2g′(w)wx(x, t)
]√

2 sin(µkx)dx,

α2k−1 = −
√
8

∫ 1

0
φ′′′(x)

√
2 sin(µkx)dx,

α2k = −
√
8

∫ 1

0

[
φ′′′(x)(1− x)− 3φ′′(x)

]√
2 cos(µkx)dx,

γ2k−1(t) = −
√
8

∫ 1

0
fxx(x, t)

√
2 cos(µkx)dx,

γ2k(t) = −
√
8

∫ 1

0
[fxx(x, t)(1− x)− 2fx(x, t)]

√
2 sin(µkx)dx,

β2k−1 = −
√
8

∫ 1

0
ψ′′(x)

√
2 cos(µkx)dx,

β2k = −
√
8

∫ 1

0

[
φ′′(x)(1− x)− 2φ′(x)

]√
2 sin(µkx)dx.

The series on the right side of above equations are convergent from the Bessel inequali-
ties

∞∑
k=1

|α2k−1|2 ≤
∥∥φ′′′∥∥2

L2[0,1]
,

∞∑
k=1

|β2k−1|2 ≤
∥∥ψ′′∥∥2

L2[0,1]
,

∞∑
k=1

|η2k−1(t)|2 ≤
∥∥g′′w2

x + g′wxx

∥∥2
L2(DT )

,
∞∑
k=1

|γ2k−1(t)|2 ≤ ∥fxx∥2L2(DT ) ,

∞∑
k=1

|α2k|2 ≤
∥∥φ′′′(1− x)− 3φ′′∥∥2

L2[0,1]
,

∞∑
k=1

|β2k|2 ≤
∥∥φ′′(1− x)− 2φ′∥∥2

L2[0,1]
,

∞∑
k=1

|η2k(t)|2 ≤
∥∥{g′′w2

x + g′wxx

}
(1− x)− 2g′wx

∥∥2
L2(DT )

,

∞∑
k=1

|γ2k(t)|2 ≤ ∥fxx(1− x)− 2fx∥2L2(DT ) .

Thus JT (ϕ1) < +∞ and ϕ1 belongs to the space B3
2,T .
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By virtue of the definition of the space B3
2,T , it is easy to obtain that

|wx| ≤ c1 ∥w∥B3
2,T

and |wxx| ≤ c2 ∥w∥B3
2,T

(4.11)

where ci, i = 1, 2 are real constants.
Now, let z1 and z2 be any two elements of E3

T . We know that ∥Φ(z1)− Φ(z2)∥E3
T
=

∥ϕ0(z1)− ϕ0(z2)∥C[0,T ]+ ∥ϕ(z1)− ϕ(z2)∥B3
2,T

. Here zi =
[
a(i)(t), w(i)(x, t)

]T
, i = 1, 2.

From the equations (4.7) and (4.8), we get

ϕ0(z1)− ϕ0(z2) =
1

g(h(t))

∞∑
k=1

µk

∫ t

0

(
F2k−1(τ ;w

(1), a(1))− F2k−1(τ ;w
(2), a(2))

)
× sinµk(t− τ)dτ,

ϕ1(z1)− ϕ1(z2) =

∫ t

0
(t− τ)

(
F0(τ ;w

(1), a(1))− F0(τ ;w
(2), a(2))

)
dτX0(x)

+

∞∑
k=1

1

µk

[∫ t

0

(
F2k−1(τ ;w

(1), a(1))− F2k−1(τ ;w
(2), a(2))

)
sinµk(t− τ)dτ

]
X2k−1(x)

+
∞∑
k=1

[
1

µk

∫ t

0

(
F2k(τ ;w

(1), a(1))− F2k(τ ;w
(2), a(2))

)
sinµk(t− τ)dτ

− 2

µk

∫ t

0

∫ τ

0

(
F2k−1(ξ;w

(1), a(1))− F2k−1(ξ;w
(2), a(2))

)
sinµk(τ − ξ)dξ sinµk(t− τ)dτ

]
×X2k(x).

After some manipulations in last equations and using the estimates (4.11) and the Lips-
chitz continuities in (A5), we obtain

∥ϕ0(z1)− ϕ0(z2)∥C[0,T ] ≤
T

min
0≤t≤T

|g(h(t))|

[
C1(a

(1), w(1), w(2), T )
∥∥∥w(1) − w(2)

∥∥∥
B3

2,T

+C2(w
(2))

∥∥∥a(1) − a(2)
∥∥∥
C[0,T ]

]
,

∥ϕ1(z1)− ϕ1(z2)∥B3
2,T

≤ T

[
C3(a

(1), w(1), w(2), T )
∥∥∥w(1) − w(2)

∥∥∥
B3

2,T

+C4(w
(2), T )

∥∥∥a(1) − a(2)
∥∥∥
C[0,T ]

]
,

where Ck, k = 1, 4 are the constants depend on the norms
∥∥a(i)∥∥

C[0,T ]
,
∥∥w(i)

∥∥
B3

2,T
, i =

1, 2, and T . From the last inequalities it follows that

∥Φ(z1)− Φ(z2)∥E3
T
≤ A(T )C(a(1), a(2), w(1), w(2)) ∥z1 − z2∥E3

T
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whereA(T ) = T

(
1 + 1

min
0≤t≤T

|g(h(t))|

)
with g(h(t)) ̸= 0, ∀t ∈ [0, T ] andC(a(1), a(2), w(1), w(2)) =

max {C1, C2, C3, C4} is the constant depends on the norms
∥∥a(i)∥∥

C[0,T ]
and

∥∥w(i)
∥∥
B3

2,T
,

i = 1, 2.
For sufficiently small T , 0 < A(T )C(a(1), a(2), w(1), w(2)) < 1. This implies that the

operator Φ is contraction mapping which maps E3
T onto itself continuously. Then according

to Banach fixed point theorem there exists unique solution of (4.6) .
Thus, we proved the following theorem:

Theorem 4.1 Let the assumptions (A0)-(A5) be satisfied. Then, the inverse problem (1.1)-
(1.4) and (2.1) has unique solution for small T .

5 Numerical solution of the inverse problem

In this section,we study the numerical solution of the inverse problem (1.1)-(1.4) and (2.1)
for non-linear hyperbolic equation.

The discrete form of direct problem is given in Section 3 with the equations (3.1)-(3.4).
By using the condition (2.1), we obtain

a(t) =
h′′(t)− wxx(1, t)− f(1, t)

g(h(t))
.

After discretizing last equation, we have

an =
(hn+1 − 2hn + hn−1)/(ht)2 − (Wn

nx − 2Wn
nx−1 +Wn

nx−2)/(hx)
2 − fnnx

g(hn)
, n = 1, ..., nt−1

(5.1)

ant =
(hnt − 2hnt−1 + hnt−2)/(ht)2 − (Wnt

nx − 2Wnt
nx−1 +Wnt

nx−2)/(hx)
2 − fntnx

g(hnt)
,

(5.2)

a0 =
(h2 − 2h1 + h0)/(ht)2 − (W 0

nx − 2W 0
nx−1 +W 0

nx−2)/(hx)
2 − f0nx

g(h0)
. (5.3)

Now let us consider (5.1)-(5.3) in (3.1), we obtain the system with respect to Wn
j ,

j = 0, ..., nx, n = 0, ..., nt which can be solved explicitly. Then using the calculated
values of Wn

j in (5.1)-(5.3), we obtain the values of an , n = 0, ..., nt.

51 Numerical examples and discussion

In this section,we perform numerical experiments to validate the FDM in solving the direct
problem of determining w(x, t) and inverse problem of determining a(t). In all examples
in this section we take, for simplicity T = 1.

Example 1 (sine-Gordon equation case) Consider first the direct IBVP (1.1)-(1.4) with the
input data

φ(x) = cos(πx)− 1, ψ(x) =
1

2
cos(πx)− 1, a(t) = exp(t),

f(x, t) =
1

4
((1 + 4π2) cos(πx)− 1)exp(t/2)− sin((cos(πx)− 1)exp(t/2)) exp(t),

g(w(x, t)) = sin(w(x, t)), x ∈ [0, 1], t ∈ [0, 1].
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The analytical solution of the direct problem (1.1)-(1.4) is

w(x, t) = (cos(πx)− 1)exp(t/2)

The numerical solution of the direct problem given by Equations (1.1)-(1.4) is obtained
using the FDM described in Section 3. It can be seen from the Figure 1 that the mesh
ht = 0.01 and hx = 0.01,i.e. nt = nx = 100, is sufficiently fine for accurately solving the
direct problem.

For the inverse problem consider the equations (1.1)-(1.4) and (2.1) with the over deter-
mination condition data

h(t) = −2 exp(t/2).

One can easily check that h(t) ∈ C1[0, 1], ψ(x) ∈ C2[0, 1] and φ(x) ∈ C3[0, 1] satisfy the
conditions (A0) − (A5) except φ′′(0) = 0. As the condition of Theorem 1 is not satisfied
we can not conclude the unique solvability of the inverse problem. However, the solution at
least exists and is given by

{a(t), w(x, t)} = {exp(t), (cos(πx)− 1)exp(t/2)}
which can easily be checked by direct substitution. Figure 2 shows the exact and numerical
inverse solutions of {a(t), w(1/2, t)} for nt = nx = 100.

Example 2 (Klein-Gordon equation with cubic non-linearity case) As in Example 1, con-
sider first the direct IBVP (1.1)-(1.4) with the input data

g(w(x, t)) = w3(x, t), f(x, t) = 2x− x3(t2 + t+ 1)3 |t− 1/2| ,
φ(x) = x, ψ(x) = x, a(t) = |t− 1/2| ,

x ∈ [0, 1], t ∈ [0, 1].

The solution of the direct problem (1.1)-(1.4) is

w(x, t) = x(t2 + t+ 1)

It can be seen from the Figure 3 that the mesh ht = 1/80 and hx = 1/80,i.e. nt = nx = 80,
is sufficiently fine for accurately solving the direct problem.

For the inverse problem consider the equations (1.1)-(1.4) and (2.1) with the over deter-
mination condition data

h(t) = t2 + t+ 1.

Note that for this example, the force a(t) is continuous but non-differentiable at the peak
t = 1/2. Since a(t) is non-differentiable, Theorem 1 is not satisfied. Thus we can not con-
clude the unique solvability of the inverse problem. Nevertheless, we can find the numerical
solution of the inverse problem. Figure 4 shows numerical solution {a(t), w(1/2, t)} of the
inverse problem (1.1)-(1.4) and (2.1) with nt = nx = 80.

Example 3 (Klein-Gordon equation with quadratic non-linearity case) As in Examples
above, consider first the direct IBVP (1.1)-(1.4) with the input data

g(w(x, t)) = w2(x, t), f(x, t) = (2πx− (1 + 4π2) sin(2πx)) exp(t)− (2πx− sin(2πx))2,

φ(x) = 2πx− sin(2πx), ψ(x) = 2πx− sin(2πx), a(t) = exp(−2t),

x ∈ [0, 1], t ∈ [0, 1].

The analytical solution of the direct problem (1.1)-(1.4) is

w(x, t) = (2πx− sin(2πx)) exp(t)
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It can be seen from the Figure 5 that the mesh ht = 0.01 and hx = 0.01,i.e. nt = nx = 100,
is sufficiently fine for accurately solving the direct problem.

For the inverse problem consider the equations (1.1)-(1.4) and (2.1) with the over deter-
mination condition data

h(t) = 2π exp(t).

It is easy to check that h(t) ∈ C1[0, 1], ψ(x) ∈ C2[0, 1] and φ(x) ∈ C3[0, 1] satisfy the
conditions (A0)− (A3). Moreover, the conditions (A4) and (A5) are also satisfied. Hence,
according to the Theorem 1 the solution of the inverse problem exists and unique. In fact, it
can easily be checked by direct substitution that the analytical solution is given by

{a(t), w(x, t)} = {exp(−2t), (2πx− sin(2πx)) exp(t)}.
Figure 6 shows the exact and numerical solutions of {a(t), w(1/2, t)} for nt = nx =

100.

Next, we investigate the stability of numerical solution with respect to the noisy over-
determination data (1.5) (or (2.1)), defined by the function

(h)γ(t) = h(t) + γθ, (5.4)

where γ is the percentage of noise and θ are random variables generated from a uniform
distribution in the interval [−0.5, 0.5] which are generated using rand command in MAT-
LAB.

Figures 7 and 8 show the exact and numerical solutions of {a(t), w(1/2, t)} when the
input data (5.4) is contaminated by γ = 0.01 and 0.05 noise for Examples 3, respectively.
From the Figure 7, it can be seen that the numerical coefficient solutions become unstable as
the input data is contaminated with noise, because the derivatives in (5.1)-(5.3) are unstable
under the random noisy input (5.4) if they are calculated using simply finite differences. But
from the Figure 8, it can be seen clearly that the agreement between the numerical results
and the analytical solutions w(1/2, t) is good for exact data. In order to obtain a stable
numerical derivative we employ the mollification method with a Gaussian mollifier ([18]),
given by

Jδ =
1

δ
√
π
exp(−t2/δ2)

where δ > 0 is the radius of mollification acting as an averaging filter. Its choice is based on
standard methods for choosing regularization parameter in ill-posed problems such as the
generalized cross-validation criterion. The mollification of the noisy data (5.4) is performed
through the convolution

(Jδ ∗ h)(t) =
∫ +∞

−∞
Jδ(τ)h(t− τ)dτ, .

We notice that the mollifier Jδ is always positive and becomes close to zero outside
the interval centred at the origin and of radius 3δ. Good results for the derivative h′′(t)
are therefore expected in the interval [3δ, T − 3δ]. Notice that although (h)γ(t), given by
(5.4) is non-smooth, its mollification (Jδ ∗h)(t), is C∞ functions, hence differentiable. The
mollified derivative is then computed using that

(Jδ ∗ (h)γ)′′(t) = (Jδ ∗ (h)′′γ)(t) = (J ′′
δ ∗ (h)γ)(t).

We use these mollified data to approximate (5.1)-(5.3), i.e. we replace the finite difference
quotients 1

(ht)2
(hn+1 − 2hn + hn−1), in (5.1) by (Jδ ∗ (h)γ)

′′(t) for n = 0, ..., nt. This
mollification of the first-order derivative has been performed using MATLAB version of
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the computational program supplied by D. A. Murio in ([19]). For γ = 0.01 noise, error
of mollified input data (5.4) is 0.00494 and the radius of mollification δ = 0.03402. For
γ = 0.05 noise, error of mollified input data (5.4) is 0.00624 and the radius of mollification
δ = 0.03271.

Figures 9 shows the exact and numerical solutions of a(t) obtained after mollification,
when the input data (1.5) is contaminated by γ = 0.01, and 0.05 noise for Example 3, re-
spectively. From this figure it can be seen that the application of the mollification to stabilize
the derivative of the noisy function (h)γ(t), produce stable numerical solutions for a(t).

6 Conflicts of interest

There are no conflicts of interest to this work.

7 Conclusion

In this paper, we solve the inverse problem to determine the unknown time-dependent coeffi-
cient of a non-linear source from an additional measurement. The existence and uniqueness
of a classical solution to the inverse IBVP are proved under the assumptions (A0)-(A5),
which include that g(w) and its derivatives of up to the second order are Lipschitz continu-
ous functions. The inverse problem is also numerically solved by applying finite difference
method. The examples illustrate how to implement the numerical method. Figures demon-
strate that this method is effective for non-linear hyperbolic equation with sine, quadratic
and cubic non-linearity.
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Fig. 1 Exact and direct numerical solutions w(1/2, t) for Example 1.
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Fig. 2 Exact and inverse numerical solutions {a(t), w(1/2, t)} for Example 1.
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Fig. 3 Exact and direct numerical solutions w(1/2, t) for Example 2.



170 Determination of a time-dependent coefficient in a non-linear hyperbolic equation...

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t-axis

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
exact a
inverse a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t-axis

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
exact w
inverse w

Fig. 4 Exact and inverse numerical solutions {a(t), w(1/2, t)} for Example 2.
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Fig. 5 Exact and direct numerical solutions w(1/2, t) for Example 3.
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Fig. 6 Exact and inverse numerical solutions {a(t), w(1/2, t)} for Example 3.
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Fig. 7 Exact and numerical coefficient solutions a(t) for Example 3 with 0.01, and 0.05 noise.
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Fig. 8 Exact and numerical w(1/2, t) solutions for Example 3 with 0.01, and 0.05 noise.
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Fig. 9 Exact and numerical coefficient solutions a(t) for Example 3 after mollification with 0.01, and 0.05 noise.


