Polynomial stability of a transmission problem with second sound and distributed delay term

Madani Douib ${ }^{\star}$, Salah Zitouni, Abdelhak Djebabla

Received: 02.04.2022 / Revised: 28.08.2022 / Accepted: 09.05.2023

Abstract

In this work, we consider a transmission problem for an elastic-thermoelastic bar with the elastic part being surrounded by two thermoelastic parts in the presence of an infinite distributed delay term. The heat flux of the system is governed by Cattaneo's law. Under suitable assumption on the weight of the delay, we establish the polynomial stability of the solution by introducing a suitable Lyapunov functional.

Keywords. Transmission problem • second sound • distributed delay • polynomial stability.
Mathematics Subject Classification (2010): 35B35, 74F05, 74H55, 93D15, 93D20

1 Introduction

In this article, we study the transmission problem with second sound and a distributed delay term,

$$
\begin{cases}u_{t t}(x, t)-a u_{x x}(x, t)+\mu_{1} u_{t}(x, t) \tag{1.1}\\ +\int_{\tau_{1}}^{\tau_{2}} \mu_{2}(s) u_{t}(t-s) d s+\gamma \theta_{x}(x, t)=0, & (x, t) \in \Omega \times(0,+\infty) \\ \theta_{t}(x, t)+k q_{x}(x, t)+\gamma u_{x t}(x, t)=0, & (x, t) \in \Omega \times(0,+\infty) \\ \tau q_{t}(x, t)+q(x, t)+k \theta_{x}(x, t)=0, & (x, t) \in \Omega \times(0,+\infty) \\ v_{t t}(x, t)-b v_{x x}(x, t)=0, & (x, t) \in\left(L_{1}, L_{2}\right) \times(0,+\infty)\end{cases}
$$

under the boundary and transmission conditions

$$
\begin{cases}u(0, t)=u\left(L_{3}, t\right)=q(0, t)=\theta(0, t)=\theta\left(L_{3}, t\right)=0, & t>0, \tag{1.2}\\ u\left(L_{i}, t\right)=v\left(L_{i}, t\right), & i=1,2, t>0 \\ q\left(L_{i}, t\right)=\theta\left(L_{i}, t\right)=0, & i=1,2, t>0 \\ a u_{x}\left(L_{i}, t\right)=b v_{x}\left(L_{i}, t\right), & i=1,2, t>0\end{cases}
$$

[^0]and the initial conditions
\[

$$
\begin{cases}u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), & x \in \Omega \tag{1.3}\\ \theta(x, 0)=\theta_{0}(x), q(x, 0)=q_{0}(x), & x \in \Omega \\ v(x, 0)=v_{0}(x), v_{t}(x, 0)=v_{1}(x), & x \in\left(L_{1}, L_{2}\right) \\ u_{t}(x,-t)=f_{0}(x,-t), & x \in \Omega, t \in\left(0, \tau_{2}\right)\end{cases}
$$
\]

Where $0<L_{1}<L_{2}<L_{3}, \Omega=\left(0, L_{1}\right) \cup\left(L_{2}, L_{3}\right), a, \mu_{1}, \gamma, k, \tau, b$ are positive constants, and the initial data $\left(u_{0}, u_{1}, v_{0}, v_{1}, \theta_{0}, q_{0}\right)$ belongs to suitable space. Moreover, μ_{2} : $\left[\tau_{1}, \tau_{2}\right] \longrightarrow \mathbb{R}$ is a bounded function, where τ_{1} and τ_{2} are two real number satisfying $0 \leq \tau_{1}<\tau_{2}$.

Here, we will prove the stability results for system (1.1)-(1.3), under the assumption

$$
\begin{equation*}
\mu_{1}>\int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| d s \tag{1.4}
\end{equation*}
$$

In the classical thermoelasticity, the heat flux is given by Fourier's law. As a result, this theory predicts an infinite speed of heat propagation (predicts the physical paradox of in nite speed of heat propagation). In other words, any thermal disturbance at one point has an instantaneous effect elsewhere in the body. To overcome this physical paradox but still keeping the essentials of heat conduction process, many theories have merged. One of which is the advent of the second sound effects observed experimentally in materials at low temperature. This theory suggests replacing the classic Fourier's law by a modied law of heat conduction called Cattaneo's law. For results concerning existence, blow up, and asymptotic behavior of smooth, as well as weak solutions in heat conduction with second sound, we refer the reader to ([1,3,4,9,11,12]). Liu et al. [9] considered the following transmission problem in infinite memory-type thermoelasticity with second sound

$$
\begin{cases}u_{t t}(x, t)-a u_{x x}(x, t)+\int_{0}^{\infty} g(s) u_{x x}(x, t-s) d s & \\ +\gamma \theta_{x}(x, t)=0, & (x, t) \in \Omega \times(0,+\infty) \\ \theta_{t}(x, t)+k q_{x}(x, t)+m u_{x t}(x, t)=0, & (x, t) \in \Omega \times(0,+\infty) \\ \tau q_{t}(x, t)+q(x, t)+k \theta_{x}(x, t)=0, & (x, t) \in \Omega \times(0,+\infty) \\ v_{t t}(x, t)-b v_{x x}(x, t)=0, & (x, t) \in\left(L_{1}, L_{2}\right) \times(0,+\infty)\end{cases}
$$

the main diffculties in handing this problem are that the system does not have any frictional damping term, and that the dissipative effects of heat conduction induced by Cattaneo's law are usually weaker than those induced by Fourier's law. Under appropriate hypothesis on the relaxation function, the authors established a general decay result.

Time delays arise in many applications because most phenomena naturally depend not only on the present state but also on some past occurrences. In recent years, the stability of evolution systems with time delay effects has become an active area of research (e.g. [1,2, 5,6,8,13-15]). Kafini et al. [6] considered Timoshenko-type system of thermoelasticity of type III with distributive delay, they proved an exponential decay in the case of equal wave speeds and a polynomial decay result in the case of nonequal wave speeds with smooth initial data. Liu [8] considered the following transmission problem in a bounded domain with a distributed delay in the first equation

$$
\begin{cases}u_{t t}(x, t)-a u_{x x}(x, t)+\mu_{1} u_{t}(x, t) & \\ +\int_{\tau_{1}}^{\tau_{2}} \mu_{2}(s) u_{t}(t-s) d s=0, & (x, t) \in \Omega \times(0,+\infty) \\ v_{t t}(x, t)-b v_{x x}(x, t)=0, & (x, t) \in\left(L_{1}, L_{2}\right) \times(0,+\infty)\end{cases}
$$

under suitable assumptions on the weight of the delay, the author established the wellposedness result and proved that the system is exponentially stable by introducing a suitable Lyapunov functional. In [2], the effect of the delay term $u_{t}(x, t-\tau)$ in the transmission
system has been investigated by Benseghir. Recently, the well posedness and the decay of solution for a transmission problem in a bounded domain with a viscoelastic term and a delay term $u_{t}(x, t-\tau)$ have been studied in [7,17].

The aim of this article is to study the asymptotic stability of system (1.1)-(1.3) provided that (1.4) is satis ed. The paper is organized as follows. In Section 2, we present some assumptions and preliminary works. In Section 3, by introducing the extra second-order energy, we prove the polynomial decay result.

2 Preliminaries

As in [15], we introduce the new variable

$$
\begin{equation*}
z(x, \rho, t, s)=u_{t}(x, t-\rho s), x \in \Omega, \rho \in(0,1), t>0, s \in\left(\tau_{1}, \tau_{2}\right) \tag{2.1}
\end{equation*}
$$

Then, we obtain

$$
s z_{t}(x, \rho, t, s)+z_{\rho}(x, \rho, t, s)=0, x \in \Omega, \rho \in(0,1), t>0, s \in\left(\tau_{1}, \tau_{2}\right)
$$

Hence, system (1.1)-(1.3) is equivalent to

$$
\begin{cases}u_{t t}(x, t)-a u_{x x}(x, t)+\mu_{1} u_{t}(x, t) & \tag{2.2}\\ +\int_{\tau_{1}}^{\tau_{2}} \mu_{2}(s) z(x, 1, t, s) d s+\gamma \theta_{x}(x, t)=0, & (x, t) \in \Omega \times(0,+\infty), \\ \theta_{t}(x, t)+k q_{x}(x, t)+\gamma u_{x t}(x, t)=0, & (x, t) \in \Omega \times(0,+\infty), \\ \tau q_{t}(x, t)+q(x, t)+k \theta_{x}(x, t)=0, & (x, t) \in \Omega \times(0,+\infty), \\ v_{t t}(x, t)-b v_{x x}(x, t)=0, & (x, t) \in\left(L_{1}, L_{2}\right) \times(0,+\infty), \\ s z_{t}(x, \rho, t, s)+z_{\rho}(x, \rho, t, s)=0, & (x, \rho, t, s) \in \Omega \times(0,1) \times(0,+\infty) \times\left(\tau_{1}, \tau_{2}\right), \\ z(x, 0, t, s)=u_{t}(x, t), & (x, t, s) \in \Omega \times(0,+\infty) \times\left(\tau_{1}, \tau_{2}\right), \\ u(0, t)=u\left(L_{3}, t\right)=q(0, t)=\theta\left(L_{3}, t\right)=0, & t \in(0,+\infty), \\ u\left(L_{i}, t\right)=v\left(L_{i}, t\right), & i=1,2, t>0, \\ q\left(L_{i}, t\right)=\theta\left(L_{i}, t\right)=0, & i=1,2, t>0, \\ a u_{x}\left(L_{i}, t\right)=b v_{x}\left(L_{i}, t\right), & i=1,2, t>0, \\ u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), & x \in \Omega, \\ \theta(x, 0)=\theta_{0}(x), q(x, 0)=q_{0}(x), & x \in \Omega, \\ v(x, 0)=v_{0}(x), v_{t}(x, 0)=v_{1}(x), & x \in\left(L_{1}, L_{2}\right), \\ z(x, \rho, 0, s)=f_{0}(x, \rho s), & (x, \rho, s) \in \Omega \times(0,1) \times\left(0, \tau_{2}\right) .\end{cases}
$$

Defining $U=(u, v, \varphi, \theta, q, \psi, z)^{T}$, where $\varphi=u_{t}$ and $\psi=v_{t}$, we formally get that U satisfies

$$
\left\{\begin{array}{l}
U^{\prime}(t)=A U(t), \quad t>0 \tag{2.3}\\
U(0)=U_{0}=\left(u_{0}, v_{0}, u_{1}, \theta_{0}, q_{0}, v_{1}, f_{0}\right)^{T}
\end{array}\right.
$$

where the operator \mathcal{A} is defined by

$$
\mathcal{A} U=\left(\begin{array}{c}
\varphi \\
\psi \\
a u_{x x}-\mu_{1} u_{t}-\int_{\tau_{1}}^{\tau_{2}} \mu_{2}(s) z(x, 1, t, s) d s-\gamma \theta_{x} \\
-k q_{x}-\gamma u_{x t} \\
-\frac{1}{\tau} q-\frac{k}{\tau} \theta_{x} \\
b v_{x x} \\
-\frac{1}{s} z_{\rho}(x, \rho, t, s)
\end{array}\right)
$$

We consider the following spaces

$$
\begin{aligned}
X_{*}=\{ & \{u, v) \in H^{1}(\Omega) \cap H^{1}\left(L_{1}, L_{2}\right) ; u(0, t)=u\left(L_{3}, t\right)=0, \\
& \left.u\left(L_{i}, t\right)=v\left(L_{i}, t\right), a u_{x}\left(L_{i}, t\right)=b v_{x}\left(L_{i}, t\right), i=1,2\right\} .
\end{aligned}
$$

Let

$$
\mathcal{H}=X_{*} \times L^{2}(\Omega) \times L^{2}(\Omega) \times L^{2}(\Omega) \times L^{2}\left(L_{1}, L_{2}\right) \times L^{2}\left(\Omega \times(0,1) \times\left(\tau_{1}, \tau_{2}\right)\right),
$$

be the Hilbert space equipped with the inner product

$$
\begin{aligned}
(U, \tilde{U})_{\mathcal{H}}= & \int_{\Omega}\left(\varphi \tilde{\varphi}+a u_{x} \tilde{u}_{x}+\theta \tilde{\theta}+\tau q \tilde{q}\right) d x+\int_{L_{1}}^{L_{2}}\left(\psi \tilde{\psi}+b v_{x} \tilde{v}_{x}\right) d x \\
& +\int_{\Omega} \int_{0}^{1} \int_{\tau_{1}}^{\tau_{2}} s\left|\mu_{2}(s)\right| z(x, \rho, t, s) \tilde{z}(x, \rho, t, s) d s d \rho d x .
\end{aligned}
$$

The domain of \mathcal{A} is

$$
D(\mathcal{H})=\left\{\begin{array}{c}
(u, v, \varphi, \theta, q, \psi, z)^{T} \in \mathcal{H}, u \in H^{2}(\Omega) \cap H^{1}(\Omega), \\
v \in H^{2}\left(L_{1}, L_{2}\right) \cap H^{1}\left(L_{1}, L_{2}\right), \varphi \in H^{1}(\Omega), \theta \in \widetilde{H}_{*}^{1}(\Omega), \\
q \in \bar{H}_{*}^{1}(\Omega), \psi \in H^{1}\left(L_{1}, L_{2}\right), z, z_{\rho} \in L^{2}\left(\Omega \times(0,1) \times\left(\tau_{1}, \tau_{2}\right)\right)
\end{array}\right\},
$$

where

$$
\begin{aligned}
& \tilde{H}_{*}^{1}(\Omega)=\left\{\theta \in H^{1}(\Omega) ; \theta(0, t)=0, \theta\left(L_{i}, t\right)=0, i=1,2,3\right\}, \\
& \bar{H}_{*}^{1}(\Omega)=\left\{q \in H^{1}(\Omega) ; q(0, t)=0, q\left(L_{i}, t\right)=0, i=1,2,\right\} .
\end{aligned}
$$

Using the semigroup approach, the Hille-Yosida theorem and the procedure similar to that of ($[8,16,17]$), we can obtain the following well-posedness of system (2.2):
Theorem 2.1 Under the assumption (1.4), for any $U_{0} \in \mathcal{H}$, there exists a unique weak solution $U \in C\left(\mathbb{R}^{+}, \mathcal{H}\right)$ of problem (2.3). Moreover, if $U_{0} \in D(\mathcal{H})$, then

$$
U \in C\left(\mathbb{R}^{+}, D(\mathcal{H})\right) \cap C\left(\mathbb{R}^{+}, \mathcal{H}\right) .
$$

3 Polynomial stability

In this section, we prove the polynomial decay for system (2.2). It will be achieved by using the perturbed energy method. we define the following first-order and the second-order energy:

$$
\begin{align*}
E_{1}(t) & =\frac{1}{2} \int_{\Omega}\left[u_{t}^{2}(x, t)+a u_{x}^{2}(x, t)+\theta^{2}(x, t)+\tau q^{2}(x, t)\right] d x \\
& +\frac{1}{2} \int_{L_{1}}^{L_{2}}\left[v_{t}^{2}(x, t)+b v_{x}^{2}(x, t)\right] d x+\frac{1}{2} \int_{\Omega} \int_{0}^{1} \int_{\tau_{1}}^{\tau_{2}} s\left|\mu_{2}(s)\right| z^{2}(x, \rho, t, s) d s d \rho d x \tag{3.1}
\end{align*}
$$

$$
\begin{align*}
E_{2}(t) & =\frac{1}{2} \int_{\Omega}\left[u_{t t}^{2}(x, t)+a u_{x t}^{2}(x, t)+\theta_{t}^{2}(x, t)+\tau q_{t}^{2}(x, t)\right] d x \\
& +\frac{1}{2} \int_{L_{1}}^{L_{2}}\left[v_{t t}^{2}(x, t)+b v_{x t}^{2}(x, t)\right] d x+\frac{1}{2} \int_{\Omega} \int_{0}^{1} \int_{\tau_{1}}^{\tau_{2}} s\left|\mu_{2}(s)\right| z_{t}^{2}(x, \rho, t, s) d s d \rho d x, \tag{3.2}
\end{align*}
$$

and

$$
E(t)=E_{1}(t)+E_{2}(t)
$$

The stability result reads as follows.
Theorem 3.1 Let (u, v, θ, q, z) be the solution of (2.2). Assume that (1.4) and

$$
\begin{equation*}
\frac{a}{b}<\frac{L_{1}+L_{3}-L_{2}}{2\left(L_{2}-L_{1}\right)} \tag{3.3}
\end{equation*}
$$

There exist positive constant k_{0}, such that

$$
\begin{equation*}
E_{1}(t) \leq \frac{k_{0}}{t}, \forall t \geq 0 \tag{3.4}
\end{equation*}
$$

The proof will be established through the following Lemmas.
Lemma 3.1 Let (u, v, θ, q, z) be the solution of (2.2) and assume (1.4) holds. Then we have the inequality

$$
\begin{equation*}
E_{1}^{\prime}(t) \leq-\left(\mu_{1}-\int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| d s\right) \int_{\Omega} u_{t}^{2}(x, t) d x-\int_{\Omega} q^{2}(x, t) d x \tag{3.5}
\end{equation*}
$$

Proof. Multiplying (2.2),$(2.2)_{2}$ and (2.2) $)_{3}$ by u_{t}, θ and q, respectively, integrating over Ω and using integration by parts and the boundary conditions, we obtain

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\Omega} u_{t}^{2}(x, t) d x+\frac{a}{2} \frac{d}{d t} \int_{\Omega} u_{x}^{2}(x, t) d x-\left[a u_{t} u_{x}\right]_{\partial \Omega} \\
=- & \mu_{1} \int_{\Omega} u_{t}^{2}(x, t) d x-\int_{\Omega} u_{t} \int_{\tau_{1}}^{\tau_{2}} \mu_{2}(s) z(x, 1, t, s) d s d x+\gamma \int_{\Omega} u_{x t} \theta d x \tag{3.6}\\
& \frac{1}{2} \frac{d}{d t} \int_{\Omega} \theta^{2}(x, t) d x-k \int_{\Omega} \theta_{x} q d x+\gamma \int_{\Omega} \theta u_{x t} d x=0 \tag{3.7}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\tau}{2} \frac{d}{d t} \int_{\Omega} q^{2}(x, t) d x+\int_{\Omega} q^{2}(x, t) d x+k \int_{\Omega} \theta_{x} q(x, t) d x=0 \tag{3.8}
\end{equation*}
$$

Multiplying (2.2) $)_{4}$ by v_{t} and integrating by parts over $\left(L_{1}, L_{2}\right)$, we get

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{L_{1}}^{L_{2}} v_{t}^{2}(x, t) d x+\frac{b}{2} \frac{d}{d t} \int_{L_{1}}^{L_{2}} v_{x}^{2}(x, t) d x-\left[b v_{t} v_{x}\right]_{L_{1}}^{L_{2}}=0 \tag{3.9}
\end{equation*}
$$

Multiplying (2.2) $)_{5}$ by $\left|\mu_{2}(s)\right| z$, integrating the product over $\Omega \times(0,1) \times\left(\tau_{1}, \tau_{2}\right)$, and recall that $z(x, 0, t, s)=u_{t}(x, t)$, yield

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\Omega} \int_{0}^{1} \int_{\tau_{1}}^{\tau_{2}} s\left|\mu_{2}(s)\right| z^{2}(x, \rho, t, s) d s d \rho d x \\
= & -\frac{1}{2} \int_{\Omega} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| z^{2}(x, 1, t, s) d s d x+\frac{1}{2} \int_{\Omega} u_{t}^{2} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| d s d x \tag{3.10}
\end{align*}
$$

Adding Eqs. (3.6)-(3.10) up and using (1.2) gives

$$
\begin{align*}
E_{1}^{\prime}(t)= & -\left(\mu_{1}-\frac{1}{2} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| d s\right) \int_{\Omega} u_{t}^{2}(x, t) d x \\
& -\int_{\Omega} q^{2}(x, t) d x-\int_{\Omega} u_{t} \int_{\tau_{1}}^{\tau_{2}} \mu_{2}(s) z(x, 1, t, s) d s d x \\
& -\frac{1}{2} \int_{\Omega} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| z^{2}(x, 1, t, s) d s d x \tag{3.11}
\end{align*}
$$

Meanwhile, using Young's inequality, we have

$$
\begin{align*}
& -\int_{\Omega} u_{t} \int_{\tau_{1}}^{\tau_{2}} \mu_{2}(s) z(x, 1, t, s) d s d x \\
\leq & \frac{1}{2} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| d s \int_{\Omega} u_{t}^{2} d x+\frac{1}{2} \int_{\Omega} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| z^{2}(x, 1, t, s) d s d x \tag{3.12}
\end{align*}
$$

Simple substitution of (3.12) into (3.11) and using (1.4) give (3.5). The proof is complete.

Lemma 3.2 Let (u, v, θ, q, z) be the solution of (2.2) and assume (1.4) holds. Then we have the inequality

$$
\begin{align*}
E_{2}^{\prime}(t) & \leq-\left(\mu_{1}-\int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| d s\right) \int_{\Omega} u_{t t}^{2}(x, t) d x-\int_{\Omega} q_{t}^{2}(x, t) d x \\
& \leq-\int_{\Omega} q_{t}^{2}(x, t) d x \tag{3.13}
\end{align*}
$$

Proof. Differentiating Eqs. $(2.2)_{1}-(2.2)_{5}$ with respect to t and using the same procedure as in the proof of Lemma 3.1, we arrive at our conclusion.

Lemma 3.3 Let (u, v, θ, q, z) be the solution of (2.2). Then the functional

$$
I_{1}(t)=\int_{\Omega} u u_{t} d x+\frac{\mu_{1}}{2} \int_{\Omega} u^{2} d x+\int_{L_{1}}^{L_{2}} v v_{t} d x
$$

satisfies, for any $\varepsilon_{1}>0$, the estimate

$$
\begin{aligned}
I_{1}^{\prime}(t) \leq & -\left(a-\varepsilon_{1} c_{0}^{2}\right) \int_{\Omega} u_{x}^{2} d x-b \int_{L_{1}}^{L_{2}} v_{x}^{2} d x+\int_{\Omega} u_{t}^{2} d x+\int_{L_{1}}^{L_{2}} v_{t}^{2} d x \\
& \left.+\frac{1}{2 \varepsilon_{1}} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| d s \int_{\Omega} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| z^{2}(x, 1, t, s) d s d x+\frac{\gamma^{2}}{2 \varepsilon_{1}} \int_{\Omega} \theta_{x}^{2} d x 3.14\right)
\end{aligned}
$$

where $c_{0}=\max \left\{L_{1}, L_{3}-L_{2}\right\}$.
Proof. Taking the derivative of $I_{1}(t)$ with respect to t, using (2.2) $)_{1}$ and (1.2), we obtain

$$
\begin{align*}
I_{1}^{\prime}(t)= & -a \int_{\Omega} u_{x}^{2} d x-b \int_{L_{1}}^{L_{2}} v_{x}^{2} d x+\int_{\Omega} u_{t}^{2} d x+\int_{L_{1}}^{L_{2}} v_{t}^{2} d x \\
& -\int_{\Omega} u \int_{\tau_{1}}^{\tau_{2}} \mu_{2}(s) z(x, 1, t, s) d s d x-\gamma \int_{\Omega} u \theta_{x} d x \tag{3.15}
\end{align*}
$$

Using the boundary condition (1.2), we obtain

$$
\begin{gathered}
u^{2}(x, t)=\left(\int_{0}^{x} u_{x}(x, t) d x\right)^{2} \leq L_{1} \int_{0}^{L_{1}} u_{x}^{2}(x, t) d x, x \in\left[0, L_{1}\right] \\
u^{2}(x, t) \leq\left(L_{3}-L_{2}\right) \int_{L_{2}}^{L_{3}} u_{x}^{2}(x, t) d x, x \in\left[L_{2}, L_{3}\right]
\end{gathered}
$$

which imply the following Poincaré's inequality

$$
\begin{equation*}
\int_{\Omega} u^{2}(x, t) d x \leq c_{0}^{2} \int_{\Omega} u_{x}^{2}(x, t) d x, x \in \Omega \tag{3.16}
\end{equation*}
$$

where $c_{0}=\max \left\{L_{1}, L_{3}-L_{2}\right\}$ is the Poincaré's constant.
Using Young's inequality and (3.16), we obtain that for any $\varepsilon_{1}>0$,

$$
\begin{gather*}
\gamma \int_{\Omega} u \theta_{x} d x \leq \frac{\varepsilon_{1}}{2} c_{0}^{2} \int_{\Omega} u_{x}^{2} d x+\frac{\gamma^{2}}{2 \varepsilon_{1}} \int_{\Omega} \theta_{x}^{2} d x \tag{3.17}\\
-\int_{\Omega} u \int_{\tau_{1}}^{\tau_{2}} \mu_{2}(s) z(x, 1, t, s) d s d x \\
\leq \frac{\varepsilon_{1}}{2} c_{0}^{2} \int_{\Omega} u_{x}^{2} d x+\frac{1}{2 \varepsilon_{1}} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| d s \int_{\Omega} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| z^{2}(x, 1, t, s) d s d x \tag{3.18}
\end{gather*}
$$

Inserting the estimates (3.17) and (3.18) into (3.15), then (3.14) is fulfilled. The proof is complete.

Now, as in [10], we introduce the function

$$
p(x)= \begin{cases}x-\frac{L_{1}}{2}, & x \in\left[0, L_{1}\right] \tag{3.19}\\ \frac{L_{1}}{2}-\frac{L_{1}+L_{3}-L_{2}}{2\left(L_{2}-L_{1}\right)}\left(x-L_{1}\right), & x \in\left(L_{1}, L_{2}\right) \\ x-\frac{L_{2}+L_{3}}{2} & x \in\left[L_{2}, L_{3}\right]\end{cases}
$$

It is clear to see that $p(x)$ is bounded, that is $|p(x)| \leq M$, where $M=\max \left\{\frac{L_{1}}{2}, \frac{L_{3}-L_{2}}{2}\right\}$ is a positive constant.

We define the two functionals

$$
I_{2}(t)=-\int_{\Omega} p(x) u_{x} u_{t} d x, \quad I_{3}(t)=-\int_{L_{1}}^{L_{2}} p(x) v_{x} v_{t} d x
$$

Then, we have the following estimates.
Lemma 3.4 For any $\varepsilon_{2}>0$, the functionals $I_{2}(t)$ and $I_{3}(t)$ satisfy

$$
\begin{align*}
I_{2}^{\prime}(t) \leq & \left(\frac{a}{2}+\varepsilon_{2}\right) \int_{\Omega} u_{x}^{2} d x+C_{1}\left(\varepsilon_{2}\right) \int_{\Omega} u_{t}^{2} d x+C_{2}\left(\varepsilon_{2}\right) \int_{\Omega} \theta_{x}^{2} d x \\
& +C_{3}\left(\varepsilon_{2}\right) \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| d s \int_{\Omega} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| z^{2}(x, 1, t, s) d s d x \\
& -\frac{a}{4}\left[L_{1} u_{x}^{2}\left(L_{1}, t\right)+\left(L_{3}-L_{2}\right) u_{x}^{2}\left(L_{2}, t\right)\right] \\
& -\frac{1}{4}\left[L_{1} u_{t}^{2}\left(L_{1}, t\right)+\left(L_{3}-L_{2}\right) u_{t}^{2}\left(L_{2}, t\right)\right] \tag{3.20}
\end{align*}
$$

where

$$
C_{1}\left(\varepsilon_{2}\right)=\frac{1}{2}+\frac{\mu_{1}^{2} M^{2}}{4 \varepsilon_{2}}, C_{2}\left(\varepsilon_{2}\right)=\frac{\gamma^{2} M^{2}}{4 \varepsilon_{2}}, C_{3}\left(\varepsilon_{2}\right)=\frac{M^{2}}{2 \varepsilon_{2}}
$$

and

$$
\begin{align*}
I_{3}^{\prime}(t)= & -\frac{L_{1}+L_{3}-L_{2}}{4\left(L_{2}-L_{1}\right)}\left(b \int_{L_{1}}^{L_{2}} v_{x}^{2} d x+\int_{L_{1}}^{L_{2}} v_{t}^{2} d x\right)+\frac{L_{1}}{4} v_{t}^{2}\left(L_{1}, t\right) \\
& +\frac{L_{3}-L_{2}}{4} v_{t}^{2}\left(L_{2}, t\right)+\frac{b}{4}\left[\left(L_{3}-L_{2}\right) v_{x}^{2}\left(L_{2}, t\right)+L_{1} v_{x}^{2}\left(L_{1}, t\right)\right] \tag{3.21}
\end{align*}
$$

Proof. Taking the derivative of $I_{2}(t)$ with respect to t, using $(2.2)_{1}$, we get

$$
\begin{align*}
I_{2}^{\prime}(t)= & -\int_{\Omega} p(x) u_{x} u_{t t} d x-\int_{\Omega} p(x) u_{x t} u_{t} d x \\
= & -a \int_{\Omega} p(x) u_{x} u_{x x} d x+\int_{\Omega} p(x) u_{x} \int_{\tau_{1}}^{\tau_{2}} \mu_{2}(s) z(x, 1, t, s) d s d x \\
& +\mu_{1} \int_{\Omega} p(x) u_{x} u_{t} d x+\gamma \int_{\Omega} p(x) u_{x} \theta_{x} d x-\int_{\Omega} p(x) u_{x t} u_{t} d x \tag{3.22}
\end{align*}
$$

Integrating by parts, and noticing (3.19), equation (3.22) becomes

$$
\begin{align*}
I_{2}^{\prime}(t)= & \frac{a}{2} \int_{\Omega} u_{x}^{2} d x-\frac{1}{2}\left[a p(x) u_{x}^{2}\right]_{\partial \Omega}+\frac{1}{2} \int_{\Omega} u_{t}^{2} d x-\frac{1}{2}\left[p(x) u_{t}^{2}\right]_{\partial \Omega} \\
& +\mu_{1} \int_{\Omega} p(x) u_{x} u_{t} d x+\int_{\Omega} p(x) u_{x} \int_{\tau_{1}}^{\tau_{2}} \mu_{2}(s) z(x, 1, t, s) d s d x \\
& +\gamma \int_{\Omega} p(x) u_{x} \theta_{x} d x \tag{3.23}
\end{align*}
$$

By Young's inequality, for any $\varepsilon_{2}>0$, we obtain

$$
\begin{aligned}
I_{2}^{\prime}(t) \leq & \left(\frac{a}{2}+\varepsilon_{2}\right) \int_{\Omega} u_{x}^{2} d x-\frac{1}{2}\left[\operatorname{ap}(x) u_{x}^{2}\right]_{\partial \Omega}-\frac{1}{2}\left[p(x) u_{t}^{2}\right]_{\partial \Omega} \\
& +\left(\frac{1}{2}+\frac{\mu_{1}^{2} M^{2}}{4 \varepsilon_{2}}\right) \int_{\Omega} u_{t}^{2} d x+\frac{\gamma^{2} M^{2}}{4 \varepsilon_{2}} \int_{\Omega} \theta_{x}^{2} d x \\
& +\frac{M^{2}}{2 \varepsilon_{2}} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| d s \int_{\Omega} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| z^{2}(x, 1, t, s) d s d x
\end{aligned}
$$

On the other hand, by using the boundary conditions (1.2), we have

$$
\begin{aligned}
\frac{1}{2}\left[a p(x) u_{x}^{2}\right]_{\partial \Omega} & =\frac{a}{4}\left[L_{1} u_{x}^{2}\left(L_{1}, t\right)+\left(L_{3}-L_{2}\right) u_{x}^{2}\left(L_{2}, t\right)\right] \\
\frac{1}{2}\left[p(x) u_{t}^{2}\right]_{\partial \Omega} & =\frac{1}{4}\left[L_{1} u_{t}^{2}\left(L_{1}, t\right)+\left(L_{3}-L_{2}\right) u_{t}^{2}\left(L_{2}, t\right)\right] \geq 0
\end{aligned}
$$

Estimate (3.20) follows by inserting the above two equalities into (3.23).
By the same method, taking the derivative of $I_{3}(t)$ with respect to t, and integrating by parts and noticing (3.19), we obtain

$$
\begin{aligned}
I_{3}^{\prime}(t)= & -\int_{L_{1}}^{L_{2}} p(x) v_{x} v_{t t} d x-\int_{L_{1}}^{L_{2}} p(x) v_{t x} v_{t} d x \\
= & -\frac{L_{1}+L_{3}-L_{2}}{4\left(L_{2}-L_{1}\right)}\left(b \int_{L_{1}}^{L_{2}} v_{x}^{2} d x+\int_{L_{1}}^{L_{2}} v_{t}^{2} d x\right)+\frac{L_{1}}{4} v_{t}^{2}\left(L_{1}, t\right) \\
& +\frac{L_{3}-L_{2}}{4} v_{t}^{2}\left(L_{2}, t\right)+\frac{b}{4}\left[\left(L_{3}-L_{2}\right) v_{x}^{2}\left(L_{2}, t\right)+L_{1} v_{x}^{2}\left(L_{1}, t\right)\right]
\end{aligned}
$$

which is exactly (3.21).
Lemma 3.5 Let (u, v, θ, q, z) be the solution of (2.2). Then the functional

$$
I_{4}(t)=-\tau \int_{\Omega} q\left(\int_{0}^{x} \theta(y, t) d y\right) d x
$$

satisfies the estimate

$$
\begin{equation*}
I_{4}^{\prime}(t) \leq-\frac{k}{2} \int_{\Omega} \theta^{2} d x+\left(2 \tau k+\frac{1}{2 k}\right) \int_{\Omega} q^{2} d x+\frac{\tau \gamma^{2}}{4 k} \int_{\Omega} u_{t}^{2} d x \tag{3.24}
\end{equation*}
$$

Proof. Differentiating $I_{4}(t)$ with respect to t, using the second and the third equations in (2.2), and integration by parts, we obtain

$$
\begin{align*}
I_{4}^{\prime}(t) & =-\int_{\Omega}\left(-q-k \theta_{x}\right)\left(\int_{0}^{x} \theta(y, t) d y\right) d x-\tau \int_{\Omega} q\left(\int_{0}^{x}\left(-k q_{y}-\gamma u_{y t}\right) d y\right) d x \\
& =-k \int_{\Omega} \theta^{2} d x+\tau k \int_{\Omega} q^{2} d x+\tau \gamma \int_{\Omega} q u_{t} d x+\int_{\Omega} q\left(\int_{0}^{x} \theta(y, t) d y\right) d x \tag{3.25}
\end{align*}
$$

Now, we estimate the terms in the right hand side of (3.25) using Young's Poincaré's inequalities

$$
\begin{align*}
\int_{\Omega} q\left(\int_{0}^{x} \theta(y, t) d y\right) d x & \leq \frac{k}{2} \int_{\Omega}\left(\int_{0}^{x} \theta(y, t) d y\right)^{2} d x+\frac{1}{2 k} \int_{\Omega} q^{2} d x \\
& \leq \frac{k}{2} \int_{\Omega} \theta^{2} d x+\frac{1}{2 k} \int_{\Omega} q^{2} d x \tag{3.26}\\
\tau \gamma \int_{\Omega} q u_{t} d x & \leq \tau k \int_{\Omega} q^{2} d x+\frac{\tau \gamma^{2}}{4 k} \int_{\Omega} u_{t}^{2} d x \tag{3.27}
\end{align*}
$$

Estimate (3.24) follows by substituting (3.26) and (3.27) into (3.25).
Lemma 3.6 Let (u, v, θ, q, z) be the solution of (2.2). Then the functional

$$
I_{5}(t)=\int_{\Omega} \int_{0}^{1} \int_{\tau_{1}}^{\tau_{2}} s e^{-s \rho}\left|\mu_{2}(s)\right| z^{2}(x, \rho, s, t) d s d \rho d x
$$

satisfies, for some positive constant n_{1}, the estimate

$$
\begin{align*}
I_{5}^{\prime}(t) \leq & -n_{1} \int_{\Omega} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| z^{2}(x, 1, t, s) d s d x+\mu_{1} \int_{\Omega} u_{t}^{2} d x \\
& -n_{1} \int_{\Omega} \int_{0}^{1} \int_{\tau_{1}}^{\tau_{2}} s\left|\mu_{2}(s)\right| z^{2}(x, \rho, t, s) d s d \rho d x \tag{3.28}
\end{align*}
$$

Proof. By differentiating $I_{5}(t)$ with respect to t, and using the equation (2.2) , we obtain

$$
\begin{aligned}
I_{5}^{\prime}(t)= & -2 \int_{\Omega} \int_{0}^{1} \int_{\tau_{1}}^{\tau_{2}} e^{-s \rho}\left|\mu_{2}(s)\right| z(x, \rho, t, s) z_{\rho}(x, \rho, t, s) d s d \rho d x \\
= & -\frac{d}{d \rho} \int_{\Omega} \int_{0}^{1} \int_{\tau_{1}}^{\tau_{2}} e^{-s \rho}\left|\mu_{2}(s)\right| z^{2}(x, \rho, t, s) d s d \rho d x \\
& -\int_{\Omega} \int_{0}^{1} \int_{\tau_{1}}^{\tau_{2}} s e^{-s \rho}\left|\mu_{2}(s)\right| z^{2}(x, \rho, t, s) d s d \rho d x \\
= & -\int_{\Omega} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right|\left[e^{-s} z^{2}(x, 1, t, s)-z^{2}(x, 0, t, s)\right] d s d x \\
& -\int_{\Omega} \int_{0}^{1} \int_{\tau_{1}}^{\tau_{2}} s e^{-s \rho}\left|\mu_{2}(s)\right| z^{2}(x, \rho, t, s) d s d \rho d x
\end{aligned}
$$

Using the fact that $z(x, 0, t, s)=u_{t}$ and $e^{-s} \leq e^{-s \rho} \leq 1$, for all $0<\rho<1$, we obtain

$$
\begin{aligned}
I_{5}^{\prime}(t) \leq & -\int_{\Omega} \int_{\tau_{1}}^{\tau_{2}} e^{-s}\left|\mu_{2}(s)\right| z^{2}(x, 1, t, s) d s d x+\int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| d s \int_{\Omega} u_{t}^{2} d x \\
& -\int_{\Omega} \int_{0}^{1} \int_{\tau_{1}}^{\tau_{2}} s e^{-s}\left|\mu_{2}(s)\right| z^{2}(x, \rho, t, s) d s d \rho d x
\end{aligned}
$$

Because $-e^{-s}$ is an increasing function, we have $-e^{-s} \leq-e^{-\tau_{2}}$, for all $s \in\left[\tau_{1}, \tau_{2}\right]$.
Finally, setting $n_{1}=e^{-\tau_{2}}$ and recalling (1.4), we obtain (3.28).

Now, we turn to prove our main result in this section.

Proof. (of Theorem 3.1)

We define a Lyapunov functional \mathcal{L} and show that it is equivalent to the energy functional E.

$$
\begin{equation*}
\mathcal{L}(t)=N E(t)+N_{1} I_{1}(t)+I_{2}(t)+N_{3} I_{3}(t)+I_{4}(t)+N_{5} I_{5}(t) \tag{3.29}
\end{equation*}
$$

where N, N_{1}, N_{3} and N_{5} are positive constants to be selected later.
Taking the derivative of (3.29) with respect to t and making the use of the above lemmas, we have

$$
\begin{align*}
\mathcal{L}^{\prime}(t) \leq & -\left[\left(\mu_{1}-\int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| d s\right) N-N_{1}-C_{1}\left(\varepsilon_{2}\right)-\frac{\tau \gamma^{2}}{4 k}-\mu_{1} N_{5}\right] \int_{\Omega} u_{t}^{2}(x, t) d x \\
& -\left[\left(a-\varepsilon_{1} c_{0}^{2}\right) N_{1}-\left(\frac{a}{2}+\varepsilon_{2}\right)\right] \int_{\Omega} u_{x}^{2}(x, t) d x \\
& -\frac{k}{2} \int_{\Omega} \theta^{2}(x, t) d x+\left[\frac{\gamma^{2}}{2 \varepsilon_{1}} N_{1}+C_{2}\left(\varepsilon_{2}\right)\right] \int_{\Omega} \theta_{x}^{2}(x, t) d x \\
& -\left[N-\left(2 \tau k+\frac{1}{2 k}\right)\right] \int_{\Omega} q^{2}(x, t) d x-N \int_{\Omega} q_{t}^{2}(x, t) d x \\
& -\left[b N_{1}+\frac{L_{1}+L_{3}-L_{2}}{4\left(L_{2}-L_{1}\right)} b N_{3}\right] \int_{L_{1}}^{L_{2}} v_{x}^{2}(x, t) d x \\
& -\left[\frac{L_{1}+L_{3}-L_{2}}{4\left(L_{2}-L_{1}\right)} N_{3}-N_{1}\right] \int_{L_{1}}^{L_{2}} v_{t}^{2}(x, t) d x \\
& -\left(n_{1} N_{5}-\frac{1}{2 \varepsilon_{1}} N_{1} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| d s-C_{3}\left(\varepsilon_{2}\right) N_{2} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| d s\right) \\
& \times \int_{\Omega}^{\tau_{2}}\left|\mu_{2}(s)\right| z^{2}(x, 1, t, s) d s d x \\
& -n_{1} N_{5} \int_{\Omega} \int_{0}^{1} \int_{\tau_{1}}^{\tau_{2}} s\left|\mu_{2}(s)\right| z^{2}(x, \rho, s, t) d s d \rho d x \\
& -\frac{1}{4}\left(1-\frac{a}{b} N_{3}\right)\left[L_{1} a u_{x}^{2}\left(L_{1}, t\right)+\left(L_{3}-L_{2}\right) a u_{x}^{2}\left(L_{2}, t\right)\right] \\
& -\frac{1}{4}\left(1-N_{3}\right)\left[L_{1} u_{t}^{2}\left(L_{1}, t\right)+\left(L_{3}-L_{2}\right) u_{t}^{2}\left(L_{2}, t\right)\right] . \tag{3.30}
\end{align*}
$$

Minding that $\int_{\Omega} \theta_{x}^{2}(x, t) d x$ term is positive, we need to use $\int_{\Omega} q^{2}(x, t) d x$ and $\int_{\Omega} q_{t}^{2}(x, t) d x$ to control it the third equation of (2.2) implies that

$$
\begin{aligned}
{\left[\frac{\gamma^{2}}{2 \varepsilon_{1}} N_{1}+C_{2}\left(\varepsilon_{2}\right)\right] \int_{\Omega} \theta_{x}^{2}(x, t) d x \leq } & \frac{1}{k^{2}}\left[\frac{\gamma^{2}}{2 \varepsilon_{1}} N_{1}+C_{2}\left(\varepsilon_{2}\right)\right] \int_{\Omega} q^{2}(x, t) d x \\
& +\frac{\tau^{2}}{k^{2}}\left[\frac{\gamma^{2}}{2 \varepsilon_{1}} N_{1}+C_{2}\left(\varepsilon_{2}\right)\right] \int_{\Omega} q_{t}^{2}(x, t) d x
\end{aligned}
$$

So we get

$$
\begin{align*}
\mathcal{L}^{\prime}(t) \leq & -\left[\left(\mu_{1}-\int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| d s\right) N-N_{1}-C_{1}\left(\varepsilon_{2}\right)-\frac{\tau \gamma^{2}}{4 k}-\mu_{1} N_{5}\right] \int_{\Omega} u_{t}^{2}(x, t) d x \\
& -\left[\left(a-\varepsilon_{1} c_{0}^{2}\right) N_{1}-\left(\frac{a}{2}+\varepsilon_{2}\right)\right] \int_{\Omega} u_{x}^{2}(x, t) d x-\frac{k}{2} \int_{\Omega} \theta^{2}(x, t) d x \\
& -\left[N-\frac{\gamma^{2}}{2 k^{2} \varepsilon_{1}} N_{1}-\frac{C_{2}\left(\varepsilon_{2}\right)}{k^{2}}-\left(2 \tau k+\frac{1}{2 k}\right)\right] \int_{\Omega} q^{2}(x, t) d x \\
& -\left[N-\left(\frac{\tau^{2} \gamma^{2}}{2 k^{2} \varepsilon_{1}} N_{1}+\frac{\tau^{2} C_{2}\left(\varepsilon_{2}\right)}{k^{2}}\right)\right] \int_{\Omega} q_{t}^{2}(x, t) d x \\
& -\left[b N_{1}+\frac{L_{1}+L_{3}-L_{2}}{4\left(L_{2}-L_{1}\right)} b N_{3}\right] \int_{L_{1}}^{L_{2}} v_{x}^{2}(x, t) d x \\
& -\left[\frac{L_{1}+L_{3}-L_{2}}{4\left(L_{2}-L_{1}\right)} N_{3}-N_{1}\right] \int_{L_{1}}^{L_{2}} v_{t}^{2}(x, t) d x \\
& -\left(n_{1} N_{5}-\frac{1}{2 \varepsilon_{1}} N_{1} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| d s-C_{3}\left(\varepsilon_{2}\right) N_{2} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| d s\right) \\
& \times \int_{\Omega}^{\tau_{2}}\left|\mu_{2}(s)\right| z^{2}(x, 1, t, s) d s d x \\
& -n_{1} N_{5} \int_{\Omega} \int_{0}^{1} \int_{\tau_{1}}^{\tau_{2}} s\left|\mu_{2}(s)\right| z^{2}(x, \rho, s, t) d s d \rho d x \\
& -\frac{1}{4}\left(1-\frac{a}{b} N_{3}\right)\left[L_{1} a u_{x}^{2}\left(L_{1}, t\right)+\left(L_{3}-L_{2}\right) a u_{x}^{2}\left(L_{2}, t\right)\right] \\
& -\frac{1}{4}\left(1-N_{3}\right)\left[L_{1} u_{t}^{2}\left(L_{1}, t\right)+\left(L_{3}-L_{2}\right) u_{t}^{2}\left(L_{2}, t\right)\right] \tag{3.31}
\end{align*}
$$

Next, we carefully choose our constants so that the terms inside the brackets are positive. In fact, it follows from the assumption (3.3) that we can always choose N_{1} and N_{3} such that

$$
1-N_{3}>0,1-\frac{a}{b} N_{3}>0, \frac{L_{1}+L_{3}-L_{2}}{4\left(L_{2}-L_{1}\right)} N_{3}-N_{1}>0
$$

Once the above constants are fixed, we may choose ε_{1} and ε_{2} small enough such that

$$
\varepsilon_{1} c_{0}^{2} N_{1}+\varepsilon_{2}<a\left(N_{1}-\frac{1}{2}\right)
$$

Then we can take N_{5} su ciently large such that

$$
n_{1} N_{5}-\frac{1}{2 \varepsilon_{1}} N_{1} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| d s-C_{3}\left(\varepsilon_{2}\right) N_{2} \int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| d s>0
$$

Finally, noticing the assumption (1.4), we can always choose N sufficiently large such that

$$
\begin{aligned}
& \left(\mu_{1}-\int_{\tau_{1}}^{\tau_{2}}\left|\mu_{2}(s)\right| d s\right) N-N_{1}-C_{1}\left(\varepsilon_{2}\right)-\frac{\tau \gamma^{2}}{4 k}-\mu_{1} N_{5}>0, \\
& N-\frac{\gamma^{2}}{2 k^{2} \varepsilon_{1}} N_{1}-\frac{C_{2}\left(\varepsilon_{2}\right)}{k^{2}}-\left(2 \tau k+\frac{1}{2 k}\right)>0, \\
& N-\left(\frac{\tau^{2} \gamma^{2}}{2 k^{2} \varepsilon_{1}} N_{1}+\frac{\tau^{2} C_{2}\left(\varepsilon_{2}\right)}{k^{2}}\right)>0 .
\end{aligned}
$$

Consequently, from the above, we deduce that there exist a positive constant δ_{1} such that (3.31) becomes

$$
\begin{equation*}
\mathcal{L}^{\prime}(t) \leq-\delta_{1} E_{1}(t) \tag{3.32}
\end{equation*}
$$

On the other hand, if we let

$$
\mathcal{G}(t)=N_{1} I_{1}(t)+I_{2}(t)+N_{3} I_{3}(t)+I_{4}(t)+N_{5} I_{5}(t)
$$

we obtain

$$
\begin{aligned}
|\mathcal{G}(t)| \leq & N_{1} \int_{\Omega}\left|u u_{t}\right| d x+\frac{\mu_{1}}{2} N_{1} \int_{\Omega} u^{2} d x+N_{1} \int_{L_{1}}^{L_{2}}\left|v v_{t}\right| d x \\
& +\int_{\Omega} p(x) u_{x} u_{t} d x+N_{3} \int_{L_{1}}^{L_{2}} p(x) v_{x} v_{t} d x \\
& +\tau \int_{\Omega}\left|q\left(\int_{0}^{x} \theta(y, t) d y\right)\right| d x \\
& +N_{5} \int_{\Omega} \int_{0}^{1} \int_{\tau_{1}}^{\tau_{2}} s\left|\mu_{2}(s) e^{-s \rho}\right| z^{2}(x, \rho, s, t) d s d \rho d x
\end{aligned}
$$

Exploiting Young's, Poincaré, Cauchy-Schwarz inequalities, (3.1), and the fact that $e^{-s \rho} \leq$ 1 for all $\rho \in[0,1]$, we obtain

$$
\begin{aligned}
|\mathcal{G}(t)| & \leq \delta \int_{\Omega}\left[u_{t}^{2}(x, t)+u_{x}^{2}(x, t)+\theta^{2}(x, t)+q^{2}(x, t)\right] d x \\
& +\delta \int_{L_{1}}^{L_{2}}\left[v_{t}^{2}(x, t)+v_{x}^{2}(x, t)\right] d x+\delta \int_{\Omega} \int_{0}^{1} \int_{\tau_{1}}^{\tau_{2}} s\left|\mu_{2}(s)\right| z^{2}(x, \rho, t, s) d s d \rho d x \\
& \leq \delta E_{1}(t)
\end{aligned}
$$

for some $\delta>0$.
Consequently, $|\mathcal{L}(t)-N E(t)| \leq \delta E_{1}(t)$, that is,

$$
(N-\delta) E_{1}(t)+N E_{2}(t) \leq \mathcal{L}(t) \leq(N+\delta) E_{1}(t)+N E_{2}(t)
$$

for N large enough, there exist two positive constants β_{1} and β_{2} such that

$$
\beta_{1}\left(E_{1}(t)+E_{2}(t)\right) \leq \mathcal{L}(t) \leq \beta_{2}\left(E_{1}(t)+E_{2}(t)\right), \quad \forall t \geq 0
$$

A simple integration of (3.32), we get

$$
\begin{aligned}
t E_{1}(t) & \leq \int_{0}^{t} E_{1}(y) d y \leq \frac{1}{\delta_{1}}(\mathcal{L}(0)-\mathcal{L}(t)) \leq \frac{1}{\delta_{1}} \mathcal{L}(0) \\
& \leq \frac{\beta_{2}}{\delta_{1}}\left(E_{1}(0)+E_{2}(0)\right)
\end{aligned}
$$

which gives us,

$$
E_{1}(t) \leq \frac{k_{0}}{t}, \quad t \geq 0
$$

where $k_{0}=\frac{\beta_{2}}{\delta_{1}}\left(E_{1}(0)+E_{2}(0)\right)$.
This completes the proof.

References

1. Apalara, T.: Well-posedness and exponential stability for a linear damped Timoshenko system with second sound and internal distributed delay, Electron. J. Differential Equations 2014 (254), 1-15 (2014).
2. Benseghir, A.: Existence and exponential decay of solutions for transmission problem with delay, Electron. J. Differential Equations 2014 (212), 1-11 (2014).
3. Chandrasekharaiah, D. S.: Thermoelasticity with second sound: a review, Appl. Mech. Rev. 39 (3), 355-376 (1986).
4. Coleman, B.D., Hrusa, W.J., Owen, D.R.: Stability of equilibrium for a nonlinear hyperbolic system describing heat propagation by second sound in solids, Arch. Rational Mech. Anal. 94 (3), 267-289 (1986).
5. Hao, J., Wang, F.: Energy decay in a Timoshenko-type system for thermoelasticity of type III with distributed delay and past history, Electron. J. Differential Equations, 2018 (75), 1-27 (2018).
6. Kafini, M., Messaoudi, S.A., Mustafa, M. I.: Energy decay result in a Timoshenkotype system of thermoelasticity of type III with distributive delay, J. Math. Phys. 54 (10), 1-14 (2013).
7. Li, G., Wang, D.H., Zhu, B.H.: Well-posedness and decay of solutions for a transmission problem with history and delay, Electron. J. Differential Equations, 2016 (23), 1-21 (2016).
8. Liu, G.: Well-posedness and exponential decay of solutions for a transmission problem with distributed delay, Electron. J. Differential Equations, 2017 (174), 1-13 (2017).
9. Liu, W., Wang, D., Chen, D..: General decay of solution for a transmission problem in infinite memory-type thermoelasticity with second sound. J. Thermal Stresses, 41 (6), 758-775 (2018).
10. Marzocchi, A., Rivera, M., Jaime E., Naso, M.G.: Asymptotic behaviour and exponential stability for a transmission problem in thermoelasticity, Math. Methods Appl. Sci. 25 (11), 955-980 (2002).
11. Messaoudi, S. A.: Asymptotic stability of solutions of a system for heat propagation with second sound, J. Concr. Appl. Math. 2 (3), 249-256 (2004).
12. Messaoudi, S. A., Al-Shehri, A.: General boundary stabilization of memory-type thermoelasticity with second sound, Z. Anal. Anwend. 31 (4), 441-461 (2012).
13. Mustafa, M. I.: A uniform stability result for thermoelasticity of type III with boundary distributed delay, J. Math. Anal. Appl. 415 (1), 148-158 (2014).
14. Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim. 45 (5), 1561-1585 (2006).
15. Nicaise, S., Pignotti, C.: Stabilization of the wave equation with boundary or internal distributed delay, Differential Integral Equations, 21 (9-10), 935-958 (2008).
16. Ouchenane D.: A stability result of a Timoshenko system in thermoelasticity of second sound with a delay term in the internal feedback, Georgian Math. J. 21 (4), 475-489 (2014).
17. D. H. Wang, G. Li, B. Q. Zhu: Well-posedness and general decay of solution for a transimission problem with vicoelastic term and delay. J. Nonlinear, Sci. Appl. 9 (3), 1202-1215 (2016).

[^0]: * Corresponding author
 M. Douib

 Department of Mathematics, Faculty of Sciences, University of Annaba, P.O. Box 12, Annaba 23000, Algeria. Department of Mathematics, Teachers Higher College of Laghouat, Algeria
 E-mail: madanidouib@gmail.com
 S. Zitouni

 Department of Mathematics and Informatics, University of Souk Ahras, P.O. Box 1553, Souk Ahras 41000, Algeria
 E-mail: zitsala@yahoo.fr
 A. Djebabla

 Department of Mathematics, Faculty of Sciences, University of Annaba, P.O. Box 12, Annaba 23000, Algeria
 E-mail: adjebabla@yahoo.com

