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On a Rotar generalized condition and the central limit theorem
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Abstract. In this article, new numerical characteristic is introduced, which does not contain any addi-
tional parameters. It is proved that this characteristic represents a general record of Rotar type charac-
teristics. It is proved also that the tendency to zero of this characteristic is equivalent to the fulfilment of
the central limit theorem for the sequence of series of independent random variables.

Keywords. Central limit theorem, a generalized version of the Rotar characteristic, characteristic
functions, conditions for uniform infinite smallness of variance.

Mathematics Subject Classification (2010): 2010 Mathematics Subject Classification: 60B12, 60F05

1 Introduction. Preliminary information

By the well-known property of normal distribution, the sum of independent normally dis-
tributed random variables also has a normal distribution. This means that if the distributions
are independent close to the normal distribution law, then the distribution of the sum will be
so close to the normal law, i.e. the central limit theorem (CLT) holds for the corresponding
sequence of independent random variables.

Unlike other numerical characteristics used in limit theorems for sums of independent
random variables, Rotar’s numerical characteristic, introduced in [13, Ch. 5, 15, 261-273],
[14], takes into account the reduced property of the normal distribution.

In the studies of S.V. Nagaev and his students [7], [8], [9], [10], [11], a new versions
of the proof of the CLT for sequences of independent random variables connected in a
homogeneous Markov chain are presented and exact estimates are found for the absolute
constant in the Berri–Essen theorem.
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The references [15], [16], [17], [18], [6], [19], [1], [2], [20], [21], [22], [23], [24] are
devoted to the study of the convergence rate in the CLT and the establishment of analogues
of classical estimates of the Berry–Esseen type when moment conditions exist .

In recent articles [3], [12], [5], [4], modified versions of Rotar’s numerical characteristics
and their application in the CLT are investigated.

Arbitrary series
X1n, . . ., Xnn, . . . , n = 1, 2, ... (1.1)

of independent (in each series) random variables (r.v.) are considered, where the distribution
of r.v. Xk,n may depend on n.

Denote Sn =
∑n

k=1Xk,n. Let there exist

σ2k,n = EX2
k,n <∞, k = 1, 2, ..., n, n ≥ 1

From the point of view of subsequent results, it can be assumed, without loss of gener-
ality, that

EXk,n = 0, k = 1, 2, ... , n,
n∑
k=1

σ2k,n = 1. (1.2)

We bear in mind that the sequence of r.v. (1.1) obeys the CLT, if the following asymptotic
relationship is true

sup
x
|Fn(x)− Φ(x)| → 0,

where

Fn(x) = P (Sn < x), Φ(x) =
1√
2π

∫ x

−∞
e
−u2/2du

is the normal distribution with parameter (0, 1).
In problems of checking the validity of the CLT for a sequence of independent r.v. the

following characteristic plays an important role [13, Ch. 5, 18.3, p.305]

Ln(ε) =

n∑
k=1

∫
|x |>ε

x2 dFk,n(x), ε > 0,

where Fk,n(x) = P (Xk,n < x) is the distribution function (d.f.) of r.v. Xk,n.
Condition

Ln(ε)→ 0, n→∞, ∀ε > 0 (1.3)

is called the Lindeberg condition. In particular, it follows from the fulfilment of the Linde-
berg condition that the r.v. (1.1) in this case have the property of uniform infinite smallness
of variances:

max
1≤k≤n

σ2k,n → 0, n→∞. (1.4)

Condition (1.4) is called the Feller condition and from it, in turn, follows the so-called
condition of the limiting (asymptotic) smallness of the terms, which is

max
1≤k≤n

P (|Xk, n| > ε)→ 0, ∀ε > 0, n→∞. (1.5)

It is well known that Lindeberg’s theorem is valid if the Lindeberg condition (1.3) holds,
then for a sequence of independent r.v. (1.1) the CLT is true.
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As the following simple example of a sequence of independent r.v. shows, condition
(1.3) is not necessary for the validity of the CLT. Let X1, X2, . . . be a sequence of inde-
pendent normally distributed r.v. for which

EXn = 0, DX1 = 1, DXk = 2k−2, k ≥ 2.

Let us assume that Sn = X1,n + . . . +Xn,n, where

Xk,n =
Xk

Bn
, k = 1, 2, ..., n,

B2
n = DSn =

n∑
k=1

DXk = 1 + 1 +
n∑
k=3

DXk

= 2

[
1 +

(
1 +

n∑
k=4

2k−2
)]

= 2
(
1 + 2n−2 − 1

)
= 2n−1.

It is easy to check that for the given sequence of r.v. X1, X2, . . ., Xn, ... neither the Lin-
deberg condition nor the condition of uniform smallness of variances (1.4) is satisfied, al-
though the CLT is satisfied automatically, since the sums Sn are normally distributed with
the parameters ESn = 0, DSn = 1.

In [14], V.I. Rotar introduced the following numerical characteristic for the sequence of
r.v. (1.1):

Rn(ε) =

n∑
k=1

∫
|x|>ε

|x| |Fk,n(x)− Φk,n(x)| dx,

where 0 < ε <∞, Fk,n(x) is the d.f. of r.v. Xk,n, Φk,n(x) is normally distributed r.v. with

variance σ2k,n(i.e.Φk,n(x) = Φ
(

x
σk,n

)
).

Condition
Rn(ε)→ 0, ∀ε > 0, n→∞ (1.6)

is called the Rotar condition. It is weaker than condition (1.3) and it is equivalent to the
Lindeberg condition under the Feller condition (1.4) [13, Ch. 5, 18.7, p.310-311].

It follows from the definition of Rotar’s characteristic Rn(ε) that condition (1.6) is in no
way connected with the condition of infinite smallness of a sequence (1.5) of independent
r.v. (1.1).

In [12], an analog of the Rotar characteristic is introduced, which does not depend on
any ε > 0. This analog is defined by the following equation

R(α)
n =

n∑
k=1

∫ ∞
−∞

min
(
|x|α+1 , |x|

)
|Fk,n(x)− Φk,n(x)| dx, α > 0

and it was proved that the condition fulfilment

R(α)
n =

n∑
k=1

∫
|x |≤1

|x |1+α |Fk,n(x)− Φk,n(x)| dx+
n∑
k=1

∫
|x |>1

|x | |Fk,n(x)− Φk,n(x)| dx→ 0

for some α > 0 is equivalent to Rotar’s condition (1.6). The proof of this proposition
follows from Theorem 2.1, given in Section 2 below.
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2 Generalized Rotar condition and CLT

Following [5], we define class Bof bounded nonnegative functions on the straight line
lim
x→0

b(x) = 0, mb (δ) = inf
|x|>δ

b(x) > 0, for all δ > 0.

We assume that

Rbn =
n∑
k=1

∫ ∞
−∞
|x| b(x) |Fk,n(x)− Φk,n(x)| dx.

Theorem 2.1 The following three conditions are equivalent:
1) Rotar’s condition is satisfied;
2) lim

n→∞
Rbn = 0 for some b(·) ∈ B,

3) lim
n→∞

Rbn = 0 for all b(·) ∈ B.

Proof. Obviously, 3) implies 2). Let us prove that 2) implies 1). In fact, for any ε > 0 there
holds

Rn(ε) =
n∑
k=1

∫
|x|>ε

|x| |Fk,n(x)− Φk,n(x)| dx

≤ 1

mb(ε)

n∑
k=1

∫
|x|>ε

b(x) |x| |Fk,n(x)− Φk,n(x)| dx ≤
1

mb(ε)
Rbn → 0. (2.1)

Hence, the implication 2)⇒ 1) is proved. Now, let Rotar’s condition hold. Then we have

Rbn =

n∑
k=1

∫ ∞
−∞
|x| b(x) |Fk,n(x)− Φk,n(x)| dx

≤ sup
x
b(x)

n∑
k=1

∫
|x|>ε

|x| |Fk,n(x)− Φk,n(x)| dx+
n∑
k=1

∫
|x|≤ε

b(x) |x| |Fk,n(x)− Φk,n(x)| dx

≤ sup
x
b(x) ·Rn(ε) + sup

0<|x|≤ε
b(x)

n∑
k=1

∫ ∞
−∞
|x| |Fk,n(x)− Φk,n(x)| dx. (2.2)

Furthermore, applying integration by parts, we can be sure that for any d.f. F (x) with
finite invariance the following equation holds∫ 0

−∞
|x| F (x)dx+

∫ ∞
0

x(1− F (x))dx =
1

2

∫ ∞
−∞

x2dF (x). (2.3)

Now using the formula

E |X|n =

∫ ∞
−∞
|x|n dF (x) = n

∫ ∞
0

xn−1(1− F (x) + F (−x))dx

and equality (2.3), we obtain
n∑
k=1

∫ ∞
−∞
|x| |Fk,n(x)− Φk,n(x)| dx ≤

n∑
k=1

σ2k,n ≤ 1. (2.4)

Thus, it follows from relation (2.2)–(2.4) that

lim
n→∞

supRbn ≤ sup
|x|≤ε

b(x), ∀ε > 0,
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and therefore
lim
n→∞

Rbn = 0.

The proof of the Theorem 2.1 is complete.

Expression Rbn is called the generalized Rotar characteristic, and condition
(
Rb
)
Rbn →

0, for each b (•) ∈ R is called the generalized Rotar condition. The Rotar characteristic
Rn (ε) is obtained from the form Rbn, when

b (•) = b0 (x) =

{
0, for |x| ≤ ε,
1, for |x| > ε.

According to the result of Theorem 2.1, the proposition Rbn → 0, for any function b ∈ B
is equivalent to the fact that the Rotar condition is met {Rn (ε)→ 0, ∀ε > 0} . Taking into
account the latter, the main theorem in V. I. Rotar’s article [14] can be formulated as follows.

Theorem 2.2 Let {Xn,1, ... Xn,n, n = 1, 2, ...} be a sequence of series of independent
random variables. For this sequence to satisfy the CLT, it is necessary and sufficient to
satisfy the generalized Rotar condition

Rbn =

n∑
k=1

∫ ∞
−∞
|x| b (x) |Fk,n (x)− Φk,n| d (x)→ 0 (2.5)

for any function b (•) ∈ B.

In section 3 it will be provide a self-standing and independent of ([14], a shorter version)
proof of Theorem 2.2.

3 Proof of Theorem 2.2

Let the characteristic function (ch.f) of r.v. Xk,n

fk,n (t) = E e i tXk,n

and let

gk,n (t) = e−
σ2k,nt

2

2

be ch.f. of the normally distributed r.v. with parameter
(
0, σ2k,n

)
(k = 1, 2, ... , n). Then

fn (t) = E ei t Sn =
n∏
k=1

fk,n (t)

is the ch.f. of the standard normally distributed r.v. with parameter (0, 1):

gn (t) = g (t) =
n∏
k=1

e−
σ2k, nt

2
/2 = e−

t2/2.

To prove the sufficiency of the condition for the validity of the CLT according to the con-
tinuous accordance theorem, it is suffice to show that under condition (2.5) the following
convergence takes place

fn (t)→ g(t), t ∈ R. (3.1)

In turn, the limit relationship (3.1) is proved using the following auxiliary assertions.
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Lemma 3.1 . Let

Dn =

n∑
k=1

∫ ∞
−∞

min
(
|x| , x2

)
|Fk,n (x)− Φk,n (x) | d x =

n∑
k=1

∫
|x | ≤ 1

x2 |Fk,n (x)− Φk,n (x)|

+
n∑
k=1

∫
|x |>1

|x | |Fk,n (x)− Φk,n (x)| d x = Kn +Rn (1) = Kn +Rn.

Then the condition
Dn → 0, n→∞ (3.2)

is equivalent to Rotar’s condition (1.6).

Proof. Let condition (1.6) be true. Then we have

Kn =
n∑
k=1

∫
|x|≤ε

x2 |Fk,n (x)− Φk,n (x)| d x

+

n∑
k=1

∫
ε<|x|≤1

x2 |Fk,n (x)− Φk,n (x)| dx = K(1)
n +K(2)

n , 0 < ε < 1.

In view of inequality (2.4), we obtain

K1
n ≤ ε

∫
|x|≤ε

|x| |Fk,n (x)− Φk,n (x)| dx ≤ ε
n∑
k=1

σ2k,n ≤ ε. (3.3)

Furthermore, it is obvious that

K2
n ≤

n∑
k=1

∫
ε<|x |≤1

|x | |Fk,n (x)− Φk,n (x)| dx

≤
n∑
k=1

∫
|x |>ε

|x| |Fk,n (x)− Φk,n (x)| dx = Rn (ε) . (3.4)

It follows from (3.3) and (3.4) thatKn ≤ ε+Rn (ε), and therefore lim
n→∞

supKn ≤ ε. Thus,
due to the arbitrariness of 0 < ε < 1

Kn → 0, n→∞ (3.5)

it is obvious that

Rn = Rn (1) ≤ Rn (ε)→ 0, ∀ε > 0, n→∞. (3.6)

Now, by virtue of (3.5), (3.6), we obtain under condition (1.6)

Dn → 0, n→∞. (3.7)

Now let the condition (3.2) be satisfied. Then we have

Kn → 0, Rn → 0, n→∞. (3.8)

Furthermore, we have ( 0 < ε < 1)

Rn (ε) =
n∑
k=1

∫
|x|>ε

|x| |Fk,n (x)− Φk,n (x)| dx =
n∑
k=1

∫
ε<|x|≤1

|x| |Fk,n (x)− Φk,n (x)| dx

+

n∑
k=1

∫
|x |>1

|x| |Fk,n (x)− Φk,n (x)| d x ≤
1

ε
Kn +Rn → 0, n→∞. (3.9)

The proof of Lemma 3.1 follows from relationships (3.7) and (3.9).
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Lemma 3.2 If condition (3.2) is satisfied, then∣∣∣∣∣
n∑
k=1

(fk,n (t)− gk,n (t))

∣∣∣∣∣ ≤ h (t)Dn → 0,

where h (t) = max
(
t4

6 ,
|t|3
2 , 2t

2
)

.

Proof. Indeed, by virtue of the definition of the ch.f. of distributions. We can write the
following system of equalities and inequalities:∣∣∣∣∣

n∑
k=1

(fk,n (t)− gk,n (t))

∣∣∣∣∣ =
∣∣∣∣∣
n∑
k=1

∫ ∞
−∞

eitxd (Fk,n (x)− Φk,n (x))

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=1

∫ ∞
−∞

(
ei t x − 1− i t x− (itx)2

2

)
d (Fk,n − Φk,n)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=1

(it)

∫ ∞
−∞

(
eitx − 1− itx

)
(Fk,n (x)− Φk,n (x)) d x

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
k=1

(it)

∫
|x |≤1

(
eitx − 1− itx− (itx)2

2

)
(Fk,n (x)− Φk,n (x)) d x

∣∣∣∣∣
+
|t|3

2

n∑
k=1

∫
|x |≤1

x2 |(Fk,n (x)− Φk,n (x))| d x

+ | t |
n∑
k=1

∣∣∣∣∣
∫
|x |>1

(
eitx − 1− i t x

)
(Fk,n (x)− Φk,n (x)) d x

∣∣∣∣∣ .
When writing the last chain of equalities and in subsequent inequalities, identical trans-

formations and elementary estimates∣∣∣∣∣ei t x − 1− i t x− (i t x)2

2

∣∣∣∣∣ ≤ | t x |36
,
∣∣ei t x − 1− i t x

∣∣ ≤ (t x)2

2

are valid for any t and x. Taking into account the last remarks, we can conclude that∣∣∣∣∣
n∑
k=1

(fk,n (t)− gk,n (t))

∣∣∣∣∣ ≤ In 1 (t) + In 2 (t) + In 3 (t) , (3.10)

where

|In 1 (t)| ≤
t4

6

[
n∑
k=1

∫
|x |≤1

x2 |Fk,n (x)− Φk,n (x) | dx

]
,

| In 2 (t) | ≤
| t |3

2

[
n∑
k=1

∫
|x |≤1

x2 |Fk,n (x)− Φk,n (x)| d x

]
,

|In 3 (t)| ≤ 2 t2

[
n∑
k=1

∫
|x |>1

|x | |Fk,n (x)− Φk,n (x) | d x

]
.
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Therefore, for any t, the following estimates hold:

max (In1 (t) , In2 (t)) ≤ max

(
t4

6
,
| t |3

2

)
Kn → 0, (3.11)

|In 3 (t)| ≤ 2 t 2Rn → 0. (3.12)

The assertion of Lemma 3.2 follows from relationships (3.10)–(3.12).

Furthermore, when applying induction, it is easy to verify that for any

max
1≤k≤n

(∣∣a k∣∣, ∣∣b k∣∣) ≤ 1

the following inequality holds∣∣∣∣∣
n∏
k=1

a k −
n∏
k=1

b k

∣∣∣∣∣ ≤
n∑
k=1

|ak − bk| . (3.13)

By virtue of (3.13) and Lemma 3.2, for any t we have∣∣∣fn (t)− g (t)∣∣∣ =
∣∣∣∣∣
n∏
k=1

fnk (t)−
n∏
k=1

gnk (t)

∣∣∣∣∣ ≤
n∑
k=1

| fnk (t)− gnk (t) | → 0, n→∞.

So, the limit relationship (3.1) is proved, and the sufficiency of condition (2.5) for the va-
lidity of the CLT is proved as well.

The necessity of the generalized Rotar condition is proved as follows. In [2], V.I. Rotar
has proved that the Rotar condition (1.6) is necessary for CLT to hold. However, accord-
ing to Theorem 2.1, the condition (2.5) is equivalent to Rotar’s condition (1.6). Conse-
quently,the generalized Rotar condition (2.5) is a necessary condition for the validity of the
CLT.
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