On a generalized Norden-Walker 4-manifold

Narmina E. Gurbanova *

Received: 07.05.2021 / Revised: 03.11.2021 / Accepted: 22.12.2021

Abstract

The aim of this paper is to express geometric properties of a generalized almost complex structure on 4-dimensional Walker manifolds. We study the integrability and Kähler (holomorphic) conditions of a generalized Norden-Walker structure by using of the vanishing of Nijenhuis tensor and the Tachibana operator applied to the Walker metric.

Keywords. Almost complex structure, Holomorphic metrics, Norden metric, Walker 4-manifolds.
Mathematics Subject Classification (2010): 53C15, 53C25, 53B30

1 Introduction

The investigation of some classes of four-dimensional Norden-Walker manifolds is important in the context of mainstream of modern differential geometry. Walker obtained a local canonical form for the pseudo-Riemannian metric of a C^{∞}-manifold [10, Theorem 3.1]. Moreover, he proved that the Walker metric of dimension 4 is depending on three smooth functions [10, p. 76].

Let $\left(M_{2 n}, g\right)$ be a Riemannian manifold, with a neutral metric, i.e., with a pseudoRiemannian metric g of signature (n, n). $\Im_{q}^{p}\left(M_{2 n}\right)$ is a set of all tensor fields of type (p, q) on $M_{2 n}$. Manifolds and tensor fields are belonged to the class C^{∞}.

Next let $\left(M_{2 n}, \varphi, g\right)$ be an almost complex manifold, i.e. we assume that φ is an almost complex structure satisfying $\varphi^{2}=-I$. An almost complex structure φ is said to be integrable if φ is reduced to the constant form in a collection of holonomic (natural) coordinates on $M_{2 n}$ [3]. Also, an almost complex structure φ is integrable if and only if the Nijenhuis tensor $N_{\varphi} \in \Im_{2}^{1}\left(M_{2 n}\right)$ vanishes [$\left.6, \mathrm{p} .124\right]$. The triple $\left(M_{2 n}, \varphi, g\right)$ is called complex manifold if φ is integrable.

We say that a neutral metric g is a Norden metric [9] if

$$
g(\varphi X, \varphi Y)=-g(X, Y)
$$

or equivalently

$$
g(\varphi X, Y)=g(X, \varphi Y)
$$

[^0]where $X, Y \in \Im_{0}^{1}\left(M_{2 n}\right)$. An almost Norden manifold is a triple $\left(M_{2 n}, \varphi, g\right)$ with the Norden metric g. The triple is called Norden manifold if φ is integrable.

We say that a Norden metric g on a Norden manifold $\left(M_{2 n}, \varphi, g\right)$ is holomorphic if

$$
\left(\Phi_{\varphi} g\right)(X, Y, Z)=0
$$

for any vector fields X, Y, Z on $M_{2 n}$, where $\Phi_{\varphi} g$ is the Tachibana operator [11]:
$\left(\Phi_{\varphi} g\right)(X, Y, Z)=(\varphi X)(g(Y, Z))-X g(\varphi Y, Z)+g\left(\left(L_{Y} \varphi\right) X, Z\right)+g\left(Y,\left(L_{Z} \varphi\right) X\right)$.
By assigning natural vector fields instead of vector fields X, Y, Z in the equation (1.1), we can write this equation in coordinates such as

$$
\left(\Phi_{\varphi} g\right)_{k i j}=\varphi_{k}^{m} \partial_{m} g_{i j}-\varphi_{i}^{m} \partial_{k} g_{m j}+g_{m j}\left(\partial_{i} \varphi_{k}^{m}-\partial_{k} \varphi_{i}^{m}\right)+g_{i m} \partial_{j} \varphi_{k}^{m}
$$

A triple $\left(M_{2 n}, \varphi, g\right)$ is holomorphic Norden manifold if g is the holomorphic Norden metric. In some literatures, holomorphic Norden manifolds and Kähler manifolds are identical [2, p. 73], [4].

2 Walker metric

Let M_{4} be a 4-dimensional C^{∞}-manifold. A neutral metric g on a manifold M_{4} is said to be Walker metric if there is a totally isotropic parallel 2 -dimensional null distribution D on M_{4}. By a result of Walker theorem [10, p. 76], for every Walker metric g on a 4 -manifold M_{4}, there exist a system of coordinates which the matrix of $g=\left(g_{i j}\right)$ in these coordinates has following form:

$$
g=\left(g_{i j}\right)=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \tag{2.1}\\
0 & 0 & 0 & 1 \\
1 & 0 & a & c \\
0 & 1 & c & b
\end{array}\right)
$$

where a, b, c are differentiable functions depending on the coordinates (x, y, z, t). The parallel $2-$ dimensional null distribution D is spanned locally by $\left\{\partial_{x}, \partial_{y}\right\}$, where $\partial_{x}=\frac{\partial}{\partial x}$, $\partial_{y}=\frac{\partial}{\partial y}$.

Let be an almost complex structure on a Walker 4-manifold M_{4}, which satisfies

$1 \varphi^{2}=-I$,

$2 g(\varphi X, Y)=g(X, \varphi Y)$ (Nordenian property)
$3 \varphi \partial_{x}=\partial_{y}, \varphi \partial_{y}=-\partial_{x}$ (φ induces a positive $\frac{\pi}{2}$ rotation on the degenerate parallel field D).

The almost complex structure φ is completely determined by the metric as follows:

$$
\left\{\begin{array}{l}
\varphi \partial_{x}=\partial_{y} \\
\varphi \partial_{y}=-\partial_{x} \\
\varphi \partial_{z}=d \partial_{x}+\frac{1}{2}(a+b) \partial_{y}-\partial_{t} \\
\varphi \partial_{t}=-\frac{1}{2}(a+b) \partial_{x}+d \partial_{y}+\partial_{z}
\end{array}\right.
$$

and φ has the local components with respect to the natural frame $\left\{\partial_{x}, \partial_{y}, \partial_{z}, \partial_{t}\right\}$

$$
\varphi=\left(\varphi_{j}^{i}\right)=\left(\begin{array}{cccc}
0 & -1 & d & -\frac{1}{2}(a+b) \tag{2.2}\\
1 & 0 & \frac{1}{2}(a+b) & d \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

where $d=d(x, y, z, t)$ is an arbitrary function.
The triple $\left(M_{4}, \varphi, g\right)$ is called generalized almost Norden-Walker manifold. In some literature [1], [7], [8] φ with $d=c$ is called the proper almost complex structure. Our purpose here is to investigate integrability and holomorphic (Kähler) conditions of a generalized almost complex structure φ.

3 Norden-Walker manifold

An almost complex structure φ is integrable if the Nijenhuis tensor N_{φ} with the coordinates

$$
\left(N_{\varphi}\right)_{j k}^{i}=\varphi_{j}^{m} \partial_{m} \varphi_{k}^{i}-\varphi_{k}^{m} \partial_{m} \varphi_{j}^{i}-\varphi_{m}^{i} \partial_{j} \varphi_{k}^{m}+\varphi_{m}^{i} \partial_{k} \varphi_{j}^{m}=0
$$

vanishes.
From (2.1) and (2.2), we have

$$
\begin{aligned}
& \left(N_{\varphi}\right)_{13}^{1}=\left(N_{\varphi}\right)_{24}^{1}=\left(N_{\varphi}\right)_{11}^{1}=\left(N_{\varphi}\right)_{42}^{1}=\left(N_{\varphi}\right)_{14}^{2}=\left(N_{\varphi}\right)_{23}^{2}=\left(N_{\varphi}\right)_{32}^{2}=\left(N_{\varphi}\right)_{41}^{2}=a_{x}+b_{x}+2 d_{y}=0, \\
& \left(N_{\varphi}\right)_{14}^{1}=\left(N_{\varphi}\right)_{23}^{1}=\left(N_{\varphi}\right)_{32}^{1}=\left(N_{\varphi}\right)_{41}^{1}=\left(N_{\varphi}\right)_{13}^{2}=\left(N_{\varphi}\right)_{24}^{2}=\left(N_{\varphi}\right)_{31}^{2}=\left(N_{\varphi}\right)_{42}^{2}=a_{y}+b_{y}-2 d_{x}=0, \\
& \left(N_{\varphi}\right)_{34}^{1}=-\left(N_{\varphi}\right)_{43}^{1}=-\frac{1}{2} d\left(a_{x}+b_{x}+2 d_{y}\right)-\frac{1}{4}(a+b)\left(a_{y}+b_{y}-2 d_{x}\right)=0, \\
& \left(N_{\varphi}\right)_{34}^{2}=-\left(N_{\varphi}\right)_{43}^{2}=-\frac{1}{2} d\left(a_{y}+b_{y}-2 d_{x}\right)+\frac{1}{4}(a+b)\left(a_{x}+b_{x}+2 d_{y}\right)=0 .
\end{aligned}
$$

So we have obtained the following theorem:

Theorem 3.1 An almost complex structure φ on a generalized almost Norden-Walker manifold is integrable if and only if

$$
\left\{\begin{array}{l}
a_{x}+b_{x}+2 d_{y}=0 \\
a_{y}+b_{y}-2 d_{x}=0
\end{array}\right.
$$

From here we have the following identities:

$$
\left\{\begin{array}{l}
a_{x y}+b_{x y}+2 d_{y y}=0 \\
a_{y x}+b_{y x}+2 d_{x x}=0
\end{array} \Rightarrow d_{x x}+d_{y y}=0\right.
$$

i.e., if an almost complex structure φ is integrable, then the function d is harmonic with respect to the arguments x and y. Thus we have

Theorem 3.2 If the triple $\left(M_{4}, \varphi, g\right)$ is a generalized Norden-Walker manifold, then d is harmonic with respect to the arguments x and y.

4 Holomorphic Norden-Walker manifold

Now let $\left(M_{4}, \varphi, g\right)$ be a generalized almost Norden-Walker manifold. First, we note that if

$$
\left(\Phi_{\varphi} g\right)_{k i j}=\varphi_{k}^{m} \partial_{m} g_{i j}-\varphi_{i}^{m} \partial_{k} g_{m j}+g_{m j}\left(\partial_{i} \varphi_{k}^{m}-\partial_{k} \varphi_{i}^{m}\right)+g_{i m} \partial_{j} \varphi_{k}^{m}=0,
$$

then φ is integrable and the manifold $\left(M_{4}, \varphi, g\right)$ is called a holomorphic Norden-Walker or a Kähler-Norden-Walker manifold [3].

After some straightforward calculations, we have

$$
\begin{aligned}
& \left(\Phi_{\varphi} g\right)_{x z z}=a_{y}+c_{x}-d_{x}, \\
& \left(\Phi_{\varphi} g\right)_{x z t}=\left(\Phi_{\varphi} g\right)_{x t z}=\frac{1}{2}\left(b_{x}-a_{x}\right)+c_{y}, \\
& \left(\Phi_{\varphi} g\right)_{x t t}=b_{y}-c_{x}-d_{x}, \quad\left(\Phi_{\varphi} g\right)_{y z z}=-a_{x}+c_{y}-d_{y}, \\
& \left(\Phi_{\varphi} g\right)_{y z t}=\left(\Phi_{\varphi} g\right)_{y t z}=-c_{x}+\frac{1}{2}\left(b_{y}-a_{y}\right), \\
& \left(\Phi_{\varphi} g\right)_{y t t}=-b_{x}-c_{y}-d_{y}, \\
& \left(\Phi_{\varphi} g\right)_{z x z}=\left(\Phi_{\varphi} g\right)_{z z x}=\left(\Phi_{\varphi} g\right)_{t x t}=\left(\Phi_{\varphi} g\right)_{t t x}=d_{x}, \\
& \left(\Phi_{\varphi} g\right)_{z x t}=\left(\Phi_{\varphi} g\right)_{z t x}=-\left(\Phi_{\varphi} g\right)_{t x z}=-\left(\Phi_{\varphi} g\right)_{t z x}=\frac{1}{2}\left(a_{x}+b_{x}\right), \\
& \left(\Phi_{\varphi} g\right)_{z y z}=\left(\Phi_{\varphi} g\right)_{z z y}=\left(\Phi_{\varphi} g\right)_{t y t}=\left(\Phi_{\varphi} g\right)_{t t y}=d_{y}, \\
& \left(\Phi_{\varphi} g\right)_{z y t}=\left(\Phi_{\varphi} g\right)_{z t y}=-\left(\Phi_{\varphi} g\right)_{t y z}=-\left(\Phi_{\varphi} g\right)_{t z y}=\frac{1}{2}\left(a_{y}+b_{y}\right), \\
& \left(\Phi_{\varphi} g\right)_{z z z}=d a_{x}-a_{t}+c_{z}+d_{z}+\frac{1}{2}(a+b) a_{y}, \\
& \left(\Phi_{\varphi} g\right)_{z z t}=\left(\Phi_{\varphi} g\right)_{z t z}=d c_{x}-c_{t}+b_{z}+d_{t}+\frac{1}{2}(a+b) c_{y}, \\
& \left(\Phi_{\varphi} g\right)_{z t t}=d b_{x}-c_{z}+d_{z}+a_{t}+\frac{1}{2}(a+b) b_{y}, \\
& \left(\Phi_{\varphi} g\right)_{t z z}=d a_{y}-b_{z}+c_{t}-d_{t}-\frac{1}{2}(a+b) a_{x}, \\
& \left(\Phi_{\varphi} g\right)_{t z t}=\left(\Phi_{\varphi} g\right)_{t t z}=d c_{y}+c_{z}-a_{t}+d_{z}-\frac{1}{2}(a+b) c_{x}, \\
& \left(\Phi_{\varphi} g\right)_{t t t}=d b_{y}+b_{z}-c_{t}+d_{t}-\frac{1}{2}(a+b) b_{x} .
\end{aligned}
$$

So, we have the following theorem:
Theorem 4.1 The generalized Norden-Walker manifold $\left(M_{4}, \varphi, g\right)$ is holomorphic if and only if the following PDEs hold:

$$
\begin{aligned}
& a_{x}=-b_{x}=c_{y}, \quad a_{y}=-b_{y}=-c_{x}, \quad d_{x}=d_{y}=0, \\
& d a_{x}-a_{t}+c_{z}+d_{z}+\frac{1}{2}(a+b) a_{y}=0, \\
& d a_{y}-b_{z}+c_{t}-d_{t}-\frac{1}{2}(a+b) a_{x}=0 .
\end{aligned}
$$

References

1. Davidov, J., Díaz-Ramos, J.C., García-Río, E., Matsushita, Y., Muškarov, O., VázquezLorenzo, R.: Almost Kähler Walker 4-manifolds, J. Geom. Phys. 57, 1075-1088 (2007).
2. Iscan, M., Salimov, A.: On Kähler-Norden manifolds, Proc. Indian Acad. Sci. Math. Sci. 119, 71-80 (2009).
3. Salimov, A., Iscan, M.: Some properties of Norden-Walker metrics, Kodai Math. J. 33 (2), 283-293 (2010).
4. Salimov, A., Iscan, M., Etayo, F.: Paraholomorphic B-manifold and its properties, Topology Appl. 154, 925-933 (2007).
5. Kobayashi, S., Nomizu, K.: Foundations of differential geometry I, Willey (1963).
6. Kobayashi, S., Nomizu, K.: Foundations of differential geometry II, Willey (1969).
7. Matsushita, Y.: Four-dimensional Walker metrics and symplectic structure, J. Geom. Phys. 52, 89-99 (2004).
8. Matsushita, Y.: Walker 4-manifolds with proper almost complex structure, J. Geom. Phys. 55, 385-398 (2005).
9. Norden A.P.: On a certain class of four-dimensional A-spaces, Iz. VUZ, 4, 145-157 (1960).
10. Walker A.G.: Canonical form for a Rimannian space with parallel field of null planes, Quart. J. Math. Oxford 1 (2), 69-79 (1950).
11. Yano K., Ako, M.: On certain associated with tensor fields, Kodai Math. Sem. Rep. 20, 414-436 (1968).

[^0]: * Corresponding author
 N.E. Gurbanova

 Baku State University, Department of Algebra and Geometry, Baku, Azerbaijan
 E-mail: qurbanova.nermine.97@mail.ru

