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Extreme Restrained Geodesic Graphs
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Abstract. For a connected graph G = (V, E) of order at least two, a geodetic set of G
is a set S of vertices such that every vertex of G lies on a geodesic joining some pair of
vertices in S. The geodetic number of G is the minimum cardinality of its geodetic sets and
is denoted by g(G). A geodetic set S C V of a graph G is a restrained geodetic set if either
S =V or the subgraph G[V — S] induced by V — S has no isolated vertex. The minimum
cardinality of a restrained geodetic set of G is the restrained geodetic number of G and is
denoted by g,(G). The number of extreme vertices in G is its extreme order ex(G). A graph
G is an extreme restrained geodesic graph if g,.(G) = ex(G). It is shown that every pair a,b
of integers with b > 3 and 0 < a < b is realized as the extreme order and geodetic number,
respectively, of some graph. For positive integers r,d and k > 2 with » < d < 2r, it is
shown that there exists an extreme restrained geodesic graph G of radius r, diameter d and
restrained geodetic number k.

Keywords. geodetic number - restrained geodetic number - extreme order - extreme
restrained geodesic graph.

1 Introduction

By a graph G = (V, E) we mean a finite undirected connected graph without loops
or multiple edges. The order and size of G are denoted by p and ¢, respectively.
For basic graph theoretic terminology we refer to [10]. For vertices u and v in a
connected graph G, the distance d(u,v) is the length of a shortest u — v path in G.
It is known that the distance is a metric on the vertex set of G. A u — v path of
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length d(u,v) is called a u—v geodesic. For any vertex u of G, the eccentricity of u is
e(u) = max{d(u,v) : v € V'}. The radius rad(G) and diameter diam(G) are defined
by rad(G) = min{e(v) : v € V} and diam(G) = maz{e(v) : v € V}, respectively
[2]. The neighborhood of a vertex v is the set N(v) consisting of all vertices u which
are adjacent with v. A vertex v is an extreme vertex of G if the subgraph induced by
its neighbors is complete. The number of extreme vertices in G is its extreme order
ex(G).

A geodetic set of G is a set S of vertices such that every vertex of G lies on a
geodesic path joining some pair of vertices in S. The geodetic number of G is the
minimum cardinality of its geodetic sets and is denoted by g(G). A geodetic set of
cardinality g(G) is called a g-set. The geodetic number of a graph was introduced
in [11] and further studied in [3,4,6-9,12]. A geodetic set S C V of a graph G
is a restrained geodetic set if either S = V or the subgraph G[V — S| induced by
V — S has no isolated vertex. The minimum cardinality of a restrained geodetic set
of G is the restrained geodetic number of G and is denoted by g¢,(G). The restrained
geodetic number of a graph was introduced and studied in [1]. A graph G is an
extreme geodesic graph if g(G) = ex(G). Extreme geodesic graphs were introduced
and studied in [5]. The following theorems will be used in the sequel.

Theorem 1 [1] Each extreme vertex of a connected graph G belongs to every re-
strained geodetic set of G.

Theorem 2 [1] If T is a tree of order p with &k endvertices and p — k > 2, then
g9-(T) = k.

2 Main Results

Definition 1 A graph G is said to be an extreme restrained geodesic graph if

9-(GQ) = ex(G).

For the graph G given in Figure 2.1, v; and vs3 are the only two extreme vertices
so that ex(G) = 2. The set S = {v1,v3} is the unique minimum restrained geodetic
set of G and so ¢,(G) = ex(G) = 2. Therefore, G is an extreme restrained geodesic
graph.

&

U1 v3

V2
Figure 2.1: G

For any nontrivial tree G of order p with k endvertices and p—k > 2, ex(G) = k
and by Theorem 2, g,(G) = k. Thus any nontrivial tree with atleast two internal
vertices is an extreme restrained geodesic graph. The cycle Cp(p > 4) and the
complete bipartite graph K, (2 < r < s) are not an extreme restrained geodesic
graphs. By Theorem 1, we see that for any connected graph G of order p, 0 <
ex(G) < g-(G) < p. It is an easy consequence of Theorem 1 that a connected graph
G of order p > 2 is an extreme restrained geodesic graph with extreme restrained
geodetic number p if and only if G = K,.

Theorem 3 If G = Ky + |Jm; K, where each m; is a positive integer such that
> >m; > 2 and j > 1, then G is an extreme restrained geodesic graph with g,.(G) =

p— 2.
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Proof. Let the vertex set of Ko be {z,y}. It is observed that every vertex of G
except = and y is an extreme vertex so that ex(G) = p — 2. It is clear that the set
S of all extreme vertices of GG is a minimum geodetic set of G and the subgraph
induced by V — S has no isolated vertex. Hence S is the unique restrained geodetic
set of G and so g,(G) = p — 2 = ex(G). Thus G is an extreme restrained geodesic
graph with ¢,(G) = p — 2.

Remark 1 The converse of Theorem 3 need not be true. For the graph G in Figure
2.2, ex(G) = ¢,(G) =4 = p— 2. Thus G is an extreme restrained geodesic graph,
and it is not in the form G' = Ky + [Jm; Kj.

>

Figure 2.2: G
Theorem 4 There does not exist an extreme restrained geodesic graph G of order

p with ez(G) =p — 1.

Proof. Suppose that there exists an extreme restrained geodesic graph G of order
p with ez(G) = p — 1. Then every vertex of G is an extreme vertex except one, say
x. Let S be the set of all extreme vertices of G. Then S is a geodetic set of G and
the subgraph induced by V — S has the isolated vertex x. Thus S is not a restrained
geodetic set of G. Hence V(G) is the unique minimum restrained geodetic set of G
and so g,(G) = p # ex(G), which is a contradiction to G is an extreme restrained
geodesic graph. Therefore, there does not exist an extreme restrained geodesic graph
G of order p with ex(G) =p — 1.

Theorem 5 For any integer k such that 2 < k < p and k # p — 1, there is an
extreme restrained geodesic graph G of order p such that g,(G) = k.

Proof. For k = p, the result follows from Theorem 1 by taking G = K. For
2 <k <p-—2, the tree T given in Figure 2.3 has p vertices with ex(G) = k and it
follows from Theorem 2 that g,.(G) = k.

Figure 2.3: G

For any connected graph G, we have 0 < ex(G) < ¢,.(G) and 2 < ¢,.(GQ) <
D, gr(G) # p — 1. In view of this, we have the following realization result.

Theorem 6 For every pair a,b of integers with b > 3 and 0 < a < b, there exists a
connected graph G with ez(G) = a and ¢,(G) =10 .

Proof. We consider two cases, according to whether a =0 or a > 1.

Case (i) a = 0. Let G be the graph obtained from the cycle Cy : vy, vy, v3, vy,
vy of length 4 by adding b — 2 new vertices uy, ug,- - ,up_o and joining each u;(1 <
i < b—2) to the vertices v1 and vs; also joining the vertices vo and v4. The graph G is
shown in Figure 2.4. Clearly, no vertex of GG is an extreme vertex and so ez (G) = 0.
Let S = {v1,v3}. It is easily verified that S is a minimum geodetic set of G. Since
the subgraph induced by V' — S has the isolated vertices uy,us, -« ,up_o, S is not
a restrained geodetic set of G. Let S’ = S U {uy,ug, - ,up_o}. It is easily observed
that S’ is a minimum restrained geodetic set of G and so g, (G) = b.
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Figure 2.4: G

Case (ii) @ > 1. If a = b, then the complete graph G = K, has the desired
properties.

If a < band b = a+ 1, let G be the graph obtained from the cycle Cs :
V1,2, V3, U4, U5, v1 by adding ‘a’ new vertices uy, ug, -+ ,u, and joining each u;(1 <
i < a) to the vertices v and wvg, thereby producing the graph G which is shown
in Figure 2.5. Since S = {uq,uz, -+ ,uq} is the set of all extreme vertices of G,
ex(G) = a. By Theorem 1, every restrained geodetic set of G contains S. Clearly S
is not a restrained geodetic set of G. It is easily verified that SU{v4} is a minimum
restrained geodetic set of G and so ¢,(G) =a+1=0b.

V2 U3

Uq ...u2 Ul V4

V1 Vs
Figure 2.5: G

Now, if a < b and b = a + 2. Let G be the graph obtained from the graph in
Figure 2.5 by adding a new vertex = and joining x with vs and vs. Then as above
ex(G) = a. By Theorem 1, every restrained geodetic set of G contains S. Clearly S
is not a restrained geodetic set of G. Also for any vertex u € V' — S, SU {u} is not
a restrained geodetic set of G. It is clear that S U {vy4, 2} is a minimum restrained
geodetic set of G and so ¢,(G) =a+2=0b.

If a < band b —a > 3, let H be the graph obtained from the cycle Cs5 :
v1, V9, V3,4, V5,01 by adding b — a — 2 new vertices uq,ug, - ,Up_q_2 and join-
ing each u;(1 <i <b—a—2) to the vertices v; and v3; and also joining the vertex
v9 with both vy and vs. Now, add ‘a’ new vertices wy,ws, -+ ,w, to H and join
each w;(1 < j < a) to the vertices v4 and vs, thereby producing the graph G which
is shown in Figure 2.6. Since S = {wi,ws, - ,w,} is the set of all extreme ver-
tices of G, ex(G) = a. By Theorem 1, every restrained geodetic set of G contains
S. It is easily verified that S is not a restrained geodetic set of G. Also for any
vertex x € V — 5, SU {z} is not a restrained geodetic set of G. It is clear that
S1 = S U {v1,v3} is a minimum geodetic set of G and the subgraph induced by
V' — 51 has the isolated vertices wuq,u9, -+ ,up_q—2. Hence Sp is not a restrained
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geodetic set of G. Let So = S1 U {ug,ug, -+ ,up_q_2}. It is easily verified that S is
a minimum restrained geodetic set of G and so g,(G) = b.

V4 U3
We cee Wa /W1 V2 PUL YU2.w Up—aq—2
Us U1
Figure 2.6: G

For any connected graph G, rad(G) < diam(G) < 2rad(G). Ostrand [13] showed
that every two positive integers r and d are realizable as the radius and diameter,
respectively, of some connected graph. Ostrand’s theorem can be extended to ex-
treme restrained geodesic graphs so that the restrained geodetic number can also be
prescribed.

Theorem 7 For positive integers r,d and k > 2 with r < d < 2r, there exists an
extreme restrained geodesic graph G with rad(G) = r, diam(G) = d and ¢,(G) = k.

Proof. If r = 1 and d = 2. Let G be the graph obtained from the cycle Cy :
u, v, w,z,u of length 4 by adding k — 2 new vertices uq,uo, -+ ,ur_o and joining
each u;(1 <1i < k—2) to the vertex v; and also joining the vertices v and z, thereby
producing the graph G with radius 1 and diameter 2. The graph G is shown in
Figure 2.7. Since S = {uy,ug, -+ ,ug_o,u, w} is the set of all extreme vertices of G,
ex(G) = k.

uip uz o Ug-2

Figure 2.7: G

By Theorem 1, every restrained geodetic set of GG contains S. It is easily verified
that S is the unique minimum restrained geodetic set of G and so g, (G) = k = ex(G).
Thus G is an extreme restrained geodesic graph.

Now, let 7 > 2 and r < d. Let Cy, : uy,us,...,us,u; be a cycle of order 2r and
let Py_, : vg,v1,...,04_r be a path of length d — r. Let H be the graph obtained
from C5. and Py_, by identifying vg of P;_, and u; of Co,.. Now, add k — 2 new
vertices wy,wa, ..., wi_o to the graph H and join each vertex w;(1 < i < k — 2)
to both u, and wu,1o, thereby producing the graph G which is shown in Figure 2.8.
It is easy to verify that r < e(z) < d for any vertex x in G and e(u;) = r and
e(vg—r) =d=e(upy1) = e(w;)(1 <i <k —2). Then rad(G) = r and diam(G) = d.
Since S = {wy,ws,...,wWk_9,Ur+1,V4—r} is the set of all extreme vertices of G,
ex(G) = k. It is easily verified that S is the unique minimum restrained geodetic set
of G and so g,(G) = k = ex(G). Thus G is an extreme restrained geodesic graph.
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Figure 2.8: G

We leave the following problem as an open question.

Problem 1 For any three positive integers r, d and k > 2 with r = d, does there
exist an extreme restrained geodesic graph G with rad(G) = r, diam(G) = d and
9r(G) = k?

Theorem 8 For any three positive integers d, k and p with3 < d <pand2 <k <p
and p —d — k > 0, there exists an extreme restrained geodesic graph G of order p
with diameter d and g, (G) = k.

Proof. Let Pyiq : uy,ug,...,uqr1 be a path of length d. Add p—d — 1 new vertices
W1, W2, -y, Wp—d—ft1, V1,02, - - ., Up—2 t0 Pyyq and join each w;(1 <i <p—d—Fk+1)
to the vertices ui, us and ug; and join each v;(1 < j < k — 2) to ug; and also
join each w;(1 < j < p—d—k)tow(j+1<i< p—d—k+1), thereby
producing the graph G of order p with diameter d, which is shown in Figure 2.9. Since

S = {ui,ug41,v1,02,...,0k_2} is the set of all extreme vertices of G, ex(G) = k.
U1 U2 U3 Uq Ud Ud+1
v V2 Vi—2
Wp—d—k+1 .
Figure 2.9: G

By Theorem 1, every restrained geodetic set of G contains S. It is clear that S is
a geodetic set of G and also the subgraph induced by V — S has no isolated vertex.
Hence S is the unique minimum restrained geodetic set of G and so ¢,(G) = k =
ex(G). Thus G is an extreme restrained geodesic graph G of order p with diameter
d and ¢,(G) = k.

In the following theorem we construct a non-extreme restrained geodesic graph
of G of order p with diameter d and g¢,(G) = k.

Theorem 9 For any three positive integers d,k and p with 3 < d < p, 2 <k <p
and p — d — k > 0, there exists a non-extreme restrained geodesic graph G of order
p with diameter d and ¢,(G) = k.

Proof. Let Pyiq : uy,ug,...,uqr1 be a path of length d. Add p—d — 1 new vertices
W1, W2, - .y, Wp—d—ft1, V1, V2, - - ., Up—2 t0 Pyyq and join each w;(2 <i <p—d—Fk+1)
to the vertices u1, us and ug; and join each v;(1 < j < k —2) to ug; and join each
wi2<j<p—d—k)tow(j+1<i<p—d—k+1);and also join the vertex w;
to the vertices u; and ug, thereby producing the graph G of order p with diameter
d which is shown in Figure 2.10. Since S = {ug4+1,v1,v2,...,0p_2} is the set of all
extreme vertices of G, ex(G) = k — 1. By Theorem 1, every restrained geodetic set
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of GG contains S. It is clear that S is not a geodetic set of G. It is easily proved that
S1 =S U{u} is a geodetic set of G. Since the subgraph induced by V' — S; has no
isolated vertex and hence S; is a restrained geodetic set of G so that g,.(G) = k.
Thus ex(G) = k — 1 # g-(G). Hence G is a non-extreme restrained geodesic graph
of order p with diameter d and g,(G) = k.

w1
u U2 U3 Uq . Uq Ud+1
[
\
vl U Vk—2
Wp—d—k+1
Figure 2.10: G
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