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Extreme Restrained Geodesic Graphs
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Abstract. For a connected graph G = (V,E) of order at least two, a geodetic set of G
is a set S of vertices such that every vertex of G lies on a geodesic joining some pair of
vertices in S. The geodetic number of G is the minimum cardinality of its geodetic sets and
is denoted by g(G). A geodetic set S ⊆ V of a graph G is a restrained geodetic set if either
S = V or the subgraph G[V − S] induced by V − S has no isolated vertex. The minimum
cardinality of a restrained geodetic set of G is the restrained geodetic number of G and is
denoted by gr(G). The number of extreme vertices in G is its extreme order ex(G). A graph
G is an extreme restrained geodesic graph if gr(G) = ex(G). It is shown that every pair a, b
of integers with b ≥ 3 and 0 ≤ a ≤ b is realized as the extreme order and geodetic number,
respectively, of some graph. For positive integers r, d and k ≥ 2 with r < d ≤ 2r, it is
shown that there exists an extreme restrained geodesic graph G of radius r, diameter d and
restrained geodetic number k.

Keywords. geodetic number · restrained geodetic number · extreme order · extreme
restrained geodesic graph.

1 Introduction

By a graph G = (V,E) we mean a finite undirected connected graph without loops
or multiple edges. The order and size of G are denoted by p and q, respectively.
For basic graph theoretic terminology we refer to [10]. For vertices u and v in a
connected graph G, the distance d(u, v) is the length of a shortest u− v path in G.
It is known that the distance is a metric on the vertex set of G. A u − v path of
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length d(u, v) is called a u−v geodesic. For any vertex u of G, the eccentricity of u is
e(u) = max{d(u, v) : v ∈ V }. The radius rad(G) and diameter diam(G) are defined
by rad(G) = min{e(v) : v ∈ V } and diam(G) = max{e(v) : v ∈ V }, respectively
[2]. The neighborhood of a vertex v is the set N(v) consisting of all vertices u which
are adjacent with v. A vertex v is an extreme vertex of G if the subgraph induced by
its neighbors is complete. The number of extreme vertices in G is its extreme order
ex(G).

A geodetic set of G is a set S of vertices such that every vertex of G lies on a
geodesic path joining some pair of vertices in S. The geodetic number of G is the
minimum cardinality of its geodetic sets and is denoted by g(G). A geodetic set of
cardinality g(G) is called a g-set. The geodetic number of a graph was introduced
in [11] and further studied in [3,4,6–9,12]. A geodetic set S ⊆ V of a graph G
is a restrained geodetic set if either S = V or the subgraph G[V − S] induced by
V − S has no isolated vertex. The minimum cardinality of a restrained geodetic set
of G is the restrained geodetic number of G and is denoted by gr(G). The restrained
geodetic number of a graph was introduced and studied in [1]. A graph G is an
extreme geodesic graph if g(G) = ex(G). Extreme geodesic graphs were introduced
and studied in [5]. The following theorems will be used in the sequel.

Theorem 1 [1] Each extreme vertex of a connected graph G belongs to every re-
strained geodetic set of G.

Theorem 2 [1] If T is a tree of order p with k endvertices and p − k ≥ 2, then
gr(T ) = k.

2 Main Results

Definition 1 A graph G is said to be an extreme restrained geodesic graph if
gr(G) = ex(G).

For the graph G given in Figure 2.1, v1 and v3 are the only two extreme vertices
so that ex(G) = 2. The set S = {v1, v3} is the unique minimum restrained geodetic
set of G and so gr(G) = ex(G) = 2. Therefore, G is an extreme restrained geodesic
graph.
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Figure 2.1: G

For any nontrivial tree G of order p with k endvertices and p− k ≥ 2, ex(G) = k
and by Theorem 2, gr(G) = k. Thus any nontrivial tree with atleast two internal
vertices is an extreme restrained geodesic graph. The cycle Cp(p ≥ 4) and the
complete bipartite graph Kr,s(2 ≤ r ≤ s) are not an extreme restrained geodesic
graphs. By Theorem 1, we see that for any connected graph G of order p, 0 ≤
ex(G) ≤ gr(G) ≤ p. It is an easy consequence of Theorem 1 that a connected graph
G of order p ≥ 2 is an extreme restrained geodesic graph with extreme restrained
geodetic number p if and only if G = Kp.

Theorem 3 If G = K2 +
⋃

miKj, where each mi is a positive integer such that∑
mi ≥ 2 and j ≥ 1, then G is an extreme restrained geodesic graph with gr(G) =

p− 2.
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Proof. Let the vertex set of K2 be {x, y}. It is observed that every vertex of G
except x and y is an extreme vertex so that ex(G) = p − 2. It is clear that the set
S of all extreme vertices of G is a minimum geodetic set of G and the subgraph
induced by V − S has no isolated vertex. Hence S is the unique restrained geodetic
set of G and so gr(G) = p − 2 = ex(G). Thus G is an extreme restrained geodesic
graph with gr(G) = p− 2.

Remark 1 The converse of Theorem 3 need not be true. For the graph G in Figure
2.2, ex(G) = gr(G) = 4 = p − 2. Thus G is an extreme restrained geodesic graph,
and it is not in the form G = K2 +

⋃
miKj.
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Figure 2.2: G
Theorem 4 There does not exist an extreme restrained geodesic graph G of order
p with ex(G) = p− 1.

Proof. Suppose that there exists an extreme restrained geodesic graph G of order
p with ex(G) = p− 1. Then every vertex of G is an extreme vertex except one, say
x. Let S be the set of all extreme vertices of G. Then S is a geodetic set of G and
the subgraph induced by V −S has the isolated vertex x. Thus S is not a restrained
geodetic set of G. Hence V (G) is the unique minimum restrained geodetic set of G
and so gr(G) = p 6= ex(G), which is a contradiction to G is an extreme restrained
geodesic graph. Therefore, there does not exist an extreme restrained geodesic graph
G of order p with ex(G) = p− 1.

Theorem 5 For any integer k such that 2 ≤ k ≤ p and k 6= p − 1, there is an
extreme restrained geodesic graph G of order p such that gr(G) = k.

Proof. For k = p, the result follows from Theorem 1 by taking G = Kp. For
2 ≤ k ≤ p − 2, the tree T given in Figure 2.3 has p vertices with ex(G) = k and it
follows from Theorem 2 that gr(G) = k.
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Figure 2.3: G

For any connected graph G, we have 0 ≤ ex(G) ≤ gr(G) and 2 ≤ gr(G) ≤
p, gr(G) 6= p− 1. In view of this, we have the following realization result.

Theorem 6 For every pair a, b of integers with b ≥ 3 and 0 ≤ a ≤ b, there exists a
connected graph G with ex(G) = a and gr(G) = b .

Proof. We consider two cases, according to whether a = 0 or a ≥ 1.
Case (i) a = 0. Let G be the graph obtained from the cycle C4 : v1, v2, v3, v4,

v1 of length 4 by adding b− 2 new vertices u1, u2, · · · , ub−2 and joining each ui(1 ≤
i ≤ b−2) to the vertices v1 and v3; also joining the vertices v2 and v4. The graph G is
shown in Figure 2.4. Clearly, no vertex of G is an extreme vertex and so ex(G) = 0.
Let S = {v1, v3}. It is easily verified that S is a minimum geodetic set of G. Since
the subgraph induced by V − S has the isolated vertices u1, u2, · · · , ub−2, S is not
a restrained geodetic set of G. Let S′ = S ∪ {u1, u2, · · · , ub−2}. It is easily observed
that S′ is a minimum restrained geodetic set of G and so gr(G) = b.
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Figure 2.4: G

Case (ii) a ≥ 1. If a = b, then the complete graph G = Ka has the desired
properties.

If a < b and b = a + 1, let G be the graph obtained from the cycle C5 :
v1, v2, v3, v4, v5, v1 by adding ‘a’ new vertices u1, u2, · · · , ua and joining each ui(1 ≤
i ≤ a) to the vertices v1 and v2, thereby producing the graph G which is shown
in Figure 2.5. Since S = {u1, u2, · · · , ua} is the set of all extreme vertices of G,
ex(G) = a. By Theorem 1, every restrained geodetic set of G contains S. Clearly S
is not a restrained geodetic set of G. It is easily verified that S ∪ {v4} is a minimum
restrained geodetic set of G and so gr(G) = a+ 1 = b.
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Figure 2.5: G

Now, if a < b and b = a + 2. Let G be the graph obtained from the graph in
Figure 2.5 by adding a new vertex x and joining x with v3 and v5. Then as above
ex(G) = a. By Theorem 1, every restrained geodetic set of G contains S. Clearly S
is not a restrained geodetic set of G. Also for any vertex u ∈ V − S, S ∪ {u} is not
a restrained geodetic set of G. It is clear that S ∪ {v4, x} is a minimum restrained
geodetic set of G and so gr(G) = a+ 2 = b.

If a < b and b − a ≥ 3, let H be the graph obtained from the cycle C5 :
v1, v2, v3, v4, v5, v1 by adding b − a − 2 new vertices u1, u2, · · · , ub−a−2 and join-
ing each ui(1 ≤ i ≤ b− a− 2) to the vertices v1 and v3; and also joining the vertex
v2 with both v4 and v5. Now, add ‘a’ new vertices w1, w2, · · · , wa to H and join
each wj(1 ≤ j ≤ a) to the vertices v4 and v5, thereby producing the graph G which
is shown in Figure 2.6. Since S = {w1, w2, · · · , wa} is the set of all extreme ver-
tices of G, ex(G) = a. By Theorem 1, every restrained geodetic set of G contains
S. It is easily verified that S is not a restrained geodetic set of G. Also for any
vertex x ∈ V − S, S ∪ {x} is not a restrained geodetic set of G. It is clear that
S1 = S ∪ {v1, v3} is a minimum geodetic set of G and the subgraph induced by
V − S1 has the isolated vertices u1, u2, · · · , ub−a−2. Hence S1 is not a restrained
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geodetic set of G. Let S2 = S1 ∪ {u1, u2, · · · , ub−a−2}. It is easily verified that S2 is
a minimum restrained geodetic set of G and so gr(G) = b.
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Figure 2.6: G

For any connected graph G, rad(G) ≤ diam(G) ≤ 2 rad(G). Ostrand [13] showed
that every two positive integers r and d are realizable as the radius and diameter,
respectively, of some connected graph. Ostrand’s theorem can be extended to ex-
treme restrained geodesic graphs so that the restrained geodetic number can also be
prescribed.

Theorem 7 For positive integers r, d and k ≥ 2 with r < d ≤ 2r, there exists an
extreme restrained geodesic graph G with rad(G) = r, diam(G) = d and gr(G) = k.

Proof. If r = 1 and d = 2. Let G be the graph obtained from the cycle C4 :
u, v, w, x, u of length 4 by adding k − 2 new vertices u1, u2, · · · , uk−2 and joining
each ui(1 ≤ i ≤ k− 2) to the vertex v; and also joining the vertices v and x, thereby
producing the graph G with radius 1 and diameter 2. The graph G is shown in
Figure 2.7. Since S = {u1, u2, · · · , uk−2, u, w} is the set of all extreme vertices of G,
ex(G) = k.
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Figure 2.7: G

By Theorem 1, every restrained geodetic set of G contains S. It is easily verified
that S is the unique minimum restrained geodetic set ofG and so gr(G) = k = ex(G).
Thus G is an extreme restrained geodesic graph.

Now, let r ≥ 2 and r < d. Let C2r : u1, u2, . . . , u2r, u1 be a cycle of order 2r and
let Pd−r : v0, v1, . . . , vd−r be a path of length d − r. Let H be the graph obtained
from C2r and Pd−r by identifying v0 of Pd−r and u1 of C2r. Now, add k − 2 new
vertices w1, w2, . . . , wk−2 to the graph H and join each vertex wi(1 ≤ i ≤ k − 2)
to both ur and ur+2, thereby producing the graph G which is shown in Figure 2.8.
It is easy to verify that r ≤ e(x) ≤ d for any vertex x in G and e(u1) = r and
e(vd−r) = d = e(ur+1) = e(wi)(1 ≤ i ≤ k − 2). Then rad(G) = r and diam(G) = d.
Since S = {w1, w2, . . . , wk−2, ur+1, vd−r} is the set of all extreme vertices of G,
ex(G) = k. It is easily verified that S is the unique minimum restrained geodetic set
of G and so gr(G) = k = ex(G). Thus G is an extreme restrained geodesic graph.
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Figure 2.8: G
We leave the following problem as an open question.

Problem 1 For any three positive integers r, d and k ≥ 2 with r = d, does there
exist an extreme restrained geodesic graph G with rad(G) = r, diam(G) = d and
gr(G) = k?

Theorem 8 For any three positive integers d, k and p with 3 ≤ d < p and 2 ≤ k < p
and p − d − k ≥ 0, there exists an extreme restrained geodesic graph G of order p
with diameter d and gr(G) = k.

Proof. Let Pd+1 : u1, u2, . . . , ud+1 be a path of length d. Add p− d− 1 new vertices
w1, w2, . . . , wp−d−k+1, v1, v2, . . . , vk−2 to Pd+1 and join each wi(1 ≤ i ≤ p−d−k+1)
to the vertices u1, u2 and u3; and join each vj(1 ≤ j ≤ k − 2) to ud; and also
join each wj(1 ≤ j ≤ p − d − k) to wi(j + 1 ≤ i ≤ p − d − k + 1), thereby
producing the graphG of order p with diameter d, which is shown in Figure 2.9. Since
S = {u1, ud+1, v1, v2, . . . , vk−2} is the set of all extreme vertices of G, ex(G) = k.
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Figure 2.9: G

By Theorem 1, every restrained geodetic set of G contains S. It is clear that S is
a geodetic set of G and also the subgraph induced by V − S has no isolated vertex.
Hence S is the unique minimum restrained geodetic set of G and so gr(G) = k =
ex(G). Thus G is an extreme restrained geodesic graph G of order p with diameter
d and gr(G) = k.

In the following theorem we construct a non-extreme restrained geodesic graph
of G of order p with diameter d and gr(G) = k.

Theorem 9 For any three positive integers d, k and p with 3 ≤ d < p, 2 ≤ k < p
and p− d− k ≥ 0, there exists a non-extreme restrained geodesic graph G of order
p with diameter d and gr(G) = k.

Proof. Let Pd+1 : u1, u2, . . . , ud+1 be a path of length d. Add p− d− 1 new vertices
w1, w2, . . . , wp−d−k+1, v1, v2, . . . , vk−2 to Pd+1 and join each wi(2 ≤ i ≤ p−d−k+1)
to the vertices u1, u2 and u3; and join each vj(1 ≤ j ≤ k − 2) to ud; and join each
wj(2 ≤ j ≤ p− d− k) to wi(j + 1 ≤ i ≤ p− d− k + 1); and also join the vertex w1

to the vertices u1 and u3, thereby producing the graph G of order p with diameter
d which is shown in Figure 2.10. Since S = {ud+1, v1, v2, . . . , vk−2} is the set of all
extreme vertices of G, ex(G) = k − 1. By Theorem 1, every restrained geodetic set
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of G contains S. It is clear that S is not a geodetic set of G. It is easily proved that
S1 = S ∪ {u1} is a geodetic set of G. Since the subgraph induced by V − S1 has no
isolated vertex and hence S1 is a restrained geodetic set of G so that gr(G) = k.
Thus ex(G) = k − 1 6= gr(G). Hence G is a non-extreme restrained geodesic graph
of order p with diameter d and gr(G) = k.
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Figure 2.10: G
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