The Riemann function of the Cauchy problem for a second-order hyperbolic equation with a growing coefficient

Khatira E. Abbasova ${ }^{\star}$

Received: 20.11.2022 / Revised: 18.03.2023 / Accepted: 21.04.2023

Abstract

The paper investigates the properties of the Riemann function of the Cauchy problem for a sec-ond-order hyperbolic equation with a growing coefficient. The existence and uniqueness of the Riemann function are proved. Estimates are found for the Riemann function and its derivatives.

Keywords. The Cauchy problem • a second-order hyperbolic equation • the Riemann function transformation operator • method of successive approximations.

Mathematics Subject Classification (2010): 34A55

1 Introduction and main result

Let $U=U(x, y)$ be a twice continuously differentiable solution of the Cauchy problem

$$
\begin{gather*}
\frac{\partial^{2} U}{\partial x^{2}}-q_{1}(x) U=\frac{\partial^{2} U}{\partial y^{2}}-q_{2}(y) U,-\infty<x<+\infty, 0 \leq y<+\infty \tag{1.1}\\
\left.U\right|_{y=0}=\varphi(x),\left.\quad \frac{\partial U}{\partial y}\right|_{y=0}=\psi(x) \tag{1.2}
\end{gather*}
$$

We shall assume that functions $q_{1}(x), x \in(-\infty, \infty)$ and $q_{2}(y), y \in[0, \infty)$ are continuous. It is known that one of the main tools for studying the Cauchy problem for a second-order hyperbolic equation is the application of the Riemann function method. The value of the function $U(x, y)$ at the point $\left(x_{0}, y_{0}\right)$ may be thought of as the value of a linear functional $T_{x_{0}}^{y_{0}}$ on the vector $(\varphi(x), \psi(x))$:

$$
U\left(x_{0}, y_{0}\right)=\mathrm{T}_{x_{0}}^{y_{0}}[\varphi(x), \psi(x)]
$$

An expression for this functional was first found by B. Riemann [11]. Let $R\left(x, y, x_{0}, y_{0}\right)$ denote the twice continuously differentiable solution of the equation

$$
\frac{\partial^{2} R}{\partial x^{2}}-q_{1}(x) R=\frac{\partial^{2} R}{\partial y^{2}}-q_{2}(y) R
$$

[^0]Khatira E. Abbasova
Azerbaijan State University of Economics (UNEC), AZ 1001, Baku, Azerbaijan
E-mail: abbasova_xatira@unec.edu.az
taking the value 1 on the characteristics $x-x_{0}= \pm\left(y-y_{0}\right)$ of this equation. It is known [3] that the solution of this equation with such properties exists and is unique. It is well known [3,8] that, using the Riemann function $R\left(x, y, x_{0}, y_{0}\right)$, one can represent the solution of problem (1.1), (1.2) as

$$
\begin{gathered}
U\left(x_{0}, y_{0}\right)=\frac{\varphi\left(x_{0}+y_{0}\right)+\psi\left(x_{0}-y_{0}\right)}{2}+ \\
+\frac{1}{2} \int_{x_{0}-y_{0}}^{x_{0}+y_{0}}\left\{\psi(x) R\left(x, 0, x_{0}, y_{0}\right)-\varphi(x) \frac{\partial R\left(x, 0, x_{0}, y_{0}\right)}{\partial y}\right\} d x
\end{gathered}
$$

Note that there exists no general method for constructing the Riemann function. In this connection, we mention the paper [3], in which six known methods for constructing the Riemann function for special types of hyperbolic equations were analyzed.

In this paper, we study the Riemann function of the equation

$$
\begin{equation*}
\frac{\partial^{2} R}{\partial x^{2}}-x^{\alpha} R=\frac{\partial^{2} R}{\partial y^{2}}-y^{\alpha} R, 0<x<y \tag{1.3}
\end{equation*}
$$

where $\alpha \geq 1$. It should be noted that an equation of the form (1.3) arises when studying the following Goursat problem for a second-order hyperbolic equation:

$$
\begin{gathered}
\frac{\partial U}{\partial x^{2}}-x^{\alpha} U=\frac{\partial U}{\partial y^{2}}-y^{\alpha} U, 0<x<y \\
U(x, x)=\varphi(x) \\
\lim _{x+y \rightarrow \infty} U(x, y)=0
\end{gathered}
$$

The latter problem, in turn, occurs when constructing transformation operators with a condition at infinity (see [1], [4]-[10], [12]).

We write equation (1.3) in the new variables $\frac{y+x}{2}=\xi, \frac{y-x}{2}=\eta, \frac{y_{0}+x_{0}}{2}=\xi_{0}, \frac{y_{0}-x_{0}}{2}=$ η_{0}, setting $r\left(\xi, \eta ; \xi_{0}, \eta_{0}\right)=R\left(\xi-\eta, \xi+\eta, \xi_{0}-\eta_{0}, \xi_{0}+\eta_{0}\right)$. This yields the following equation for the function $r(\xi, \eta)=r\left(\xi, \eta ; \xi_{0}, \eta_{0}\right)$ in the domain $G=\left\{(\xi, \eta): 0<\eta<\eta_{0} \leq \xi_{0}<\xi\right\}:$

$$
\begin{equation*}
\frac{\partial^{2} r(\xi, \eta)}{\partial \xi \partial \eta}-\left[(\xi+\eta)^{\alpha}-(\xi-\eta)^{\alpha}\right] r(\xi, \eta)=0 \tag{1.4}
\end{equation*}
$$

together with the following conditions on the characteristics:

$$
\begin{gather*}
\left.r\left(\xi, \eta ; \xi_{0}, \eta_{0}\right)\right|_{\xi=\xi_{0}}=1,0 \leq \eta \leq \eta_{0} \tag{1.5}\\
\left.r\left(\xi, \eta ; \xi_{0}, \eta_{0}\right)\right|_{\eta=\eta_{0}}=1, \xi_{0} \leq \xi<\infty \tag{1.6}
\end{gather*}
$$

The main result of the present paper is as follows.
Theorem 1.1 Problem (1.4)-(1.6) has a unique solution r and the following estimate is valid:

$$
\begin{equation*}
\left|r\left(\xi, \eta, \xi_{0}, \eta_{0}\right)\right| \leq e^{\sigma(\xi)} \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma(\xi)=(\alpha+1)^{-\frac{1}{2}}(2 \xi)^{\frac{\alpha+2}{2}} \tag{1.8}
\end{equation*}
$$

2 Proof of the theorem

Problem (1.4)-(1.6) is obviously equivalent to the integral equation

$$
\begin{equation*}
r\left(\xi, \eta, \xi_{0}, \eta_{0}\right)=1-\int_{\xi_{0}}^{\xi} d u \int_{\eta}^{\eta_{0}} p(u, v) r\left(u, v, \xi_{0}, \eta_{0}\right) d v \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
p(u, v)=(u+v)^{\alpha}-(u-v)^{\alpha} . \tag{2.2}
\end{equation*}
$$

This equation has a unique continuous solution which can be obtained by the method of successive approximations. In fact, set

$$
\begin{gather*}
r_{0}\left(\xi, \eta, \xi_{0}, \eta_{0}\right)=1 \\
r_{n}\left(\xi, \eta, \xi_{0}, \eta_{0}\right)=-\int_{\xi_{0}}^{\xi} d u \int_{\eta}^{\eta_{0}} p(u, v) r_{n-1}\left(u, v, \xi_{0}, \eta_{0}\right) d v \tag{2.3}
\end{gather*}
$$

Note that in the domain $G=\left\{(\xi, \eta): 0<\eta<\eta_{0} \leq \xi_{0}<\xi\right\}$ the function $p(\xi, \eta)$ satisfies the estimate

$$
|p(\xi, \eta)| \leq 2^{\alpha} \xi^{\alpha}
$$

Then we will have

$$
\left|r_{1}\left(\xi, \eta, \xi_{0}, \eta_{0}\right)\right| \leq 2^{\alpha} \int_{\xi_{0}}^{\xi} u^{\alpha} d u \int_{\eta}^{\eta_{0}} d v=\frac{2^{\alpha}}{\alpha+1}\left(\xi^{\alpha+1}-\xi_{0}^{\alpha+1}\right)\left(\eta_{0}-\eta\right)
$$

Taking this estimate into account, we obtain

$$
\begin{gathered}
\left|r_{2}\left(\xi, \eta, \xi_{0}, \eta_{0}\right)\right| \leq 2^{\alpha} \int_{\xi_{0}}^{\xi} d u \int_{\eta}^{\eta_{0}} \frac{2^{\alpha}}{\alpha+1} u^{\alpha}\left(u^{\alpha+1}-\xi_{0}^{\alpha+1}\right)\left(\eta_{0}-v\right) d v= \\
=\left.\left.\left(\frac{2^{\alpha}}{\alpha+1}\right)^{2} \frac{\left(u^{\alpha+1}-\xi_{0}^{\alpha+1}\right)^{2}}{2}\right|_{\xi_{0}} ^{\xi} \frac{\left(\eta_{0}-v\right)^{2}}{2}\right|_{\eta_{0}} ^{\eta}=\left(\frac{2^{\alpha}}{\alpha+1}\right)^{2} \frac{\left(\xi^{\alpha+1}-\xi_{0}^{\alpha+1}\right)^{2}\left(\eta_{0}-\eta\right)^{2}}{(2!)^{2}} .
\end{gathered}
$$

Using induction, we next prove that

$$
\begin{equation*}
\left|r_{n}\left(\xi, \eta, \xi_{0}, \eta_{0}\right)\right| \leq\left(\frac{2^{\alpha}}{\alpha+1}\right)^{n} \frac{\left(\xi^{\alpha+1}-\xi_{0}^{\alpha+1}\right)^{n}\left(\eta_{0}-\eta\right)^{n}}{(n!)^{2}}, n=1,2, \ldots \tag{2.4}
\end{equation*}
$$

The estimates (2.4) show that the series $r\left(\xi, \eta, \xi_{0}, \eta_{0}\right)=\sum_{n=0}^{\infty} r_{n}\left(\xi, \eta, \xi_{0}, \eta_{0}\right)$, of continuous functions $r_{n}\left(\xi, \eta, \xi_{0}, \eta_{0}\right)$, converges absolutely and uniformly in
$\left\{(\xi, \eta): 0 \leq \eta \leq \eta_{0} \leq \xi_{0} \leq \xi\right\}$ and that its sum satisfies equation (2.1). Moreover, due to (2.4) we have

$$
\begin{align*}
& \left|r\left(\xi, \eta, \xi_{0}, \eta_{0}\right)\right| \leq \sum_{n=0}^{\infty}\left(\frac{2^{\alpha}}{\alpha+1}\right)^{n} \frac{\left(\xi^{\alpha+1}-\xi_{0}^{\alpha+1}\right)^{n}\left(\eta_{0}-\eta\right)^{n}}{(n!)^{2}}= \\
& \quad=J_{0}\left(i \sqrt{\frac{2^{\alpha+2}}{\alpha+1}}\left(\xi^{\alpha+1}-\xi_{0}^{\alpha+1}\right)\left(\eta_{0}-\eta\right)\right) \tag{2.5}
\end{align*}
$$

where $J_{0}(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n!)^{2}}\left(\frac{z}{2}\right)^{2 n}$ is the Bessel function of the first kind. Using the wellknown [2] inequality $\left|J_{0}(z)\right| \leq e^{|I m z|}$, from (2.5) we finally obtain (1.7).

In view of the continuity of the function $p(u, v)$, it follows from equation (2.1) that $r(\xi, \eta)$ continuously differentiable in $\left\{(\xi, \eta): 0 \leq \eta \leq \eta_{0} \leq \xi_{0} \leq \xi\right\}$, and that

$$
\begin{aligned}
r_{\xi}\left(\xi, \eta, \xi_{0}, \eta_{0}\right) & =-\int_{\eta}^{\eta_{0}} p(\xi, v) r\left(\xi, v, \xi_{0}, \eta_{0}\right) d v, \\
r_{\eta}\left(\xi, \eta, \xi_{0}, \eta_{0}\right) & =\int_{\xi_{0}}^{\xi} p(u, \eta) r\left(u, \eta, \xi_{0}, \eta_{0}\right) d u
\end{aligned}
$$

By virtue of these equalities and the continuous differentiability of the function $p(u, v)$, the function $r(\xi, \eta)$ is twice continuously differentiable and satisfies equation (1.4). In addition, from the last equations, the equations that are obtained from them by differentiation, and estimates (1.7), we obtain that for all $0<\eta \leq \eta_{0} \leq \xi_{0}<\xi$ the following relations hold:

$$
\begin{aligned}
& \left|r_{\xi}\left(\xi, \eta, \xi_{0}, \eta_{0}\right)\right| \leq 2^{\alpha} \xi^{\alpha+1} e^{\sigma(\xi)}, \\
& \left|r_{\eta}\left(\xi, \eta, \xi_{0}, \eta_{0}\right)\right| \leq 2^{\alpha} \xi^{\alpha+1} e^{\sigma(\xi)}, \\
& \left|r_{\xi \eta}\left(\xi, \eta, \xi_{0}, \eta_{0}\right)\right| \leq 2^{\alpha} \xi^{\alpha} e^{\sigma(\xi)}, \\
& \left|r_{\xi \xi}\left(\xi, \eta, \xi_{0}, \eta_{0}\right)\right| \leq 2^{\alpha-1} \xi^{\alpha} e^{\sigma(\xi)}+\left(2^{\alpha}\right)^{2} \xi^{2 \alpha+2} e^{\sigma(\xi)}, \\
& \left|r_{\eta \eta}\left(\xi, \eta, \xi_{0}, \eta_{0}\right)\right| \leq 2^{\alpha-1} \xi^{\alpha} e^{\sigma(\xi)}+\left(2^{\alpha}\right)^{2} \xi^{2 \alpha+2} e^{\sigma(\xi)} .
\end{aligned}
$$

Thus, the proof of the theorem is complete.
Remark. Let $\alpha=1$. Then from relations (2.1), (2.2) we have

$$
\begin{gathered}
p(u, v)=2 v \\
r_{n}\left(\xi, \eta, \xi_{0}, \eta_{0}\right)=(-1)^{n} \frac{\left(\xi-\xi_{0}\right)^{n}}{n!} \frac{\left(\eta_{0}^{2}-\eta^{2}\right)^{n}}{n!}
\end{gathered}
$$

Whence it follows that

$$
\begin{gathered}
r\left(\xi, \eta, \xi_{0}, \eta_{0}\right)=\sum_{n=0}^{\infty} r_{n}\left(\xi, \eta, \xi_{0}, \eta_{0}\right)= \\
=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n!)^{2}}\left(\frac{2 \sqrt{\left(\xi-\xi_{0}\right)\left(\eta_{0}^{2}-\eta^{2}\right)}}{2}\right)^{2 n}=J_{0}\left(2 \sqrt{\left(\xi-\xi_{0}\right)\left(\eta_{0}^{2}-\eta^{2}\right)}\right) .
\end{gathered}
$$

Similarly, for $\alpha=2$ from (2.1), (2.2) we find that

$$
r\left(\xi, \eta, \xi_{0}, \eta_{0}\right)=J_{0}\left(2 \sqrt{\left(\xi^{2}-\xi_{0}^{2}\right)\left(\eta_{0}^{2}-\eta^{2}\right)}\right)
$$

Moreover, in both cases, instead of estimate (1.7), we obtain

$$
\left|r\left(\xi, \eta, \xi_{0}, \eta_{0}\right)\right| \leq 1
$$

The author is grateful to professor H.M. Huseynov for useful discussions.

References

1. Abbasova, K.E., Khanmamedov, Agil Kh., Bagirova, S.M. : The Jost solutions to the Schrödinger equation with an additional complex potential, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 42 (1), Mathematics, 37 (2022).
2. Abramowitz M., Stegun I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, (1972).
3. Copson E. T. : On the Riemann-Green function, Arch. Rational Mech. Anal. 1, 324-348 (1957).
4. Delsarte J.:Sur une extension de la formule de Taylor, J. Math. Pures Appl. 17, 213-231 (1938).
5. Gasymov M.G., Mustafaev B.A.: The inverse problem of scattering theory for the anharmonic equation on the half-axis, (Russian) Dokl. Akad. Nauk SSSR 228 (1), 11-14 (1976).
6. Khanmamedov A.Kh., Makhmuduva M.G.: On the spectral properties of the onedimensional Stark operator on the half-line, (Russian) Teoret. Mat. Fiz. 202 (1), 6680 (2020); translation in Theoret. and Math. Phys. 202 (1), 58-71 (2020).
7. Levin B.Ya. : Transformations of Fourier and Laplace types by means of solutions of differential equations of second order, (Russian) Dokl. Akad. Nauk SSSR (N.S.) 106 (2), 187-190 (1956).
8. Marchenko V.A.: Sturm-Liouville Operators and Their Applications, (Russian) Naukova Dumka, Kiev, 311 pp. (1977).
9. Masmaliev G.M., Khanmamedov A.Kh.: Transformation operators for a perturbed harmonic oscillator, (Russian) Mat. Zametki 105 (5), 740746 (2019); translation in Math. Notes 105 (5-6), 728-733 (2019).
10. Povzner A.Ya.: On differential equations of Sturm-Liouville type on a half-axis, (Russian) Mat. Sbornik N.S. 23 (65), 3-52 (1948).
11. Riemann, B. : Proceedings, (Russian) M.-L.: OGIZ (1948).
12. Li Yishen : One special inverse problem of the second order differential equation on the whole real axis, Chinese Ann. Math. 2 (2), 147-156 (1981).

[^0]: * Corresponding author

