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Abstract. This work is devoted to the investigation of direct and inverse problems with nonlinear gluing
condition for a mixed parabolic-hyperbolic equation involves Riemann–Liouville time fractional deriva-
tives. The problem is reduced to study nonlinear Volterra integral equations. The methods of integral
equations and successive approximations are used in proving theorems on existence and uniqueness.
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1 Introduction

Differential equations of fractional order have recently proved to be valuable tools in the
modeling of many phenomena in various fields of sciences and engineering. For instance,
we can find numerous of applications in viscoelasticity, electrochemistry, control, porous
media, electromagnetic, etc. (see [7], [17], [18], [20]). There has been a significant develop-
ment in fractional differential equations in recent years (see the monographs [8]–[10], [16],
[21]–[23], [26]–[28], [30], [32], [36] and the references therein). Notice, that some basic
theory for the initial value problems of fractional differential equations involving Riemann–
Liouville differential operator has been discussed in [24].

One hand, when modeling various processes, practical needs lead to problems of deter-
mining the right-hand side of a differential equation (source function) from some available
data about the solution. These are the so-called inverse problems of determining sources
of fractional partial differential equations. These types of inverse problems arise in various
fields of human activity, such as seismology, biology, medicine, quality control of industrial
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goods, etc. Therefore, inverse problems among the important problems of modern math-
ematics (see the recent survey paper Liu, Li and Yamamoto [25] and references therein;
see also [5], [31], [33]). Inverse problems of various type for partial differential equations
of fractional order were studied in the many works (see, for examples, [1]–[6], [11]–[15],
[19], [29], [34]–[47]).

In this article, we consider the direct and inverse problems for parabolic-hyperbolic
equation of fractional order involves nonlinear loaded terms. The fractional part of con-
sidered equation will be defined through the Riemann–Liouville time fractional derivative
Dα

0t of order 0 < α < 1.

2 Formulation of the problem

We consider the equation{
uxx −Dα

0tu+ p1(x, t, z1(x)) = f1(x, t), t > 0,
uxx − utt + p2(x, t, z2(x)) = f2(x, t), t < 0,

(2.1)

where Dα
at is Riemann–Liouville differential operator of fractional order 0 < α < 1,

zi(x) = lim
(−1)i−1t→+0

D
(2−j)(α−1)
0t u(x, t),

fi(x, t) ∈ C(Ωi), t
1−αp1(x, t, z1) ∈ C

(
Ω̄1 × R

)
, p2(x, t, z2) ∈ C

(
Ω̄2 × R

)
. (2.2)

Notice, the functions pi(x, t, zi(x)) are nonlinear loaded parts of equation (2.1).
Let Ω be one connected domain bounded with segments: A1A2 =

{
(x, t) : x = l, 0 <

t < h
}
, B1B2 =

{
(x, t) : x = 0, 0 < t < h

}
, B2A2 =

{
(x, y) : t = h, 0 < x < l

}
at

t > 0 and by characteristics B1C : x+ t = 0, A1C : x− t = l of equation (2.1) at t < 0.
We enter designations Ω1 = Ω ∩ {t > 0}, Ω2 = Ω ∩ {t < 0} and I =

{
(x, t) : t =

0, 0 < x < l
}
.

Direct Problem. To find a function u(x, t) for equation (2.1) in domain Ω \ I with the
following properties:
1. u(x, t) ∈W1, where W1 =

{
u : Dα−1

0t u ∈ C(Ω̄1), u ∈ C(Ω̄2) ∩ C2(Ω2),

uxx ∈ C (Ω1) , ut ∈ C (Ω2 ∪ I) , Dα
0tu ∈ C (Ω1 ∪ I) , Dα−1

0t ux ∈ C
(
Ω1 \A2B2

)}
,

2. u(x, t) satisfies boundary conditions:

ux (0, t) = ϕ1(t), ux (l, t) = ϕ2(t), 0 ≤ t < h, (2.3)

u
(x

2
,−x

2

)
= δ1(x)u(x,−0) + δ2(x), 0 ≤ x ≤ l, (2.4)

matching gluing conditions:

lim
t→+0

t1−αu(x, t) = µ1(x)u(x,−0) + µ2(x), 0 ≤ x ≤ l (2.5)

and for all x from the open interval 0 < x < l it is true that

lim
t→+0

t1−α
(
t1−αu(x, t)

)
t

= λ1(x)ut(x,−0) + λ2(x)ux(x,−0) + r(x, u(x,−0)), (2.6)

where r(x, z), δi(x), µi(x), λi(x), ϕi(t) (i = 1, 2) are given functions, and

t1−αϕ1(t), t
1−αϕ2(t) ∈ C[0, h], δi(x), µi(x) ∈ C [0, l] ∩ C2 (0, l) , (2.7)
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λi(x) ∈ C [0, l] ∩ C1(0, l), r(x, z) ∈ C ([0, l]× R) ∩ C1 ((0, l)× R) . (2.8)

Moreover, we suppose that µ1(x) 6= 0 for all x ∈ [0, l], δ1(0) 6= 1.
We put {

f1(x, t) = f(x)g1(t), for (x, t) ∈ Ω1,
f2(x, t) = f(x)g2(t), for (x, t) ∈ Ω2,

where gi(t) (j = 1, 2) are given functions.
Inverse Problem. To find a pair of functions

{
u(x, t), f(x)

}
for equation (2.1) in Ω \ I

with the following properties:
1. f(x) ∈ C(0, l) ∩ L1(0, l);
2. u(x, t) ∈ W2 satisfies boundary conditions (2.3) and (2.4), gluing conditions (2.5) and
(2.6), and following additional conditions

∂u(x, t)

∂n
|y=x = ψ1(x), 0 < x ≤ l

2
;
∂u(x, t)

∂n
|y=x−l = ψ2(x),

l

2
≤ x < l, (2.9)

where W2 = W1 ∩ W0, W0 =
{
u : u ∈ C1

(
Ω2 \ I

)}
, ψj(x) (j = 1, 2) are given

functions, and

ψ1(x) ∈ C
[
0,
l

2

]
∩ C1

(
0,
l

2

]
, ψ2(x) ∈ C

[
l

2
, l

]
∩ C1

[
l

2
, l

)
. (2.10)

3 Direct Problem

31 Main functional relation and reduction of the problem

Notice, that the solution of Cauchy problem for equation (2.1) with the initial data

u(x,−0) = τ−(x), 0 ≤ x ≤ l, ut(x,−0) = ν−(x), 0 < x < l (3.1)

has a form:

u(x, t) =
1

2

(
τ−(x+ t) + τ−(x− t)

)
− 1

4

∫ x−t

x+t
dη

∫ η

x+t
f2

(
ξ + η

2
,
ξ − η

2

)
dξ

+
1

4

∫ x−t

x+t
dη

∫ η

x+t
p2

(
ξ + η

2
,
ξ − η

2
, τ−

(
ξ + η

2

))
dξ. (3.2)

By virtue of conditions (2.4), from the solution (3.2) we obtain

ν−(x) = (1− 2δ1(x))τ ′−(x)− 2δ′1(x)τ−(x)

+
1

2

∫ x

0
p2

(
t+ x

2
,
t− x

2
, τ−

(
t+ x

2

))
dt

− 1

2

∫ x

0
f2

(
t+ x

2
,
t− x

2

)
dt− 2δ′2(x). (3.3)

On the other hand, introducing notations

lim
t→+0

Dα−1
0t u(x, t) = τ+(x), lim

t→+0
t1−α

(
t1−αu(x, t)

)
t

= ν+(x), (3.4)
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and applying operatorDα−1
0t to both sides of (2.1) at t→ +0, due to equality lim

t→+0
Dα−1

0t f(t) =

Γ (α) lim
t→+0

t1−αf(t), we have

τ ′′+(x)− Γ 2(α)ν+(x) + Γ (α)p11
(
x, τ+(x)

)
= Γ (α)f̄1(x), (3.5)

where Γ (α)f̄1(x) = lim
t→+0

Dα−1
0t f1(x, t), Γ (α)p11(x, τ

+(x)) = lim
t→+0

Dα−1
0t p1(x, t, z1).

Considering designation (3.1) and (3.4), from (2.5) and (2.6) we derive

ν+(x) = λ1(x)ν−(x) + λ2(x)τ ′−(x) + r(x, τ−(x)), (3.6)

τ+(x) = Γ (α)µ1(x)τ−(x) + Γ (α)µ2(x). (3.7)

Taking (3.6), (3.7) and (3.3) into account, from equation (3.5) we come to a nonlinear
integro-differential equation

µ1(x)τ ′′(x) +
(
2µ′1(x)− Γ (α)λ1(x)(1− 2δ1(x))− Γ (α)λ2(x)

)
τ ′(x)

+(µ′′1(x)+2Γ (α)λ1(x)δ′1(x))τ(x)−Γ (α)r(x, τ(x))+p11 (x, Γ (α)µ1(x)τ(x) + Γ (α)µ2(x))

−Γ (α)λ1(x)

2

∫ x

0
p2

(
t+ x

2
,
t− x

2
, τ−

(
t+ x

2

))
dt

= f̄1(x)− µ′′2(x)− Γ (α)λ1(x)

2

∫ x

0
f2

(
t+ x

2
,
t− x

2

)
dt− 2Γ (α)λ1(x)δ′2(x), (3.8)

where τ(x) = τ−(x).
Hence, owing to condition µ1(x) 6= 0, ∀x ∈ [0, l], equation (3.8) we will rewrite as:

τ ′′(x) + a(x)τ ′(x) + b(x)τ(x) +A(x, τ(x))

−Γ (α)λ1(x)

2

∫ x

0
p2

(
t+ x

2
,
t− x

2
, τ−

(
t+ x

2

))
dt = F (x), (3.9)

where

a(x) =
2µ′1(x)− Γ (α)λ1(x)(1− 2δ1(x))− Γ (α)λ2(x)

µ1(x)
, (3.10)

b(x) =
µ′′1(x) + 2Γ (α)λ1(x)δ′1(x)

µ1(x)
, (3.11)

A(x, τ(x)) =
−1

µ1(x)
(Γ (α)r(x, τ(x))− p11 (x, Γ (α)µ1(x)τ(x) + Γ (α)µ2(x))) , (3.12)

F (x) =
f̄1(x)− µ′′2(x)− 2Γ (α)λ1(x)δ′2(x)

µ1(x)
− Γ (α)λ1(x)

2µ1(x)

∫ x

0
f2

(
t+ x

2
,
t− x

2

)
dt.

Based on the class of given functions (2.2), (2.7) and (2.8), easy to spot, that

|a(x)| ≤ a0, |b(x)| ≤ b0, |A(x, z)| ≤ A0, |F (x)| ≤ F0, (3.13)

where a0, b0, A0, F0 = const > 0.
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Lemma 3.1 If µ1(x) ∈ C[0, l] ∩ C2(0, l), and the conditions

r(x, z), p11(x, z) ∈ C ([0, l]× R) ∩ C1 ((0, l)× R) , (3.14)

|r(x, z1)− r(x, z2)| ≤ L0 |z1 − z2|, ∀z1, z2 ∈ R, (3.15)

|p11(x, z1)− p11(x, z2)| ≤ L1 |z1 − z2|, ∀z1, z2 ∈ R (3.16)

are true, then takes place the inequality

|A(x, z1)−A(x, z2)| ≤ L |z1 − z2|, ∀z1, z2 ∈ R, (3.17)

where L0, L1 = const > 0, L = Γ (α)µ0L0 + Γ 2(α)L1, µ0 = max
x∈[0,l]

1
|µ1(x)| .

Proof. Using condition (3.16), we obtain∣∣p11(x, Γ (α)µ1(x)z1 + Γ (α)µ2(x)
)
− p11

(
x, Γ (α)µ1(x)z2 + Γ (α)µ2(x)

)∣∣
≤ L1

∣∣Γ (α)µ1(x)z1 − Γ (α)µ1(x)z2
∣∣ ≤ L1Γ (α)|µ1(x)| |z1 − z2|. (3.18)

Further, taking (3.15), (3.18) into account, from (3.12), we get

|A(x, z1)−A(x, z2)| ≤
∣∣∣∣ Γ (α)

µ1(x)

∣∣∣∣ |r(x, z1)− r(x, z2)|
+

∣∣∣∣ Γ (α)

µ1(x)

∣∣∣∣ ∣∣p11(x, Γ (α)µ1(x)z1 + Γ (α)µ2(x)
)
− p11

(
x, Γ (α)µ1(x)z2 + Γ (α)µ2(x)

)∣∣
≤
∣∣∣∣ Γ (α)

µ1(x)

∣∣∣∣ (L0|z1 − z2|+ L1Γ (α)|µ1(x)| · |z1 − z2|
)
.

Taking the class of function µ1(x) into account and due to µ1(x) 6= 0, ∀x ∈ [0, l], we
obtain 1

|µ1(x)| ≤ µ0, where µ0 = const > 0. Hence, we derive, that

|A(x, z1)−A(x, z2)| ≤ L |z1 − z2|,

where L = Γ (α)µ0L0 + Γ 2(α)L1. Lemma 3.1 is proved.

Since µ1(0) 6= 0, δ1(0) 6= 1,

τ ′+(0) = Γ (α) lim
t→+0

t1−αϕ1(t) = ϕ0 τ(0) = τ−(0) =
δ2(0)

1− δ1(0)
= τ01,

from
τ ′+(x) = Γ (α)µ′1(x)τ−(x) + Γ (α)µ1(x)τ ′−(x) + Γ (α)µ′2(x)

we have

τ ′(0) = τ ′−(0) =
1

Γ (α)µ1(0)

(
ϕ0 − Γ (α)µ′2(0)− Γ (α)µ′1(0)δ2(0)

1− δ1(0)

)
= τ02.

Thus, we found initial conditions τ(0) = τ01 and τ ′(0) = τ02 to nonlinear integral
equation (3.9). Using these initial conditions, we integrate the equation (3.9) two times with
respected to x and we get a nonlinear integral equation

τ(x) =

∫ x

0
K(x, t)τ(t)dt−

∫ x

0
(x− t)A(t, τ(t))dt



26 Direct and inverse problems for a parabolic-hyperbolic equation ...

+
Γ (α)

2

∫ x

0
λ1(t)(x− t)dt

∫ t

0
p2

(
z + t

2
,
z − t

2
, τ

(
z + t

2

))
dz + F1(x), (3.19)

where
K(x, t) = (a(t)(x− t))′ − b(t)(x− t), (3.20)

F1(x) = (a(0)x+ 1)τ01 + xτ02 +

∫ x

0
(x− t)F (t)dt.

Hence, by virtue of (3.13), we obtain

|K(x, t)| ≤ k0, |F1(x)| ≤ F01, k0, F01 = const > 0. (3.21)

Theorem 3.1 If all conditions of the Lemma 3.1 and (2.2), (2.7), (2.8) are true and takes
place the Lipschitz condition

|p2(x, t, z1)− p2(x, t, z2)| ≤ L2 |z1 − z2|, L2 = const > 0,

then a solution of the direct problem exist and unique.

Proof. We would like to note, that the investigation of the direct problem symmetrically
reduced to the unique solvability of the nonlinear integral equation (3.19), i.e. existence and
uniqueness of solution of the direct problem follows from the unique solvability to equation
(3.19).

Unique solvability nonlinear integral equation (3.19) we prove by the method successive
approximations. With the aid of recurrent equation

τn(x) =

∫ x

0
K(x, t)τn−1(t)dt−

∫ x

0
(x− t)A(t, τn−1(t))dt

+
Γ (α)

2

∫ x

0
λ1(t)(x− t)dt

∫ t

0
p2

(
z + t

2
,
z − t

2
, τn−1

(
z + t

2

))
dz + F1(x), (3.22)

we construct functional sequence
{
τn(x)

}
with zero approximations τ0(x) = F1(x).

By virtue of the classes (see (2.2), (2.7) and (2.8)) for given functions, we have

|Γ (α)λ1(x)| ≤ λ01, |pi(x, t, z)| ≤ p0i (i = 1, 2). (3.23)

By virtue of (3.13), from (3.22) we have

|τ1(x)− τ0(x)| ≤ f0k0x+ a0
x2

2!
+ λ01p02

x3

3!
. (3.24)

It is easy to check, that

x2l ≤ xl, x3 ≤ x2l ≤ xl2 for 0 < x ≤ l.

Therefore, the inequality (3.24) we can write as

|τ1(x)− τ0(x)| ≤ c0x, c0 = f0k0 +A0
l

2
+ λ01p02

l2

6
. (3.25)

Similarly, taking (3.25) into account, from (3.22) we obtain

|τ2(x)− τ1(x)| ≤ k0c0
x2

2!
+ Lc0

x3

3!
+ λ01L2c0

x4

4!
≤ c0(k0 + L

l

3
+ L2

l2

6
)
x2

2!
= c0c1

x2

2!
,

|τ3(x)−τ2(x)| ≤ k0c0c1
x3

3!
+Lc0c1

x4

4!
+λ01L2c0c1

x5

5!
≤ c0c1(k0+L

l

3
+L2

l2

6
)
x3

3!
= c0c

2
1

x3

3!
.
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Consequently, applying the method of mathematical induction, it is easy to show that

|τn(x)− τn−1(x)| ≤ c0cn−11

xn

n!
. (3.26)

Thus, we conclude that the right-hand side of equation (3.19) is a compressive operator,
and there exist a unique fixed point for this operator. Hence, the nonlinear integral equation
(3.19) has a unique solution from the class of functions C[0, 1] ∩ C2(0, 1).

After determining τ(x) = τ−(x), unknown functions τ+(x) and ν−(x) we will find
from (3.7) and (3.3), respectively. Consequently, a solution of the direct problem in domain
Ω2 we will restore as a solution of the Cauchy problem (see (3.2)), and in domain Ω1 as
a solution of the second boundary-value problem [29]. Thus, existence of solution of the
direct problem is proved.

Now we prove uniqueness of solution of equation (3.19). We suppose the opposite: let
us τ1(x) and τ2(x) are two different solutions of equation (3.19). Then from the equation
(3.19), we have

τ1(x)− τ2(x) =

∫ x

0
K(x, t)

(
τ1(t)− τ1(t)

)
dt−

∫ x

0
(x− t)

(
A
(
t, τ1(t)

)
−A

(
t, τ2(t)

))
dt

+
Γ (α)

2

∫ x

0
λ1(t)(x− t)dt

∫ t

0

[
p2

(
z + t

2
,
z − t

2
, τ1

(
z + t

2

))
−p2

(
z + t

2
,
z − t

2
, τ2

(
z + t

2

))]
dz. (3.27)

Entering designation τ(x) ≡ τ1(x) − τ2(x) and considering (4.23), (3.23) and inequality
(3.17), from (3.27) we find

|τ(x)| ≤
∣∣∣∣ ∫ x

0
K(x, t)τ(t)dt

∣∣∣∣+

∣∣∣∣ ∫ x

0
(x− t)

∣∣A(t, τ1(t))−A(t, τ2(t))∣∣dt∣∣∣∣
+
Γ (α)

2

∣∣∣∣ ∫ x

0
λ1(t)(x− t)dt

∫ t

0

∣∣∣∣p2(z + t

2
,
z − t

2
, τ1

(
z + t

2

))
−p2

(
z + t

2
,
z − t

2
, τ2

(
z + t

2

))∣∣∣∣ dz∣∣∣∣
≤ k0

∣∣∣∣ ∫ x

0
|τ(t)|dt

∣∣∣∣+ L

∣∣∣∣ ∫ x

0
(x− t)|τ(t)|dt

∣∣∣∣+
λ01L2

2

∣∣∣∣ ∫ x

0
(x− t)dt

∫ t

0

∣∣∣∣τ (z + t

2

)∣∣∣∣ dz∣∣∣∣
≤
∣∣∣∣k0 + Lx+

λ01L2

2

x2

2

∣∣∣∣ · ∣∣∣∣ ∫ x

0
|τ(t)|dt

∣∣∣∣ ≤ c2 ∫ x

0
|τ(t)|dt, (3.28)

where c2 = k0 + Ll + λ01L2
2

l2

2 . Reinforcing inequality (3.28), we derive

|τ(x)| ≤ c22
∣∣∣∣ ∫ x

0
dt

∫ t

0
|τ(z)|dz

∣∣∣∣ ≤ c22∣∣∣∣ ∫ x

0
|τ(t)||x− t|dt

∣∣∣∣,
|τ(x)| ≤ c32

∣∣∣∣ ∫ x

0
|τ(t)|(x− t)

2

2!
dt

∣∣∣∣, . . . ,
|τ(x)| ≤ cn+1

2

∣∣∣∣ ∫ x

0
|τ(t)|(x− t)

n

n!
dt

∣∣∣∣ ≤ cn+1
2 ln

n!
‖τ(x)‖0, (3.29)

where ‖τ(x)‖0 = max
x∈[0,l]

x∫
0

|τ(t)|dt.

Considering ‖τ(x)‖0 ≤ const <∞, ∀x ∈ [0, l], from (3.29) at n→∞we get |τ(x)| ≡
0. Hence, we conclude that τ1(x) ≡ τ2(x), i.e. solution of equation (3.19) is unique. Thus,
Theorem 3.1 is proved.
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4 Inverse Problem

We note,that the general solution of equation (2.1) in Ω2 has a form:

u(x, t) = F1(x+ t) + F2(x− t) + g2(t)w(x)

+
1

4

∫ x−t

x+t
dη

∫ η

x+t
p2

(
ξ + η

2
,
ξ − η

2
, z2

(
ξ + η

2

))
dξ, (4.1)

where F1(x+ t) and F2(x− t) are arbitrary two times continuous-differentiable functions,
and w(x) is any solution of the equation

g2(t)w
′′(x)− g′′2(t)w(x) = f(x)g2(t), (x, t) ∈ Ω2. (4.2)

Using (2.9), from the solution (4.1) we find

2F ′1(0) + g2(−x)w′(x) + g′2(−x)w(x)

−1

2

∫ 2x

0
p2

(
l1 + η

2
,
l1 − η

2
, z2

(
ξ + η

2

))
dη =

√
2ψ1(x), 0 < x ≤ l

2
, (4.3)

2F ′2(l) + g2(x− l)w′(x)− g′2(x− l)w(x)

+
1

2

∫ l

2x−l
p2

(
ξ + l2

2
,
ξ − l2

2
, z2

(
ξ + η

2

))
dξ =

√
2ψ2(x),

l

2
≤ x < l. (4.4)

We assume, that f(x) =

{
f1(x), at 0 < x ≤ l

2 ,
f2(x), at l

2 ≤ x < l,
then, differentiating (4.3) and (4.4), owing

to (4.2), we find

f1(x)g2(−x) = p2(x,−x, z2(x)) +
√

2ψ′2(x), 0 < x ≤ l

2
, (4.5)

and
f2(x)g2(x− l) = p2(x, x− l, z2(x))−

√
2ψ′3(x),

l

2
≤ x < l, (4.6)

respectively, besides f1
(
l
2

)
= f2

(
l
2

)
.

Notice, that the solution of Cauchy problem for equation (2.1) with the initial dates

u(x,−0) = τ−(x), 0 ≤ x ≤ l, ut(x,−0) = ν−(x), 0 < x < l; (4.7)

has a form:

u(x, t) =
1

2

(
τ−(x+ t) + τ−(x− t)

)
− g2(0)

2

(
w(x+ t) + w(x− t)

)
+ g(t)w(x)

−1

2

∫ x−t

x+t
ν−(z)dz +

g′2(0)

2

∫ x−t

x+t
w(z)dz

+
1

4

∫ x−t

x+t
dη

∫ η

x+t
p2

(
ξ + η

2
,
ξ − η

2
, τ−

(
ξ + η

2

))
dξ. (4.8)

By virtue of condition (2.4), from the solution (4.8) we get

ν−(x) = (1− 2δ1(x))τ ′−(x)− 2δ′1(x)τ−(x)− w′(x)g2(0)

−g′2
(
−x
2

)
w
(x

2

)
+ g2

(
−x
2

)
w′
(x

2

)
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+g′2(0)w(x)− 2δ′(x) +
1

2

∫ x

0
p2

(
t+ x

2
,
t− x

2
, τ−

(
t+ x

2

))
dt. (4.9)

We would like to not that, if g2(t) 6= 0, ∀t ≤ 0, then from the equation (4.2) follows that
g′′2 (t)
g2(t)

= const.

If g
′′
2 (t)
g2(t)

= k2, k ∈ R \ {0}, then the equation (4.2) has a form

w′′(x)− k2w(x) = f(x), 0 < x < l. (4.10)

Notice, that one of the solutions of equation (4.10) is presented as follows:

w(x) =

∫ x

0
f(t)

[
(x− t) + k

∫ x

t
(z − t) sinh k(x− z)dz

]
dt. (4.11)

Considering (4.5) and (4.6) at g2(x) 6= 0, from (4.11) we receive

w(x) =

∫ x

0
H̄(x, t)p2(t, τ(t))dt+

∫ x

0
ψ(t)H̄(x, t)dt, (4.12)

where

H̄(x, t) =

{
H(x,t)
g2(−t) for 0 ≤ t ≤ x ≤ l

2 ,
H(x,t)
g2(l−t) for l

2 ≤ t ≤ x ≤ l,
(4.13)

H(x, t) = (x− t) + k

∫ x

t
(z − t) sinh k(x− z)dz,

p2(x, τ(x)) =

{
p2(x,−x, τ(x)), for 0 ≤ x ≤ l

2 ,
p2(x, l − x, τ(x)), for l

2 ≤ x ≤ l,
(4.14)

ψ(x) =

{√
2
ψ′2(x)
g2(−x) , for 0 ≤ x ≤ l

2 ,

−
√

2
ψ′3(x)
g2(x−l) , for l

2 ≤ x ≤ l.

Thus, substituting function (4.11) into functional relation (4.9), we get

ν−(x) = (1− 2δ1(x))τ ′−(x)− 2δ′1(x)τ−(x) +

∫ x

0
p2(t, τ(t))H3(x, t)dt

+

∫ x
2

0
p2(t, τ(t))H4(x, t)dt+

1

2

∫ x

0
p2

(
t+ x

2
,
t− x

2
, τ−

(
t+ x

2

))
dt

+

∫ x

0
ψ(t)H3(x, t)dt−

√
2

∫ x
2

0

ψ′3(t)

g2(t− l)
H4(x, t)dt− 2δ′(x), (4.15)

where
H3(x, t) = g′2(0)H̄(x, t)− g2(0)H̄x(x, t),

H4(x, t) = g2

(
−x

2

) Hx(x, t)

g2(−t)
− g′2

(
−x

2

) H(x, t)

g2(−t)
.

Further, as the direct problem, considering designations (3.4) and applying operator
Dα−1

0t to both sides of (2.1) at t→ +0, due to equality

lim
t→+0

Dα−1
0t f(t) = Γ (α) lim

t→+0
t1−αf(t),
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we have
τ ′′+(x)− Γ 2(α)ν+(x) + Γ (α)p11

(
x, τ+(x)

)
= Γ (α)f(x)g1, (4.16)

where Γ (α)g1 = lim
t→+0

Dα−1
0t g1(t).

Taking (3.6), (3.7) into account, from equation (4.16) we obtain a nonlinear integro-
differential equation

µ1(x)τ ′′(x) +
(
2µ′1(x)− Γ (α) (λ2(x) + λ1(x)(1− 2δ1(x)))

)
τ ′(x)

+
(
µ′′1(x) + 2Γ (α)λ1(x)δ′1(x)

)
τ(x)− Γ (α)r(x, τ(x))

−Γ (α)λ1(x)

∫ x

0
p2(t, τ(t))H3(x, t)dt− Γ (α)λ1(x)

∫ x
2

0
p2(t, τ(t))H4(x, t)dt

−Γ (α)λ1(x)

2

∫ x

0
p2

(
t+ x

2
,
t− x

2
, τ−

(
t+ x

2

))
dt

+p11 (x, Γ (α)µ1(x)τ(x) + Γ (α)µ2(x)) = f(x)g1 − µ′′2(x) + 2Γ (α)λ1(x)δ′2(x)

−Γ (α)λ1(x)

∫ x

0
ψ(t)H3(x, t)dt+

√
2Γ (α)λ1(x)

∫ x
2

0

ψ′3(t)

g2(t− l)
H4(x, t)dt, (4.17)

where τ(x) = τ−(x).
Due to g2(x) 6= 0, the nonlinear integro-differential equation (4.17) we can write as

τ ′′(x) + a(x)τ ′(x) + b(x)τ(x) +B(x, τ(x))− Γ (α)λ1(x)

µ1(x)

∫ x
2

0
p2(t, τ(t))H4(x, t)dt

−Γ (α)λ1(x)

2µ1(x)

∫ x

0
p2

(
t+ x

2
,
t− x

2
, τ−

(
t+ x

2

))
dt = F2(x), (4.18)

where a(x), b(x) are defined from (3.10), and

B(x, τ(x)) =
1

µ1(x)
p11 (x, Γ (α)µ1(x)τ(x) + Γ (α)µ2(x))− Γ (α)

µ1(x)
r(x, τ(x))

−Γ (α)λ1(x)

µ1(x)

∫ x

0
p2(t, τ(t))H3(x, t)dt,

F2(x) =
f(x)g1 − µ′′2(x) + 2Γ (α)λ1(x)δ′2(x)

µ1(x)
−

−Γ (α)λ1(x)

µ1(x)

∫ x

0
ψ(t)H3(x, t)dt+

√
2Γ (α)λ1(x)

µ1(x)

∫ x
2

0

ψ′3(t)

g2(t− l)
H4(x, t)dt. (4.19)

Lemma 4.1 If all conditions of the Lemma 3.1 and

|p2(x, z1)− p2(x, z2)| ≤ L2 |z1 − z2|, ∀z1, z2 ∈ R (4.20)

are fulfilled, then there for ∀z1, z2 ∈ R takes place the inequality

|B(x, z1(x))−B(x, z2(x))| ≤ L |z1 − z2|+ L21

∫ x

0
|z1(t)− z2(t)| dt, (4.21)

where L2, L21 = const > 0, besides L21 = Γ (α)
2 L2µ0λ01h03, h03 = max

0≤t≤x≤l
1

|H3(x,t)| .
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Lemma 4.1 proves similarly, as the case of Lemma 3.1. Therefore, we do not present its
proof here.

Using initial conditions τ(0) = τ01 and τ ′(0) = τ02 , we integrate the equation (4.18)
two times with respected to x and we obtain a nonlinear integral equation

τ(x) =

∫ x

0
K(x, t)τ(t)dt−

∫ x

0
(x−t)B(t, τ(t))dt+

∫ x

0
(x−t)dt

∫ t
2

0
p2(z, τ(z))H̄4(t, z)dz

+
Γ (α)

2

∫ x

0
λ1(t)(x− t)dt

∫ t

0
p2

(
z + t

2
,
z − t

2
, τ

(
z + t

2

))
dz + F3(x), (4.22)

where K(x, t) is defined from (3.20),

F3(x) = (a(0)x+ 1)τ01 + xτ02 +

∫ x

0
(x− t)F2(t)dt.

Hence, by virtue of (3.13), we have

|K(x, t)| ≤ k0, |F3(x)| ≤ F03, k0, F03 = const > 0. (4.23)

Theorem 4.1 If all conditions of the Lemma 4.1, Theorem 3.1 and (2.2), (2.7), (2.8), (2.10)
are fulfilled, then solution of the inverse problem exist and unique.

The Theorem 4.1 proves similarly as theorem 3.1.
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