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Abstract. We prove existence and uniqueness of weak solutions nonlinear elliptic-parabolic problem
with nonlinear boundary conditions. These including heat transfer in a solid in contact with a moving
fluid, thermoelasticity, diffusion phenomena, problems in fluid dynamics.
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1 Introduction

Let Ω ⊂ Rn be a smooth bounded domain and T > 0. Let us denote QT = Ω ×
[0, T ). The purpose of paper is to establish the existence and uniqueness of a weak solution
for a nonlinear degenerate elliptic-parabolic equations with nonlinear dynamical boundary
condition

∂γ(u)

∂t
− div a(x,Du) = f in QT ,

ut + a(x,Du)η = g on ST = ∂Ω × (0, T ) , (1.1)

γ (u (0)) = u0 in ∂Ω,

where u0 ∈ L1(Ω), f ∈ L1 (0, T ; L1(Ω)) , g ∈ L1 (0, T ; L1 (∂Ω)) and η is unit outward
normal on ∂Ω. Hear a : Ω × Rn → Rn is a Caratheodory function. For the function
γ : R→ R we assume that:

1. γ is increasing and Lipshitz;
2. γ(s) = 0, when s = 0;
3. γ ∈ C(R) ∩ C1([0,∞)).
The Caratheodory function a : Ω × Rn → Rn satisfies:
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a) there exists λ > 0 such that a(x, ξ) ·ξ ≥ λ |ξ|p for a.e. x ∈ Ω and for all ξ ∈ Rn, p >
1;

b) there exist C > 0 such that |a(x, ξ)| ≤ C
(

1 + |ξ|p−1
)

for a.e. x ∈ Ω and for all
ξ ∈ Rn;

c) (a(x, ξ)− a(x, η)) · (ξ − η) > 0 for a.e. x ∈ Ω and for all ξ, η ∈ Rn, ξ 6= η.
We denote |E| the Lebesgue measure of a set E ⊂ Rn or its (n−1)-Hausdorff measure.

For 1 ≤ p <∞, L1(Ω) andW 1
p (Ω) denote respectively the Lebesgue and Sobolev spaces,

and W̊ 1
p (Ω) is the closure C∞(Ω) functions which vanishing in ∂Ω.

We also consider the problem

∂u

∂t
− ψ(x, t)utt − div a(x,Du) = f(x, t)

u|Γ (QT ) = 0,

where
Γ (QT ) = (∂Ω × (0, T )) ∪ (Ω × {(x, t) : t = 0})

is a parabolic boundary of the domain QT and ψ(x, t) = λ(ρ)ω(t)ϕ(T − t) is weight
function. Here ρ = ρ(x) = dist(x, ∂Ω), λ(ρ) ≥ 0, λ(ρ) ∈ C1[0, diamΩ], |λ′(ρ)| ≤
c1
√
λ(ρ), ω(t) ≥ 0, ω(t) ∈ C1[0, T ], ϕ(z) ≥ 0, ϕ′(z) ≥ 0, ϕ(z) ∈ C1[0, T ], ϕ(0) =

ϕ′(0) = 0, ϕ(z) ≥ c2 z ϕ′(z) and c1, c2 are positive constants.
The weak solution is the following. For given f ∈ L1

(
0, T, L1(Ω)

)
, g ∈ L1

(
0, T ; L1(∂Ω)

)
,

u0 ∈ L1(Ω), a weak solution of (1.1) inQT such that γ(u) ∈ C ([0, T ); L1(Ω)), γ (u (0)) =
u0 and there exists u ∈ Lp

(
0, T ; W 1

p (Ω)
)

such that

d

dt

∫
Ω

γ(x)ξdx+
d

dt

∫
∂Ω

u(s)ξds+

∫
Ω

a(x,Du)Dξdx =

∫
Ω

f(x)ξdx+

∫
∂Ω

g(s)ξds (1.2)

for any ξ ∈ C1
(
Ω
)
.

We define u+ = max (u, 0) , u− = min (u, 0). For the monotone γ and u, we set

R+
γ,u = γ+ |Ω|+ u+ |∂Ω| , R−γ,u = γ− |Ω|+ u− |∂Ω| ,

where v− = inf v, v+ = sup v. We supposeR−γ,u < R+
γ,u and we writeRγ,u =

(
R−γ,u, R

+
γ,u

)
.

The nonlinear dynamical boundary conditions, although not too widely considered in
the mathematical literature, are very natural in many mathematical models including heat
trunsfer in a solid in contact with a moving fluid, thermoelasticity, diffusion phenomena,
problems in fluid dynamics, ets. (see [5,6]). The nonlinear boundary conditions also ap-
pear in the study of the Stefan problem when the boundary material has large thermal con-
ductivity and sufficiently small thickness. Hence, the boundary material is regarded as the
boundary of the domain. For instance, this is the case if one considers an iron ball in which
water and ice coexist, in the study of the Hele-Shaw problem. Notice that general nonlin-
ear diffusion operators of Leray-Lions type, different from the Laplacian, appear when one
deals whith non-Newtonian fluids (see, [2,14] and the references therein for the case of the
Hele-Shaw problem with non-Newtonian fluids).

Another application in mind concerns the filtration equation with dynamical nonlinear
boundary conditions, which appears in the study of rainfall infiltration through soil, when
accumulation of water on the ground surfaces caused by saturation of the surface layer is
taken info account.

In contrast to the Dirichlet boundary condition, for the nonhomogeneous Neumann and
dynamical boundary conditions, the problem is noncoercive, and moreover, the conservation
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of mass exhibits a necessary condition for the existence of solution related to the ranges of
the nonlinearities γ. See also papers [7]-[13]. In [1] are consider this problem for maximal
monoton graphs in R2.

Note. Our main tool to prove the contraction principle the concept due to Ph.Benilan
(see [3,4]).

2. Main results

The main results of this paper are the following contraction principe and the existence and
uniqueness theorem.

Theorem 2.1 Let u(x, t) be a weak solution in QT of problem (1.1) and T > 0. For
i = 1, 2 let fi ∈ L1 (0, T ; L1(Ω)), gi ∈ L1 (0, T ; L1 (∂Ω)), ui0 ∈ L1(Ω). Then∫

Ω

(γ1(u)− γ2(u))+ dx+

∫
∂Ω

(u1(s)− u2(s))+ ds

≤
∫
Ω

(γ1 (u1 (0))− γ2 (u2 (0)))+ dx+

∫
∂Ω

(u10 − u20)+ ds

+

t∫
0

∫
Ω

(f1 (τ)− f2 (τ))+ dτ +

t∫
0

∫
∂Ω

(g1 (τ)− g2 (τ))+ dτ (2.1)

for a.e. t ∈ (0, T ).
Following relation for u, v ∈ L1(Ω) holds: u ≤ v if∫

Ω

(u− k)+ dx ≤
∫
Ω

(v − k)+ dx and

∫
Ω

(u+ k)− dx ≤
∫
Ω

(v + k)− dx

for any k > 0.
Theorem 2.2 Assume R−γ,u < R+

γ,u and T > 0. Let f ∈ Lp′
(
0, T ; Lp′(Ω)

)
, g ∈

Lp′
(
0, T ; Lp′ (∂Ω)

)
, u0 ∈ Lp′(Ω) be such that

γ− ≤ u0 ≤ γ+ (2.2)

and ∫
Ω

γ (u0) dx+

∫
γΩ

u0ds+

T∫
0

∫
Ω

fdx+

∫
∂Ω

gds

 dt ∈ Rγ,u , ∀ t ∈ [0, T ). (2.3)

Then there exists a unique weak solution of problem (1.1)
The uniqueness part of Theorem 2.2 follows from Theorem 2.1. To prove Theorem 2.1

and the existence part of Theorem 2.2 we shall use the theory of nonlinear semigroups (see
[11,12]). For some questions consider [8–10]. To study problem (1.1) from the point of
view of nonlinear semigroup theory is X = L1(Ω) × L1 (∂Ω) provided with the natural
norm

‖(f, g)‖ = ‖f‖L1(Ω) + ‖g‖L1(∂Ω).

n this space we define the operator

Bγ, u =
{(
γ(u), u

∣∣
∂Ω

)
,
(
γ̂(u), û

∣∣
∂Ω

)
∈ X ×X :
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: ∃u ∈W 1
p (Ω) such that

[
u, γ(u), u

∣∣
∂Ω

]
is a weak solution of elliptic problem

}
,

in other words,
(
γ̂(u), û

∣∣
∂Ω

)
∈ Bγ, u

((
γ(u), u

∣∣
∂Ω

))
if and only if there exist u ∈W 1

p (Ω)
such that ∫

Ω

a(x,Du) ·Dϕ =

∫
Ω

γ̂(u)ϕdx+

∫
∂Ω

û |∂Ω ϕds, (2.4)

for all ϕ ∈ L∞(Ω) ∩W 1
p (Ω),which allows us to rewrite problem (1.1) as the following

abstract Caushy problem in X:{
V ′(t) +Bγ, u (V (t)) = (f, g) , t ∈ (0, T ) ;

V (0) = (γ (u (0)) , u (0) |∂Ω ) .
(2.5)

The operator Bγ, u is T -accretive in X and on these condition problem (2.5) there exists a
unique solution.

The existence part of theorem 2.2 is shown by prowing that the solution of problem (2.5)
is a weak solution of problem (1.1) whenever the assumptions of theorem 2.2 are fulfiled.
Before giving the proof we need to prove some technical Lemmas.

The following lemma in the proof of the existence part and in the proof of the Contrac-
tion principle is using. Denote by (· , ·) the pairing between

(
W 1
p (Ω)

)′ and W 1
p (Ω).

Lemma 2.3 Let (γ(u), u |∂Ω ) ∈ C ([0, T ); L1(Ω)× L1 (∂Ω)) andF ∈ Lp′(0, T ; (W 1
p (Ω)′))

such that
T∫
0

∫
Ω

γ
(
u(x, t)

)
ψtdxdt+

T∫
0

∫
∂Ω

u
∣∣
∂Ω·ψtdxdt =

T∫
0

(F (t), ψ(t)) dt, (2.6)

for any ψ ∈ W 1
1

(
0, T ; W 1

1 (Ω) ∩ L∞(Ω)
)
∩ Lp

(
0, T ; W 1

p (Ω)
)

with ψ (0) = ψ(t) = 0.
Then

T∫
0

∫
Ω

 γ(u(x,t))∫
0

H((x, t), (γ−1)(s))ds

ψtdxdt+ T∫
0

∫
∂Ω

 u|∂Ω∫
0

H((x, t), (u−1)(s))ds

ψtdsdt

=

T∫
0

(F (t), H ((x, t), u(t)))ψ(t)dt,

for any u ∈ Lp
(
0, T ; W 1

p (Ω)
)

with γ(u) in QT , u in ST , for any ψ, and for Caratheodory
function H : Ω × [0, T ) → R such that H (x, r) is nondecreasing in r, H (·, u) ∈
Lp
(
0, T ; W 1

p (Ω)
)
,

γ(u)∫
0

H
(
(x, t),

(
γ−1(u)(s)

))
ds ∈ L1 (QT ) and

u|∂Ω∫
0

H
(
(x, t),

(
u−1

)
(s)
)
ds ∈ L1 (ST ) .

Proof: Before this result is proved for dirichlet boundary condition. Our proof is similar
with correspondingly changes.

Let ψ ≥ 0 and for Hτ = T1/τH, τ > 0, let

ητ (t) =
1

τ

t+τ∫
t

Hτ ((x, t), u(s))ψ(s)ds.
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Then ητ can be used as a test function in (2.6), after calculations and letting τ → 0+ we
get

T∫
0

(F (t), H ((x, t), u(t)))ψ(t)dt ≤
T∫
0

∫
Ω

 γ(u(t))∫
0

H
(

(x, t),
(
γ−1

)◦
(s)
)
ds

ψtdxdt

+

T∫
0

∫
∂Ω

 u|∂Ω∫
0

H
(

(x, t),
(
u−1

)◦
(s)
)
ds

ψtdsdt.

Takin now η̂τ (t) = 1
τ

t+τ∫
t

Hτ (x, u (s− τ))ψ(s)ds, and arguing as above we get the

required inequality.2
To prove the existence of weak solutions we shall
Lemma 2.4 Let {un}n∈N ⊂W 1

p (Ω), {γ (un)}n∈N ⊂ L1(Ω), {un |∂Ω }n∈N ⊂ L1 (∂Ω)

be such that, for every n ∈ N. Supppose that 1) if R+
γ,u = +∞, there exists M > 0 such

that ∫
Ω

γ
(
un
)+

+

∫
∂Ω

un
∣∣+
∂Ω

< M, ∀n ∈ N,

2) if R+
γ,u < +∞, there exists M ∈ R and h > 0 such that∫

Ω

γ
(
un
)+

+

∫
∂Ω

un
∣∣+
∂Ω

< M < R+
γ,u, ∀n ∈ N

and

max


∫

{
x∈Ω:γ

(
un(x)

)
<−h

}
∣∣γ(un)∣∣, ∫

{
x∈∂Ω:un

∣∣
∂Ω
<−h

}
∣∣un∣∣∂Ω∣∣

 <
R+
γ,u −M

8
, ∀n ∈ N.

Then there exist a constant C(M) in case 1), and C(M,h) in case 2), such that∥∥u+n ∥∥Lp(Ω)
≤ C

(∥∥Du+n ∥∥Lp(Ω)
+ 1
)
, ∀n ∈ N.

Proof: Assume first that R+
γ,u = +∞. Then γ+ = +∞, and by assumption, there exists

M > 0 such that ∫
Ω

γ+ (un) dx < M , ∀n ∈ N.

Let Kn =
{
x ∈ Ω : γ+

(
un(x)

)
< 2M
|Ω|
}

, for every n ∈ N. Then

0 ≤
∫
Kn

γ+ (un) =

∫
Ω

γ+ (un)−
∫

Ω\Kn

γ+ (un) ≤M−
(
|Ω| −

∣∣Kn

∣∣) 2M

|Ω|
=
∣∣Kn

∣∣ 2M

|Ω|
−M.
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Therefore,
∣∣Kn

∣∣ ≥ |Ω|2 , and∥∥u+n ∥∥Lp(Kn) ≤ ∣∣Kn

∣∣1/p sup γ−1
(
un
)2M

|Ω|
.

Then by well known result, for all n ∈ N∥∥u+n ∥∥Lp(Ω)
≤ C

((
2

|Ω|

)1/p ∥∥Du+n ∥∥Lp(Ω)
+ sup γ−1 (un)

(
2M

|Ω|

))
.

Now assume R+
γ,u < +∞, and let δ = R+

γ,u −M. Then by assumption∫
Ω

γ (un) +

∫
∂Ω

un < R+
γ,u − δ.

Consequently, for every n ∈ N∫
Ω

γ (un) < γ+ |Ω| − δ

2
,

∫
∂Ω

un < γ+ |∂Ω| − δ

2
. (2.6)

Thus ∥∥u+n ∥∥Lp(Kn) ≤ ∣∣Kn

∣∣1/p sup γ−1
(
γ+ − δ

4 |Ω|

)
.

Then, by well known results∥∥u+n ∥∥Lp(Ω)
≤ C

((
h− δ (4 |Ω|+ γ+)

δ/8

)1/p ∥∥Du+n ∥∥Lp(Ω)
+ sup γ−1

(
γ+ − δ

4 |Ω|

))
.

Lemma is proved.
Proof of the existence part of Theorem 2.2. Let f ∈ Lp′

(
0, T ; Lp′(Ω)

)
,

g ∈ Lp′
(
0, T ; Lp′ (∂Ω)

)
, u0 ∈ Lp′(Ω), and V (t) solution of problem (2.5), where

V (t) = (γ (u(t)) , u(t) |∂Ω ) . Our aim is to prove that (γ (u(t)) , u |∂Ω ) is a weak solu-
tion of problem (1.1). For n ∈ N, let ε = T

n , and consider a subdivision t0 = 0 <
t1 < t2 < · · · < tn−1 < T = tn with ti − ti−1 = ε and f1, · · · , fn ∈ Lp′(Ω) and
g1, · · · , gn ∈ Lp′ (∂Ω) with

n∑
i=1

ti∫
ti−1

(
‖f(t)− fi‖p

′

Lp′ (Ω) + ‖g(t)− gi‖p
′

Lp′ (∂Ω)

)
dt ≤ ε.

If we set fε(t) = fi, gε(t) = gi and uε(t) = ui for t ∈ (ti−1, ti) , i = 1, · · ·n and after
some calculations, using Young,s inequality, the trace theorem, from Lemma 2.4 we have
there exists a constant C > 0 such that

‖uε(t)‖Lp(Ω) ≤ C
(
‖Duε(t)‖Lp(Ω) + 1

)
, for all t ∈ [0, T ). (2.7)

Then we deduce that there exists C > 0 such that
T∫
0

∫
Ω

|Duε(x, t)|p dxdt < C. (2.8)

By this estimates {uε} is bounded in Lp
(
0, T ; W 1

p (Ω)
)
. So, there exists a subsequence,

denoted again {uε}, such that uε → u weakly in Lp
(
0, T ; W 1

p (Ω)
)

as ε → 0+ and
uε → u weakly in Lp (ST ) as ε→ 0+. This as ε→ 0+ we have the proof.

Theorem is proved.
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