Maximal commutators in Orlicz spaces for the Dunkl operator on the real line

Fatma A. Muslumova *

Received: 15.11.2021 / Revised: 30.04.2022 / Accepted: 07.05.2022

Abstract. On the real line, the Dunkl operators

$$
D_{\nu}(f)(x):=\frac{d f(x)}{d x}+(2 \nu+1) \frac{f(x)-f(-x)}{2 x}, x \in \mathbb{R}, \nu \geq-1 / 2
$$

are differential-difference operators associated with the reflection group \mathbb{Z}_{2} on \mathbb{R}. In the paper, in the setting \mathbb{R} we study the maximal commutators $M_{b, \nu}$ in the Orlicz spaces $L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)$. We give necessary and sufficient conditions for the boundedness of the operators $M_{b, \nu}$ on Orlicz spaces $L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)$ when b belongs to $B M O\left(\mathbb{R}, d m_{\nu}\right)$ spaces.

Keywords. Maximal operator; Orlicz space; Dunkl operator; commutator; BMO
Mathematics Subject Classification (2010): 2010 Mathematics Subject Classification: 42B20, 42B25, 42B35

1 Introduction

On the real line, the Dunkl operators Λ_{ν} are differential-difference operators introduced in 1989 by Dunkl [8]. For a real parameter $\nu \geq-1 / 2$, we consider the Dunkl operator, associated with the reflection group \mathbb{Z}_{2} on \mathbb{R} :

$$
D_{\nu}(f)(x):=\frac{d f(x)}{d x}+(2 \nu+1) \frac{f(x)-f(-x)}{2 x}, x \in \mathbb{R} .
$$

Note that $D_{-1 / 2}=d / d x$.
Let $\nu>-1 / 2$ be a fixed number and m_{ν} be the weighted Lebesgue measure on \mathbb{R}, given by

$$
d m_{\nu}(x):=\left(2^{\nu+1} \Gamma(\nu+1)\right)^{-1}|x|^{2 \nu+1} d x, \quad x \in \mathbb{R}
$$

For any $x \in \mathbb{R}$ and $r>0$, let $B(x, r):=\{y \in \mathbb{R}:|y| \in] \max \{0,|x|-r\},|x|+r[\}$. Then $B(0, r)=]-r, r\left[\right.$ and $m_{\nu} B(0, r)=c_{\nu} r^{2 \nu+2}$, where $c_{\nu}:=\left[2^{\nu+1}(\nu+1) \Gamma(\nu+1)\right]^{-1}$.

[^0]The maximal operator M_{ν} associated by Dunkl operator on the real line is given by

$$
M_{\nu} f(x):=\sup _{r>0}\left(m_{\nu}(B(x, r))\right)^{-1} \int_{B(x, r)}|f(y)| d m_{\nu}(y), \quad x \in \mathbb{R}
$$

The maximal commutator $M_{b, \nu}$ associated with Dunkl operator on the real line and with a locally integrable function $b \in L_{1}^{\mathrm{loc}}\left(\mathbb{R}, d m_{\nu}\right)$ is defined by

$$
M_{b, \nu} f(x):=\sup _{r>0}\left(m_{\nu}(B(x, r))\right)^{-1} \int_{B(x, r)}|b(x)-b(y)||f(y)| d m_{\nu}(y), \quad x \in \mathbb{R}
$$

It is well known that maximal and fractional maximal operators play an important role in harmonic analysis (see [7,24]). Also the fractional maximal function and the fractional integral, associated with D_{ν} differential-difference Dunkl operators play an important role in Dunkl harmonic analysis, differentiation theory and PDE's. The harmonic analysis of the one-dimensional Dunkl operator and Dunkl transform was developed in [4, 5, 18]. The Dunkl operator and Dunkl transform considered here are the rank-one case of the general Dunkl theory, which is associated with a finite reflection group acting on a Euclidean space. The Dunkl theory provides a useful framework for the study of multivariable analytic structures and has gained considerable interest in various fields of mathematics and in physical applications (see, for example, [9]). The maximal function, the fractional integral and related topics associated with the Dunkl differential-difference operator have been research areas for many mathematicians such as C. Abdelkefi and M. Sifi [1], V.S. Guliyev and Y.Y. Mammadov [4-6], Y.Y. Mammadov [16], L. Kamoun [12], M.A. Mourou [19], F. Soltani [22,23], K. Trimeche [25] and others. Moreover, the results on $L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)$-boundedness of fractional maximal operator and its commutators associated with D_{ν} were obtained in [6,17].

Harmonic analysis associated to the Dunkl transform and the Dunkl differential-difference operator gives rise to convolutions with a relevant generalized translation. In this paper, in the framework of this analysis in the setting \mathbb{R}, we study the boundedness of the maximal commutator $M_{b, \nu}$ on Orlicz spaces $L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)$, when b belongs to the space $B M O\left(\mathbb{R}, d m_{\nu}\right)$, by which some new characterizations of the space $B M O\left(\mathbb{R}, d m_{\nu}\right)$ are given.

By $A \lesssim B$ we mean that $A \leq C B$ with some positive constant C independent of appropriate quantities. If $A \lesssim B$ and $B \lesssim A$, we write $A \approx B$ and say that A and B are equivalent.

2 Preliminaries in the Dunkl setting on \mathbb{R}

To introduce the notion of Orlicz spaces in the Dunkl setting on \mathbb{R}, we first recall the definition of Young functions.

Definition 2.1 A function $\Phi:[0, \infty) \rightarrow[0, \infty]$ is called a Young function if Φ is convex, left-continuous, $\lim _{r \rightarrow+0} \Phi(r)=\Phi(0)=0$ and $\lim _{r \rightarrow \infty} \Phi(r)=\infty$.

From the convexity and $\Phi(0)=0$ it follows that any Young function is increasing. If there exists $s \in(0, \infty)$ such that $\Phi(s)=\infty$, then $\Phi(r)=\infty$ for $r \geq s$. The set of Young functions such that

$$
0<\Phi(r)<\infty \quad \text { for } \quad 0<r<\infty
$$

is denoted by \mathcal{Y}. If $\Phi \in \mathcal{Y}$, then Φ is absolutely continuous on every closed interval in $[0, \infty)$ and bijective from $[0, \infty)$ to itself.

For a Young function Φ and $0 \leq s \leq \infty$, let

$$
\Phi^{-1}(s):=\inf \{r \geq 0: \Phi(r)>s\} .
$$

If $\Phi \in \mathcal{Y}$, then Φ^{-1} is the usual inverse function of Φ. It is well known that

$$
\begin{equation*}
r \leq \Phi^{-1}(r) \widetilde{\Phi}^{-1}(r) \leq 2 r \quad \text { for any } r \geq 0 \tag{2.1}
\end{equation*}
$$

where $\widetilde{\Phi}(r)$ is defined by

$$
\widetilde{\Phi}(r):=\left\{\begin{array}{cc}
\sup \{r s-\Phi(s): s \in[0, \infty)\}, & r \in[0, \infty) \\
\infty, & r=\infty
\end{array}\right.
$$

A Young function Φ is said to satisfy the Δ_{2}-condition, denoted also as $\Phi \in \Delta_{2}$, if

$$
\Phi(2 r) \leq C \Phi(r), \quad r>0
$$

for some $C>1$. If $\Phi \in \Delta_{2}$, then $\Phi \in \mathcal{Y}$. A Young function Φ is said to satisfy the ∇_{2}-condition, denoted also by $\Phi \in \nabla_{2}$, if

$$
\Phi(r) \leq \frac{1}{2 C} \Phi(C r), \quad r \geq 0
$$

for some $C>1$. In what follows, for any subset E of \mathbb{R}, we use χ_{E} to denote its characteristic function.

Definition 2.2 (Orlicz Space). For a Young function Φ, the set

$$
L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right):=\left\{f \in L_{1}^{\mathrm{loc}}\left(\mathbb{R}, d m_{\nu}\right): \int_{\mathbb{R}} \Phi(k|f(x)|) d m_{\nu}(x)<\infty \text { for some } k>0\right\}
$$

is called the Orlicz space. If $\Phi(r):=r^{p}$ for all $r \in[0, \infty), 1 \leq p<\infty$, then $L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)=$ $L_{p}\left(\mathbb{R}, d m_{\nu}\right)$. If $\Phi(r):=0$ for all $r \in[0,1]$ and $\Phi(r):=\infty$ for all $r \in(1, \infty)$, then $L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)=L_{\infty}\left(\mathbb{R}, d m_{\nu}\right)$. The space $L_{\Phi}^{\text {loc }}\left(\mathbb{R}, d m_{\nu}\right)$ is defined as the set of all functions f such that $f \chi_{B} \in L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)$ for all balls $B \subset \mathbb{R}$.
$L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)$ is a Banach space with respect to the norm

$$
\|f\|_{L_{\Phi, \nu}}:=\inf \left\{\lambda>0: \int_{\mathbb{R}} \Phi\left(\frac{|f(x)|}{\lambda}\right) d m_{\nu}(x) \leq 1\right\}
$$

For a measurable function f on \mathbb{R} and $t>0$, let

$$
m(f, t)_{\nu}:=m_{\nu}\{x \in \mathbb{R}:|f(x)|>t\}
$$

Definition 2.3 The weak Orlicz space

$$
W L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right):=\left\{f \in L_{1, \nu}^{\mathrm{loc}}(\mathbb{R}):\|f\|_{W L_{\Phi, \nu}}<\infty\right\}
$$

is defined by the norm

$$
\|f\|_{W L_{\Phi, \nu}}:=\inf \left\{\lambda>0: \sup _{t>0} \Phi(t) m\left(\frac{f}{\lambda}, t\right)_{\nu} \leq 1\right\}
$$

The following analogue of the Hölder inequality is well known (see, for example, [21]).
Lemma 2.1 Let the functions f and g be measurable on \mathbb{R}. For a Young function Φ and its complementary function $\widetilde{\Phi}$, the following inequality is valid

$$
\int_{\mathbb{R}}|f(x) g(x)| d m_{\nu}(x) \leq 2\|f\|_{L_{\Phi, \nu}}\|g\|_{L_{\tilde{\Phi}, \nu}}
$$

3 Maximal commutators $M_{b, \alpha, \nu}$ in Orlicz spaces $L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)$
In this section we investigate the boundedness of the maximal commutator $M_{b, \nu}$ in Orlicz spaces $L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)$.

The following result completely characterizes the boundedness of M_{ν} on Orlicz spaces $L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)$.

Theorem 3.1 [3] Let Φ be a Young function.
(i)The operator M_{ν} is bounded from $L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)$ to $W L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)$, and the inequality

$$
\begin{equation*}
\left\|M_{\nu} f\right\|_{W L_{\Phi, \nu}} \leq C_{0}\|f\|_{L_{\Phi, \nu}} \tag{3.1}
\end{equation*}
$$

holds with constant C_{0} independent of f.
(ii) The operator M_{ν} is bounded on $L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)$, and the inequality

$$
\begin{equation*}
\left\|M_{\nu} f\right\|_{L_{\Phi, \nu}} \leq C_{0}\|f\|_{L_{\Phi, \nu}} \tag{3.2}
\end{equation*}
$$

holds with constant C_{0} independent of f if and only if $\Phi \in \nabla_{2}$.
The following theorems were proved in [6].
Theorem 3.2 [6] Let $b \in B M O\left(\mathbb{R}, d m_{\nu}\right)$ and $\Phi \in \mathcal{Y}$. Then the condition $\Phi \in \nabla_{2}$ is necessary and sufficient for the boundedness of $M_{b, \nu}$ on $L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)$.
Theorem 3.3 [6] Let Φ be a Young function with $\Phi \in \nabla_{2}$. Then the condition $b \in B M O\left(\mathbb{R}, d m_{\nu}\right)$ is necessary and sufficient for the boundedness of $M_{b, \nu}$ on $L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)$.

We recall the definition of the space $B M O\left(\mathbb{R}, d m_{\nu}\right)$.
Definition 3.1 Suppose that $b \in L_{1}^{\text {loc }}\left(\mathbb{R}, d m_{\nu}\right)$, let

$$
\|b\|_{B M O(\nu)}:=\sup _{x \in \mathbb{R}, r>0} \frac{1}{m_{\nu}(B(x, r))} \int_{B(x, r)}\left|b(y)-b_{B(x, r)}(x)\right| d m_{\nu}(y),
$$

where

$$
b_{B(x, r)}:=\frac{1}{m_{\nu}(B(x, r))} \int_{B(x, r)} b(y) d m_{\nu}(y) .
$$

Define

$$
B M O\left(\mathbb{R}, d m_{\nu}\right):=\left\{b \in L_{1}^{\mathrm{loc}}\left(\mathbb{R}, d m_{\nu}\right):\|b\|_{B M O(\nu)}<\infty\right\}
$$

Modulo constants, the space $B M O\left(\mathbb{R}, d m_{\nu}\right)$ is a Banach space with respect to the norm $\|\cdot\|_{B M O(\nu)}$.

We will need the following properties of $B M O$-functions (see [10]):

$$
\begin{equation*}
\|b\|_{B M O(\nu)} \approx \sup _{x \in \mathbb{R}, r>0}\left(\frac{1}{m_{\nu}(B(x, r))} \int_{B(x, r)}\left|b(y)-b_{B(x, r)}\right|^{p} d m_{\nu}(y)\right)^{\frac{1}{p}} \tag{3.3}
\end{equation*}
$$

where $1 \leq p<\infty$ and the positive equivalence constants are independent of b, and

$$
\begin{equation*}
\left|b_{B(x, r)}-b_{B(x, t)}\right| \leq C\|b\|_{B M O(\nu)} \ln \frac{t}{r} \text { for any } 0<2 r<t \tag{3.4}
\end{equation*}
$$

where the positive constant C does not depend on b, x, r and t.

For any measurable set E with $m_{\nu}(E)<\infty$ and any suitable function f, the norm $\|f\|_{L(\log L), E}$ is defined by

$$
\mid f \|_{L(\log L), E}=\inf \left\{\lambda>0: \frac{1}{m_{\nu}(E)} \int_{E} \frac{|f(x)|}{\lambda}\left(2+\frac{|f(x)|}{\lambda}\right) d m_{\nu}(x) \leq 1\right\} .
$$

The norm $\|f\|_{\exp L, E}$ is defined by

$$
\mid f \|_{\exp L, E}=\inf \left\{\lambda>0: \frac{1}{m_{\nu}(E)} \int_{E} \exp \left(\frac{|f(x)|}{\lambda}\right) d m_{\nu}(x) \leq 2\right\} .
$$

Then for any suitable functions f and g the generalized Hölders inequality holds (see [21])

$$
\begin{equation*}
\frac{1}{m_{\nu}(E)} \int_{E}\left|f(x)\left\|g(x) \mid d m_{\nu}(x) \lesssim\right\| f\left\|_{\exp L, E}\right\| g \|_{L(\log L), E} .\right. \tag{3.5}
\end{equation*}
$$

The following John-Nirenberg inequalities on spaces of homogeneous type come from [13, Propositions 6, 7].
Lemma 3.1 Let $b \in B M O\left(\mathbb{R}, d m_{\nu}\right)$. Then there exist constants $C_{1}, C_{2}>0$ such that for every ball $B \subset \mathbb{R}$ and every $\alpha>0$, we have

$$
m_{\nu}\left(\left\{x \in B:\left|b(x)-b_{B}\right|>\alpha\right\}\right) \leq C_{1} m_{\nu}(B) \exp \left\{-\frac{C_{2}}{\|b\|_{B M O(\nu)}} \alpha\right\} .
$$

By the generalized Hölder's inequality in Orlicz spaces (see [21, page 58]) and JohnNirenberg's inequality, we get (see also [14, (2.14)]).

$$
\begin{equation*}
\frac{1}{|B|} \int_{B}\left|b(x)-b_{B}\right||g(x)| d m_{\nu}(x) \lesssim\|b\|_{B M O(\nu)}\|g\|_{L(\log L), B} . \tag{3.6}
\end{equation*}
$$

We refer for instance to [11] and [15] for details on this space and properties.
Lemma 3.2 [17] Let $b \in B M O\left(\mathbb{R}, d m_{\nu}\right)$ and Φ be a Young function with $\Phi \in \Delta_{2}$, then

$$
\begin{equation*}
\|b\|_{B M O(\nu)} \approx \sup _{x \in \mathbb{R}, r>0} \Phi^{-1}\left(m_{\nu}\left(B(x, r)^{-1}\right)\left\|b(\cdot)-b_{B(x, r)}\right\|_{L_{\Phi, \nu}(B(x, r))},\right. \tag{3.7}
\end{equation*}
$$

where the positive equivalence constants are independent of b.
Lemma 3.3 Let $f \in L_{1}^{\text {loc }}\left(\mathbb{R}, d m_{\nu}\right)$. Then

$$
\begin{equation*}
M_{\nu}\left(M_{\nu} f\right)(x) \approx \sup _{B \ni x}\left\|f \chi_{B}\right\|_{L\left(1+\log ^{+} L\right), \nu} . \tag{3.8}
\end{equation*}
$$

Proof. Let B be a ball in \mathbb{R}. We are going to use weak type estimates (see [24], for instance): there exist positive constants $c>1$ such that for every $f \in L_{1}^{\text {loc }}\left(\mathbb{R}, d m_{\nu}\right)$ and for every $t>\left(1 / m_{\nu}(B)\right) \int_{B}|f(x)| d m_{\nu}(x)$ we have

$$
\begin{aligned}
\frac{1}{c t} \int_{\{x \in B:|f(x)|>t\}}|f(x)| d m_{\nu}(x) & \leq m_{\nu}\left(\left\{x \in B: M_{\nu}\left(f \chi_{B}\right)(x)>t\right\}\right) \\
& \leq \frac{c}{t} \int_{\{x \in B:|f(x)|>t / 2\}}|f(x)| d m_{\nu}(x) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \int_{B} M_{\nu}\left(f \chi_{B}\right)(x) d m_{\nu}(x)=\int_{0}^{\infty} m_{\nu}\left(\left\{x \in B: M_{\nu}\left(f \chi_{B}\right)(x)>\lambda\right\}\right) d \lambda \\
& =\int_{0}^{|f|_{B}} m_{\nu}\left(\left\{x \in B: M_{\nu}\left(f \chi_{B}\right)(x)>\lambda\right\}\right) d \lambda \\
& +\int_{|f|_{B}}^{\infty} m_{\nu}\left(\left\{x \in B: M_{\nu}\left(f \chi_{B}\right)(x)>\lambda\right\}\right) d \lambda \\
& =m_{\nu}(B)|f|_{B}+\int_{|f|_{B}}^{\infty} m_{\nu}\left(\left\{x \in B: M_{\nu}\left(f \chi_{B}\right)(x)>\lambda\right\}\right) d \lambda \\
& \geq m_{\nu}(B)|f|_{B}+\frac{1}{c} \int_{|f|_{B}}^{\infty}\left(\int_{\{x \in B:|f(x)|>\lambda\}}|f(x)| d m_{\nu}(x)\right) \frac{d \lambda}{\lambda} \\
& =m_{\nu}(B)|f|_{B}+\frac{1}{c} \int_{\left\{x \in B:|f(x)|>|f|_{B}\right\}}\left(\int_{|f|_{B}}^{|f(x)|} \frac{d \lambda}{\lambda}\right)|f(x)| d m_{\nu}(x) \\
& =m_{\nu}(B)|f|_{B}+\frac{1}{c} \int_{\left\{x \in B:|f(x)|>|f|_{B}\right\}}|f(x)| \log \frac{|f(x)|}{|f|_{B}} d m_{\nu}(x) \\
& \geq \frac{1}{c} \int_{B}|f(x)|\left(1+\log ^{+} \frac{|f(x)|}{|f|_{B}}\right) d m_{\nu}(x) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \int_{B} M_{\nu}\left(f \chi_{B}\right)(x) d m_{\nu}(x)=\int_{0}^{\infty} m_{\nu}\left(\left\{x \in B: M\left(f \chi_{B}\right)(x)>\lambda\right\}\right) d \lambda \\
& \approx \int_{0}^{\infty} m_{\nu}\left(\left\{x \in B: M_{\nu}\left(f \chi_{B}\right)(x)>2 \lambda\right\}\right) d \lambda \\
& =\int_{0}^{|f|_{B}} m_{\nu}\left(\left\{x \in B: M_{\nu}\left(f \chi_{B}\right)(x)>2 \lambda\right\}\right) d \lambda \\
& +\int_{|f|_{B}}^{\infty} m_{\nu}\left(\left\{x \in B: M_{\nu}\left(f \chi_{B}\right)(x)>2 \lambda\right\}\right) d \lambda \\
& \leq m_{\nu}(B)|f|_{B}+c \int_{|f|_{B}}^{\infty}\left(\int_{\{x \in B:|f(x)|>\lambda\}}|f(x)| d m_{\nu}(x)\right) \frac{d \lambda}{\lambda} \\
& =m_{\nu}(B)|f|_{B}+c \int_{\left\{x \in B:|f(x)|>|f|_{B}\right\}}|f(x)| \log \frac{|f(x)|}{|f|_{B}} d m_{\nu}(x) \\
& \leq c \int_{B}|f(x)|\left(1+\log ^{+} \frac{|f(x)|}{|f|_{B}}\right) d m_{\nu}(x) .
\end{aligned}
$$

Therefore, for all $f \in L_{1}^{\text {loc }}\left(\mathbb{R}, d m_{\nu}\right)$ we get

$$
\begin{equation*}
M_{\nu}\left(M_{\nu} f\right)(x) \approx \sup _{B \ni x} m_{\nu}(B)^{-1} \int_{B}|f(x)|\left(1+\log ^{+} \frac{|f(x)|}{|f|_{B}}\right) d m_{\nu}(x) . \tag{3.9}
\end{equation*}
$$

Since

$$
1 \leq \frac{1}{m_{\nu}(B)} \int_{B}|f(x)|\left(1+\log ^{+} \frac{|f(x)|}{|f|_{B}}\right) d m_{\nu}(x)
$$

then

$$
|f|_{B} \leq\left\|f \chi_{B}\right\|_{L\left(1+\log ^{+} L\right), \nu}
$$

Using the inequality $\log ^{+}(a b) \leq \log ^{+} a+\log ^{+}$with $a, b>0$, we get

$$
\begin{aligned}
& \frac{1}{m_{\nu}(B)} \int_{B}|f(x)|\left(1+\log ^{+} \frac{|f(x)|}{|f|_{B}}\right) d m_{\nu}(x) \\
& =\frac{1}{m_{\nu}(B)} \int_{B}|f(x)|\left(1+\log ^{+}\left(\frac{|f(x)|}{\left\|f \chi_{B}\right\|_{L\left(1+\log ^{+} L\right), \nu}} \frac{\left\|f \chi_{B}\right\|_{L\left(1+\log ^{+} L\right), \nu}}{|f|_{B}}\right)\right) d m_{\nu}(x) \\
& \quad=\frac{1}{m_{\nu}(B)} \int_{B}|f(x)|\left(1+\log ^{+} \frac{|f(x)|}{\left\|f \chi_{B}\right\|_{L\left(1+\log ^{+} L\right), \nu}}\right) d m_{\nu}(x) \\
& \quad+\frac{1}{m_{\nu}(B)} \int_{B}|f(x)| \log ^{+} \frac{\left\|f \chi_{B}\right\|_{L\left(1+\log ^{+} L\right), \nu} d m_{\nu}(x)}{|f|_{B}} \\
& \quad \leq\left\|f \chi_{B}\right\|_{L\left(1+\log ^{+} L\right), \nu}+|f|_{B} \log ^{+} \frac{\left\|f \chi_{B}\right\|_{L\left(1+\log ^{+} L\right), \nu}}{|f|_{B}}
\end{aligned}
$$

Since $\frac{\left\|f \chi_{B}\right\|_{L(1+\log +L), \nu}}{|f|_{B}} \geq 1$ and $\log t \leq t$ when $t \geq 1$, we get

$$
\begin{equation*}
\frac{1}{m_{\nu}(B)} \int_{B}|f(x)|\left(1+\log ^{+} \frac{|f(x)|}{|f|_{B}}\right) d m_{\nu}(x) \leq 2\left\|f \chi_{B}\right\|_{L\left(1+\log ^{+} L\right), \nu} \tag{3.10}
\end{equation*}
$$

On the other hand, since

$$
\left\|f \chi_{B}\right\|_{L\left(1+\log ^{+} L\right), \nu}=\frac{1}{m_{\nu}(B)} \int_{B}|f(x)|\left(1+\log ^{+} \frac{|f(x)|}{\left\|f \chi_{B}\right\|_{L\left(1+\log ^{+} L\right), \nu}}\right) d m_{\nu}(x)
$$

on using

$$
|f|_{B} \leq\left\|f \chi_{B}\right\|_{L\left(1+\log ^{+} L\right), \nu}
$$

we get that

$$
\begin{equation*}
\left\|f \chi_{B}\right\|_{L\left(1+\log ^{+} L\right), \nu} \lesssim \frac{1}{m_{\nu}(B)} \int_{B}|f(x)|\left(1+\log ^{+} \frac{|f(x)|}{|f|_{B}}\right) d m_{\nu}(x) \tag{3.11}
\end{equation*}
$$

Therefore, from (3.9), (3.10) and (3.11) we have (3.8).
For proving our main results, we need the following estimate.
Lemma 3.4 Let $b \in B M O\left(\mathbb{R}, d m_{\nu}\right)$ Then there exists a positive constant C such that

$$
\begin{equation*}
M_{b, \nu} f(x) \leq C\|b\|_{B M O(\nu)} M_{\nu}\left(M_{\nu} f\right)(x) \tag{3.12}
\end{equation*}
$$

for almost every $x \in \mathbb{R}$ and for all functions $f \in L_{1}^{\text {loc }}\left(\mathbb{R}, d m_{\nu}\right)$.

Proof. Let $x \in \mathbb{R}, r>0, B=B(x, r)$ and $\lambda B=B(x, \lambda r)$. We write f as $f=f_{1}+f_{2}$, where $f_{1}(y)=f(y) \chi_{3 B}(y), f_{2}(y)=f(y) \chi_{\mathrm{c}_{(3 B)}}(y)$, and $\chi_{3 B}$ denotes the characteristic function of $3 B$. Then for any $y \in \mathbb{R}$

$$
\begin{aligned}
M_{b, \nu} f(y) & =M_{\nu}((b-b(y)) f)(y)=M_{\nu}\left(\left(b-b_{3 B}+b_{3 B}-b(y)\right) f\right)(y) \\
& \leq M_{\nu}\left(\left(b-b_{3 B}\right) f\right)(y)+M_{\nu}\left(\left(b_{3 B}-b(y)\right) f\right)(y) \\
& \leq M_{\nu}\left(\left(b-b_{3 B}\right) f_{1}\right)(y)+M_{\nu}\left(\left(b-b_{3 B}\right) f_{2}\right)(y)+\left|b_{3 B}-b(y)\right| M_{\nu} f(y) .
\end{aligned}
$$

For $0<\delta<1$ we have

$$
\begin{aligned}
& \left(\frac{1}{m_{\nu}(B)} \int_{B}\left(M_{b, \nu} f(y)\right)^{\delta} d m_{\nu}(y)\right)^{\frac{1}{\delta}} \leq\left(\frac{1}{m_{\nu}(B)} \int_{B}\left(M_{\nu}\left(\left(b-b_{3 B}\right) f_{1}\right)(y)\right)^{\delta} d m_{\nu}(y)\right)^{\frac{1}{\delta}} \\
& +\left(\frac{1}{m_{\nu}(B)} \int_{B}\left(M_{\nu}\left(\left(b-b_{3 B}\right) f_{2}\right)(y)\right)^{\delta} d m_{\nu}(y)\right)^{\frac{1}{\delta}} \\
& \left.+\left(\frac{1}{m_{\nu}(B)} \int_{B}\left|b(y)-b_{3 B}\right|\left(M_{\nu} f\right)(y)\right)^{\delta} d m_{\nu}(y)\right)^{\frac{1}{\delta}} \\
& =I_{1}+I_{2}+I_{3}
\end{aligned}
$$

We first estimate I_{1}. Recall that M_{ν} is weak-type (1, 1), (cf. [5]). We have

$$
\begin{aligned}
I_{1}^{\delta} & \leq \frac{1}{m_{\nu}(B)} \int_{B}\left|M_{\nu}\left(\left(b-b_{3 B}\right) f_{1}\right)(y)\right|^{\delta} d m_{\nu}(y) \\
& \leq \frac{1}{m_{\nu}(B)} \int_{0}^{m_{\nu}(B)}\left[\left(M_{\nu}\left(\left(b-b_{3 B}\right) f_{1}\right)\right)^{*}(t)\right]^{\delta} d t \\
& \leq \frac{1}{m_{\nu}(B)}\left[\sup _{0<t<m_{\nu}(B)} t\left(M_{\nu}\left(\left(b-b_{3 B}\right) f_{1}\right)\right)^{*}(t)\right]^{\delta} \int_{0}^{m_{\nu}(B)} t^{-\delta} d t \\
& \lesssim \frac{1}{m_{\nu}(B)}\left\|\left(b-b_{3 B}\right) f_{1}\right\|_{L_{1, \nu}}^{\delta} m_{\nu}(B)^{-\delta+1} \\
& \lesssim\left\|\left(b-b_{3 B}\right) f \chi_{3 B}\right\|_{L_{1, \nu}}^{\delta} m_{\nu}(B)^{-\delta} .
\end{aligned}
$$

Thus

$$
I_{1} \leq m_{\nu}(B)^{-1} \int_{3 B}\left|b(y)-b_{3 B}\right||f(y)| d m_{\nu}(y)
$$

Then, by (3.5) and Lemmas 3.1 and 3.4 , we obtain

$$
\begin{aligned}
I_{1} & \leq\left\|b-b_{3 B}\right\|_{\exp L, 3 B}\|f\|_{L(\log L), 3 B} \\
& \lesssim\|b\|_{B M O(\nu)}\|f\|_{L(\log L), 3 B} \\
& \leq\|b\|_{B M O(\nu)} M_{\nu}\left(M_{\nu} f\right)(x)
\end{aligned}
$$

Let us estimate I_{2}. Since for any two points $x, y \in B$, we have

$$
M_{\nu}\left(\left(b-b_{3 B}\right) f\right)(y) \leq C M_{\nu}\left(\left(b-b_{3 B}\right) f\right)(x)
$$

with C an absolute constant (see, for example, [2, p. 160]).

Therefore, by (3.5) and Lemma 3.4 we obtain

$$
\begin{aligned}
I_{2} & =\left(\frac{1}{m_{\nu}(B)} \int_{B}\left(M_{\nu}\left(\left(b-b_{3 B}\right) f_{2}\right)(y)\right)^{\delta} d m_{\nu}(y)\right)^{\frac{1}{\delta}} \\
& \lesssim M_{\nu}\left(\left(b-b_{3 B}\right) f\right)(x) \\
& =\sup _{B \ni x} m_{\nu}(B)^{-1} \int_{B}\left|b(y)-b_{3 B}\right||f(y)| d m_{\nu}(y) \\
& \leq \sup _{B \ni x}\left\|b-b_{3 B}\right\|_{\exp L, 3 B}\|f\|_{L(\log L), 3 B} \\
& \lesssim\|b\|_{B M O(\nu)} \sup _{B \ni x}\|f\|_{L(\log L), 3 B} \\
& \leq\|b\|_{B M O(\nu)} M_{\nu}\left(M_{\nu} f\right)(x) .
\end{aligned}
$$

Therefore we get

$$
I_{2} \lesssim\|b\|_{B M O(\nu)} M_{\nu}\left(M_{\nu} f\right)(x)
$$

Finally, for estimate I_{3}, applying Hölders inequality with exponent $a=1 / \delta, 0<\delta<1$, by Lemmas 3.2 for $\Phi(t)=t^{a}, 1<a<\infty$ we get

$$
\begin{aligned}
I_{3} & \leq\left(\frac{1}{m_{\nu}(B)} \int_{B}\left|b(y)-b_{3 B}\right|^{a} d m_{\nu}(y)\right)^{\frac{1}{a}} \frac{1}{m_{\nu}(B)} \int_{B} M_{\nu} f(y) d m_{\nu}(y) \\
& \lesssim\|b\|_{B M O(\nu)} M_{\nu}\left(M_{\nu} f\right)(x)
\end{aligned}
$$

Lemma 3.4 is proved by the estimate of I_{1}, I_{2}, I_{3} and the Lebesgue differentiation theorem.

The following theorem gives necessary and sufficient conditions for the boundedness of the operator $M_{b, \nu}$ on $L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)$, when b belongs to the $B M O(\nu)$ space.

Theorem 3.4 Let $b \in L_{1}^{\mathrm{loc}}\left(\mathbb{R}, d m_{\nu}\right)$ and $\Phi \in \mathcal{Y}$ be a Young function.

1. If $\Phi \in \nabla_{2}$, then the condition $b \in B M O\left(\mathbb{R}, d m_{\nu}\right)$ is sufficient for the boundedness of $M_{b, \nu}$ on $L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)$.
2. The condition $b \in B M O\left(\mathbb{R}, d m_{\nu}\right)$ is necessary for the boundedness of $M_{b, \nu}$ on $L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)$.
3. If $\Phi \in \nabla_{2}$, then the condition $b \in B M O\left(\mathbb{R}, d m_{\nu}\right)$ is necessary and sufficient for the boundedness of $M_{b, \nu}$ on $L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)$.

Proof. 1. Let $b \in B M O\left(\mathbb{R}, d m_{\nu}\right)$. Then from Lemma 3.12 we have

$$
\begin{equation*}
M_{b, \nu} f(x) \lesssim\|b\|_{B M O(\nu)} M_{\nu}\left(M_{\nu} f\right)(x) \tag{3.13}
\end{equation*}
$$

for almost every $x \in \mathbb{R}$ and for all functions from $f \in L_{1}^{\text {loc }}\left(\mathbb{R}, d m_{\nu}\right)$.
Combining Theorem 3.1, Lemma 3.4 and from (3.13), we get

$$
\begin{aligned}
\left\|M_{b, \nu} f\right\|_{L_{\Phi, \nu}} & \lesssim\|b\|_{B M O(\nu)}\left\|M_{\nu}\left(M_{\nu} f\right)\right\|_{L_{\Phi, \nu}} \\
& \lesssim\|b\|_{B M O(\nu)}\left\|M_{\nu} f\right\|_{L_{\Phi, \nu}} \\
& \lesssim\|b\|_{B M O(\nu)}\|f\|_{L_{\Phi, \nu}} .
\end{aligned}
$$

2. We shall now prove the second part. Suppose that $M_{b, \nu}$ is bounded from $L_{\Phi}\left(\mathbb{R}, d m_{\nu}\right)$ to $L_{\Psi}\left(\mathbb{R}, d m_{\nu}\right)$. Choose any ball $B=B(x, r)$ in \mathbb{R}, by Lemma 2.1 and (2.1)

$$
\begin{aligned}
& \frac{1}{m_{\nu}(B)} \int_{B}\left|b(y)-b_{B}\right| d m_{\nu}(y)=\frac{1}{m_{\nu}(B)} \int_{B}\left|\frac{1}{m_{\nu}(B)} \int_{B}(b(y)-b(z)) d m_{\nu}(z)\right| d m_{\nu}(y) \\
& \leq \frac{1}{m_{\nu}(B)^{2}} \int_{B} \int_{B}|b(y)-b(z)| d m_{\nu}(z) d m_{\nu}(y) \\
& =\frac{1}{m_{\nu}(B)^{1}} \int_{B} \frac{1}{m_{\nu}(B)} \int_{B}|b(y)-b(z)| \chi_{B}(z) d m_{\nu}(z) d m_{\nu}(y) \\
& \leq \frac{1}{m_{\nu}(B)} \int_{B} M_{b, \nu}\left(\chi_{B}\right)(y) d m_{\nu}(y) \\
& \leq \frac{2}{m_{\nu}(B)}\left\|M_{b, \nu}\left(\chi_{B}\right)\right\|_{L_{\Phi}(B)}\|1\|_{L_{\tilde{\Phi}}(B)} \leq C
\end{aligned}
$$

Thus $b \in B M O\left(\mathbb{R}, d m_{\nu}\right)$.
3. The third statement of the theorem follows from the first and second parts of the theorem.

If we take $\Phi(t)=t^{p}$ in Theorem 3.4 we get the following corollary.
Corollary 3.1 Let $1<p<\infty$ and $b \in L_{1}^{\mathrm{loc}}\left(\mathbb{R}, d m_{\nu}\right)$. Then $M_{b, \nu}$ is bounded on $L_{p}\left(\mathbb{R}, d m_{\nu}\right)$ if and only if $b \in B M O\left(\mathbb{R}, d m_{\nu}\right)$.

References

1. Abdelkefi, C., Sifi, M.: Dunkl translation and uncentered maximal operator on the real line, JIPAM. J. Inequal. Pure Appl. Math. 8(3), Article 73, 11 pp. (2007).
2. Garcia-Cuerva, J., Rubio de Francia, J. L.: Weighted Norm Inequalities and Related Topics. North-Holland Math Studies, Vol 116. Amsterdam: North Holland, (1985)
3. Genebashvili, I., Gogatishvili, A., Kokilashvili, V., Krbec, M.: Weight theory for integral transforms on spaces of homogeneous type. Longman, Harlow, (1998)
4. Guliyev, V.S., Mammadov, Y.Y.: Some estimations for Riesz potentials in terms maximal and fractional maximal functions associated with the Dunkl operator on the real line, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 27 (7), Math. Mech., 71-76 (2007).
5. Guliyev, V.S., Mammadov, Y.Y. On fractional maximal function and fractional integral associated with the Dunkl operator on the real line, J. Math. Anal. Appl., 353 (1), 449-459 (2009).
6. Guliyev, V.S., Mammadov, Y.Y., Muslumova, F.A.: Boundedness characterization of maximal commutators on Orlicz spaces in the Dunkl setting, Journal of Mathematical Study, 53 (1), 1-21 (2019).
7. Guliyev, V.S.: Some characterizations of BMO spaces via commutators in Orlicz spaces on stratified Lie groups, Results in Mathematics 77 (1), Paper No. 42 (2022).
8. Dunkl, C.F.: Differential-difference operators associated with reflections groups, Trans. Amer. Math. Soc., 311, 167-183 (1989).
9. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables, 2nd edn, Encyclopedia of Mathematics and its Applications, 155 (Cambridge University Press, Cambridge, 2014).
10. Janson, S.: Mean oscillation and commutators of singular integral operators, Ark. Mat., 16, 263-270 (1978).
11. John, F., Nirenberg, L.: On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14, 415-426 (1961)
12. Kamoun, L.: Besov-type spaces for the Dunkl operator on the real line, J. Comput. Appl. Math., 199, 56-67 (2007).
13. Kronz, M.: Some function spaces on spaces of homogeneous type. Manuscripta Math. 106(2), 219-248 (2001)
14. Lerner, A.K., Ombrosi, S., Pérez, C., Torres, R.H., Trujillo-González, R.: New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv. Math. 220, 1222-1264 (2009)
15. Long, R., Yang, L.: $B M O$ functions in spaces of homogeneous type. Sci. Sinica Ser. A 27(7), 695-708 (1984)
16. Mammadov, Y.Y.: Some embeddings into the modified Morrey spaces associated with the Dunkl operator on the real line, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 29 (1), Math. Mech., 111-120 (2009).
17. Mammadov, Y.Y., Muslimova, F.A., Safarov, Z.V.: Fractional maximal commutator on Orlicz spaces for the Dunkl operator on the real line, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 40 (4), Mathematics 130-144 (2020).
18. Mejjaoli, H., Trimeche, Kh.: Harmonic analysis associated with the Dunkl-Bessel Laplace operator and a mean value property, Fract. Calc. Appl. Anal., 4 (4), 443-480 (2001).
19. Mourou, M.A.: Transmutation operators associated with a Dunkl-type differentialdifference operator on the real line and certain of their applications, Integral Transforms Spec. Funct., 12 (1), 77-88 (2001).
20. M.M. Rao, Z.D. Ren, Theory of Orlicz Spaces, M. Dekker, Inc., New York, 1991.
21. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces, M. Dekker, Inc., New York, (1991).
22. Soltani, F.: L_{p}-Fourier multipliers for the Dunkl operator on the real line, J. Funct. Anal., 209, 16-35 (2004).
23. Soltani, F.: On the Riesz-Dunkl potentials, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 40 (2), 14-21 (2014).
24. Stein, E.M.: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton NJ, (1993).
25. Trimeche, K.: Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators, Integral Transforms Spec. Funct. 13, 17-38 (2002).

[^0]: * Corresponding author
 F.A. Muslumova

 Department of Informatics, Nakhchivan State University, Azerbaijan
 E-mail: fmuslumova@gmail.com

