
Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci.
Mathematics, 43 (1), 66-81 (2023).
https://doi.org/10.30546/2617-7900.43.1.2023.66

On uncountable b-frames in non-separable Hilbert spaces

Migdad I. Ismailov, Sabina I. Jafarova?

Received: 21.04.2022 / Revised: 13.12.2022 / Accepted: 01.01.2023

Abstract. This work is dedicated to uncountable frames in non-separable Hilbert spaces associated with
bilinear mappings. Bounded bilinear mapping is considered, and using this mapping, the concepts of
uncountable b-Besselian system, b-frame and b-frame operator are introduced. Criteria for uncountable
b-Besselness and b-frameness of system are proved, and some properties of uncountable b-frame operator
are established. Stability and perturbation of uncountable b-frames in non-separable Hilbert spaces are
studied. From the obtained results, in particular, corresponding results for tensors are derived.
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1 Introduction

In the context of applications to some problems in different branches of natural science,
there has been an upsurge of interest lately in frames. They can be used in signalling pro-
cesses, in data compression and data processing, in medicine, in physics, etc. The concept of
frame in a Hilbert space has been introduced by R.J.Duffin and A.C.Schaeffer [1] in 1952.
They studied the frame properties of the perturbed exponential system, as well as the frames
in the abstract separable Hilbert spaces. Frames are playing an important role in the theory
of wavelets and Gabor transforms. This field of frame theory has received rapid develop-
ment after the fundamental work by I.Daubechies, A.Grossman, Y.Meyer [2]. Many authors
have treated frames since then, such as N.M.Astafyeva [3], I.Daubechies [4], I.M.Dremin,
O.V.Ivanov, V.A.Nechitailo [5], C.Chui [6], R.Coifman [7], etc. One of the most important
fields of frame theory is the study of their generalizations in different structures. In [8],
W.Sun introduced the concepts of g-frame and g-Riesz basis for separable Hilbert spaces.
Many properties of ordinary frames have been extended to this case. g-frames have been
studied also in [9-11]. Frames in tensor products of Hilbert spaces have been considered
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in [12]. Note that every element of a separable Hilbert space has, probably not unique, ex-
pansion with respect to the elements of the frame of the space. Such expansions in function
spaces have been studied by Coifman R.R. and G.Weis in [13] by introducing the concept of
atomic decomposition. Later, atomic decompositions in Banach spaces have been treated by
Feichtinger H.G. and K.Grochenig in [14]. The concept of Banach frame in Banach spaces
has been first introduced by K.Grochenig in [15]. Banach frames and atomic decomposi-
tions in Banach spaces have also been studied in [16-19]. p-frames in invariant subspaces
of Lp have been considered in [20]. For general spaces of sequences of scalars, these mat-
ters have been treated in [21]. The case of Banach spaces of sequences of frame vectors
associated with bilinear mappings has been considered in [22-26].

One of the methods to obtain a frame is a method of perturbation and stability of frames.
In this field, there are some results in the context of Paley-Wiener theorem on Riesz basicity
of perturbed exponential system. For these and other results concerning frame theory we
refer the readers to the monographs [27-30]. Along with discrete frames, the continuous and
uncountable frames also play an important role in non-separable Hilbert spaces. Continuous
frames have been introduced by S.T.Ali, J.P.Antoine and Gazeau J.P. in [31]. The works [32,
33] also can be attributed to this field. Uncountable frames and Riesz bases in non-separable
Hilbert spaces have been considered in [34], where the concepts of uncountable Besselian
system, uncountable frame, uncountable frame operator, uncountable Riesz basis in non-
separable Hilbert spaces have been introduced and the known properties of ordinary frames
and Riesz bases have been studied for them.

This work is dedicated to the study of uncountable Besselian system and uncountable
frame in non-separable Hilbert spaces for bilinear mappings. In Section 2, the concept of
uncountable b-Besselian system is introduced and a criterion for it is proved. In Section
3, the concepts of uncountable b-frame and uncountable b-frame operator in non-separable
Hilbert space are introduced. Criterion for uncountable b-frameness and some properties of
b-frame operator are proved. b-frame properties of the system obtained by elimination of
arbitrary element from uncountable b-frame. In Section 4, compact Noeherian perturbation
and stability of uncountable b-frame are studied. The obtained results are the generalizations
of previously known results for uncountable frames in non-separable Hilbert spaces and for
frames in tensor products of Hilbert spaces (see [12,34]).

2 Uncountable b-Besselian systems

Let X , H be non-separable Hilbert spaces with scalar products (·, ·)X and (·, ·)H , respec-
tively; E be a Banach space with the norm ‖·‖E ; L(X,E) be a Banach space of bounded
linear operators from X to E with L(X,X) = L(X); kerT and RT be a kernel and an
image of the operator T , respectively; T ∗ be an operator conjugate to T ; IX be an identity
operator in X; A be a closure of the set A ⊂ X in X; I be an uncountable set of indices, Ia
be a totality of at most countable subsets ω ⊂ I , and I0 be a totality of finite subsets J ⊂ I .

Consider a bilinear mapping b : X × E → H satisfying the following condition: there
exists M > 0 such that for ∀(x, f) ∈ X × E

‖b(x, f)‖H ≤M ‖x‖X ‖f‖E .

Define the mapping ωb : H × E → X as follows:

(ωb(h, f), x)X = (h, b(x, f))H ,∀(h, f) ∈ H × E,∀x ∈ X.

It is not difficult to show that the mapping ωb is linear and continuous with respect to h and
satisfies the relation

‖ωb(h, f)‖X ≤M ‖h‖H ‖f‖E , ∀(h, f) ∈ H × E.
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LetE0 ⊂ E be some set. By spanb(E0) we denote the totality of all possible finite sums
of the form

∑
α∈J b(xα, fα), J ∈ I0.

Definition 2.1 ([30]) A system {fα}α∈I ⊂ E is called b-complete inH if spanb {fα}α∈I =
H .

The following criterion for b-completeness of system is true.

Lemma 2.1 A system {fα}α∈I ⊂ E is b-complete in H if and only if, for h ∈ H , from
ωb(h, fα) = 0 it follows that h = 0 for ∀α ∈ I .

Proof. Necessity. Let spanb {fα}α∈I = H and h ∈ H be such that ωb(h, fα) = 0 for
∀α ∈ I . Then for ∀x ∈ X we have

0 = (x, ωb(h, fα))X = (b(x, fα), h)H ,∀α ∈ I.

Hence it follows that for ∀z ∈ H ,(z, h)H = 0. Then (h, h)H = 0, i.e. h = 0.
Sufficiency. Assume the contrary, i.e. let spanb {fα}α∈I 6= H . Then there exists h0 ∈

H such that for ∀z ∈ spanb({fα}α∈I the equality (z, h0)H = 0 holds. Consequently,
∀x ∈ X

(x, ωb(h0, fα))X = (b(x, fα), h0)H = 0,∀α ∈ I.
So ωb(h0, fα) = 0, ∀α ∈ I , and from the condition we obtain h0 = 0. This contra-
dicts h0 /∈ spanb {fα}α∈I . The obtained contradiction shows the validity of the relation
spanb {fα}α∈I = H . The lemma is proved.

Denote by l2(X) the Hilbert space of systems x̄ = {xα}α∈I ⊂ X such that Ix̄ =
{α ∈ I : xα 6= 0} ∈ Ia and ∑

α∈I
‖xα‖2X < +∞,

with scalar product
(x̄, ȳ)l2(X) =

∑
α∈I

(xα, yα)X .

The following concept is a generalization of uncountable Besselian systems.

Definition 2.2 A system {fα}α∈I ⊂ E is called uncountable b-Besselian in H if ∃B > 0:
∀ω ∈ Ia and ∀h ∈ H ∑

α∈ω
‖ωb(h, fα)‖2X ≤ B ‖h‖

2
H . (2.1)

The constant b is called a boundary of the uncountable b-Besselian system {fα}α∈I .

From the definition of uncountable b-Besselian system {fα}α∈I it follows that for ∀h ∈
H the set I(h) = {α ∈ I : ωb(h, fα) 6= 0} belongs to Ia. In fact, denote In(h) =

{
α ∈ I : ‖ωb(h, fα)‖X > 1

n

}
.

It is clear that I(h) =
⋃∞
n=1 In(h). From 2.1 it follows In(h) ∈ I0. Consequently, I(h) ∈

Ia.
The following criterion for uncountable b-Besselness of system is true.

Theorem 2.1 Let {fα}α∈I ⊂ E. For the system {fα}α∈I to be uncountable b-Besselian
in H with the boundary b, it is necessary and sufficient that the operator T : l2(X) → H
defined by

T (x̄) =
∑
α∈I

b(xα, fα), (2.2)

is bounded linear and ‖T‖ ≤
√
B.
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Proof. Necessity. Let the system {fα}α∈I be uncountable b-Besselian inH with the bound-
ary b. Consider an arbitrary set ω ∈ Ia. From the inequality∑

α∈ω
‖ωb(h, fα)‖2X ≤ B ‖h‖

2
H ,∀h ∈ H,

it follows that the series
∑

α∈ω b(xα, fα) is convergent, the operator Tω : l2(X) → H is
defined by the formula

Tω(x̄) =
∑
α∈ω

b(xα, fα),

and ‖Tω‖ ≤
√
B. Then the series

∑
α∈I b(xα, fα) is convergent and

‖T (x̄)‖H =

∥∥∥∥∥∑
α∈I

b(xα, fα)

∥∥∥∥∥
H

= ‖TIx̄(x̄)‖H

≤ sup
ω∈Ia

‖Tω(x̄)‖H ≤
√
B ‖x̄‖l2(X) .

Sufficiency. Let the operator T : l2(X)→ H defined by 2.2 be bounded. Let’s find the
operator T ∗. For ∀x ∈ X and ∀h ∈ H we have

(T (x̄), h)H = (
∑
α∈I

b(xα, fα), h)H =
∑
α∈I

(b(xα, fα), h)H =
∑
α∈I

(xα, ωb(h, fα))X .

Let T ∗h = ȳ = {yα}α∈I . Then

(T (x̄), h)H = (x̄, T ∗h)l2(X) =
∑
α∈I

(xα, yα)X .

Comparing these expressions, we have∑
α∈I

(xα, ωb(h, fα))X =
∑
α∈I

(xα, yα)X .

Hence it follows ωb(h, fα) = yα for ∀α ∈ I . Consequently,

T ∗h = {ωb(h, fα)}α∈I ,∀h ∈ H, (2.3)

and ∑
α∈I
‖ωb(h, fα)‖2X = ‖T ∗h‖l2(X) ≤ ‖T‖

2 ‖h‖2H ≤ B ‖h‖
2
H ,

i.e. {fα}α∈I is uncountable b-Besselian in H . The theorem is proved.

The next theorem is a sufficient condition for a system to be uncountable b-Besselian.

Theorem 2.2 Let the system {fα}α∈I ⊂ E be such that the series
∑

α∈I b(xα, fα) is con-
vergent for ∀x̄ = {xα}α∈I ∈ l2(X). Then there exists B > 0 such that∥∥∥∥∥∑

α∈I
b(xα, fα)

∥∥∥∥∥
H

≤ B ‖x̄‖l2(X) ,∀x̄ = {xα}α∈I ∈ l2(X).
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Proof. Consider an arbitrary set ω ∈ Ia. As the series
∑

α∈ω b(xα, fα) is convergent, the
operator Tω(x̄) =

∑
α∈ω b(xα, fα) is bounded. Besides, for ∀h ∈ H the series

∑
α∈ω ‖ωb(h, fα)‖2X

is convergent. Consequently, for ∀h ∈ H we have I(h) = {α ∈ I : ωb(h, fα) 6= 0} ∈ Ia.
Let’s show the boundedness of the operator T defined by 2.2. We have

‖T (x̄)‖H =

∥∥∥∥∥∑
α∈I

b(xα, fα)

∥∥∥∥∥
H

= sup
‖h‖=1

∣∣∣∣∣
(∑
α∈I

b(xα, fα), h

)
H

∣∣∣∣∣
= sup
‖h‖=1

∣∣∣∣∣∑
α∈I

(b(xα, fα), h)H

∣∣∣∣∣ = sup
‖h‖=1

∣∣∣∣∣∑
α∈I

(xα, ωb(h, fα))X

∣∣∣∣∣
≤ sup
‖h‖=1

∑
α∈I
‖xα‖X ‖ωb(h, fα)‖X ≤ B ‖x̄‖l2(X) ,

where B = sup
‖h‖=1

(∑
α∈I ‖ωb(h, fα)‖2X

) 1
2 . It remains to show the validity of B < +∞.

Assume the contrary, i.e. let B = +∞. Then ∃hn ∈ H: ‖hn‖H = 1 and(∑
α∈I
‖ωb(hn, fα)‖2X

) 1
2

> n.

Let ω0 =
⋃∞
n=1 I(hn). Clearly, ω0 ∈ Ia. Consequently, there exists B0 > 0 such that

‖Tω0(x̄)‖H ≤ B0 ‖x̄‖l2(X) , ∀x̄ = {xα}α∈I ∈ l2(X).

Let n > B0. Denote

x̄(n) =
{
x(n)
α

}
α∈I

: x(n)
α =

{
ωb(hn, fα), α ∈ I(hn)
0, α /∈ I(hn)

.

Then ∥∥∥x̄(n)
∥∥∥
l2(X)

=

(∑
α∈I
‖ωb(hn, fα)‖2X

) 1
2

> n.

We have

(Tω0(x̄(n)), hn)H = (
∑
α∈ω0

b(x(n)
α , fα), hn)H =

∑
α∈ω0

(b(x(n)
α , fα), hn)H

=
∑
α∈ω0

(x(n)
α , ωb(hn, fα))X =

∑
α∈ω0

‖ωb(hn, fα)‖2X =
∥∥∥x̄(n)

∥∥∥2

l2(X)
.

On the other hand,∥∥∥x̄(n)
∥∥∥2

l2(X)
= (Tω0(x̄(n)), hn)H ≤

∥∥∥Tω0(x̄(n))
∥∥∥
H
≤ B0

∥∥∥x̄(n)
∥∥∥
l2(X)

.

Hence it follows
∥∥x̄(n)

∥∥
l2(X)

≤ B0. Then n <
∥∥x̄(n)

∥∥
l2(X)

≤ B0. We arrived at a contra-
diction. So B < +∞. The theorem is proved.

The next theorem shows that the uncountable Besselness on the whole space follows
from the uncountable Besselness on the everywhere dense subspace.
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Theorem 2.3 Let V be an everywhere dense set ofH and {fα}α∈I ⊂ E be an uncountable
b-Besselian system in V with the boundary b. Then {fα}α∈I is uncountable b-Besselian in
H with the boundary b.

Proof. Consider ∀h ∈ H . As V is everywhere dense inH , we have ∃hn ∈ H: lim
n→∞

hn = h.

We also have I(h) ⊂
⋃∞
n=1 I(hn). In fact, if α /∈

⋃∞
n=1 I(hn), then α /∈ I(hn), i.e.

ωb(hn, fα) = 0, ∀n ∈ N . Then ωb(h, fα) = lim
n→∞

ωb(hn, fα) = 0, i.e. α /∈ I(h). Let

I(h) = {αk}k∈N and m ∈ N be a fixed number. By 2.1 we have

m∑
k=1

‖ωb(hn, fαk)‖2X ≤ B ‖hn‖
2
H . (2.4)

Passing to the limit in 2.4 as n→∞, we obtain
m∑
k=1

‖ωb(h, fαk)‖2X ≤ B ‖h‖
2
H . (2.5)

Now let’s pass to the limit in 2.5 as m→∞. Then we obtain
∞∑
k=1

‖ωb(h, fαk)‖2X ≤ B ‖h‖
2
H ,

i.e. {fα}α∈I ⊂ E is uncountable b-Besselian in H with the boundary b. The theorem is
proved.

3 Uncountable b-frame

Let {Hα}α∈I be a system of Hilbert spaces. Let’s state an uncountable generalization of the
concept of g-frame in non-separable Hilbert spaces.

Definition 3.1 A system {Λα ∈ L(H,Hα)}α∈I is called an uncountable g-frame in H if
∀h ∈ H IΛ(h) = {α ∈ I : Λα(h) 6= 0} ∈ Ia and ∃A,B > 0: ∀h ∈ H

A ‖h‖2H ≤
∑
α∈I
‖Λα(h)‖2Hα ≤ B ‖h‖

2
H .

The constants A and b are called the lower and upper bounds of the g-frame {Λα}α∈I ,
respectively.

The next concept is a generalization of the concept of uncountable frames in non-
separable Hilbert spaces (see [34]).

Definition 3.2 A system {fα}α∈I ⊂ E is called an uncountable b-frame in H if ∀h ∈ H
I(h) = {α ∈ I : ωb(h, fα) 6= 0} ∈ Ia and ∃A,B > 0: ∀h ∈ H

A ‖h‖2H ≤
∑
α∈I
‖ωb(h, fα)‖2X ≤ B ‖h‖

2
H . (3.1)

The constants A and b are called the lower and upper bounds of the b-frame {fα}α∈I ,
respectively.

The following criterion for uncountable b-frameness of system is true.
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Theorem 3.1 Let {fα}α∈I ⊂ E. For the system {fα}α∈I to be uncountable b-frame in H ,
it is necessary and sufficient that the operator T : l2(X) → H defined by 2.2 is bounded
surjective.

Proof. Necessity. Let the system {fα}α∈I be uncountable b-frame in H with the bounds A
and b. Then it is clear that {fα}α∈I is uncountable b-Besselian inH . Therefore, by Theorem
1, the operator T (x̄) =

∑
α∈I b(xα, fα) is bounded and ‖T‖ ≤

√
B. From 2.3 it follows

that T ∗h = {ωb(h, fα)}α∈I , ∀h ∈ H . Then from 3.1 we obtain

A ‖h‖2H ≤
∑
α∈I
‖ωb(h, fα)‖2X = ‖T ∗(h)‖2l2(X) .

Consequently, T is a surjective operator.
Sufficiency. Let T be a bounded surjective operator. By Theorem 1, from the bound-

edness of T it follows that the system {fα}α∈I is uncountable b-Besselian in H , and the
surjectivity of T implies that there exists c > 0 such that

‖T ∗(h)‖l2(X) ≥ c ‖h‖H , ∀h ∈ H.

Thus,
c2 ‖h‖2H ≤ ‖T

∗(h)‖2l2(X) ≤ ‖T‖
2 ‖h‖2H ,

i.e. {fα}α∈I is an uncountable b-frame in H . The theorem is proved.

Let {fα}α∈I be an uncountable b-frame in H and the operator T be defined by 2.2.
Consider the operator S = TT ∗. Clearly, S ∈ L(H), and for ∀h ∈ H we have

S(h) = TT ∗(h) =
∑
α∈I

b(ωb(h, fα), fα). (3.2)

We will call the operator S an uncountable b-frame operator for {fα}α∈I . Theorem
below establishes some properties of b-frame operator.

Theorem 3.2 Let {fα}α∈I ⊂ E be an uncountable b-frame in H with the bounds A and b.
The following properties are true:
1) S is a self-adjoint positive operator and AIH ≤ S ≤ BIH ;
2) S is a boundedly invertible operator and B−1IH ≤ S−1 ≤ A−1IH ;
3) the system {Sfα ∈ L(H,X)}α∈I is an uncountable g-frame in H with the bounds B−1

and A−1, where the operator Sfα is defined by the formula Sfα(h) = ωb(S
−1h, fα).

Proof. We have
S∗ = (TT ∗)∗ = TT ∗ = S.

On the other hand, from 3.2 we obtain

(S(h), h)H =
∑
α∈I

(b(ωb(h, fα), fα), h)H =
∑
α∈I
‖ωb(h, fα)‖2X . (3.3)

It follows that (S(h), h)H ≥ 0.
Using 3.1 and 3.3, we obtain

A ‖h‖2H ≤
∑
α∈I
‖ωb(h, fα)‖2X = (S(h), h)H ≤ ‖S(h)‖H ‖h‖H ,∀h ∈ H,

or A ‖h‖H ≤ ‖S(h)‖H . Then KerS = {0} and RS is closed. If RS 6= H , then there exists
h0 ∈ H\ {0} such that (S(h), h0)H = 0, ∀h ∈ H . Consequently, (S(h0), h0)H = 0. From
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this relation and 3.3 it follows ωb(h0, fα) = 0, ∀α ∈ I . Then, by 3.1, we obtain h0 = 0. The
obtained contradiction shows that RS = H . Thus, by Banach’s homeomorphism theorem,
the operator S is boundedly invertible. From 3.1, for ∀h ∈ H we obtain

A
∥∥S−1h

∥∥2

H
≤ (S−1(h), h)H ≤

∥∥S−1(h)
∥∥
H
‖h‖H ,

or ∥∥S−1(h)
∥∥
H
≤ A−1 ‖h‖H , ∀h ∈ H.

Therefore,
(S−1(h), h)H ≤ A−1 ‖h‖2H , ∀h ∈ H. (3.4)

Also, for ∀h ∈ H we have

‖h‖4H = ((S−1(Sh), h)H)2 ≤ (S−1(Sh), Sh)H(S−1(h), h)H

= (Sh, h)H(S−1(h), h)H ≤ B ‖h‖2H (S−1(h), h)H

or
B−1 ‖h‖2H ≤ (S−1(h), h)H), ∀h ∈ H. (3.5)

From 3.4 and 3.5 it follows that B−1IH ≤ S−1 ≤ A−1IH .
Finally, for ∀h ∈ H we have∑

α∈I
‖Sfα(h)‖2X =

∑
α∈I

∥∥ωb(S−1h, fα)
∥∥2

X
= (S−1h, h)H .

Consequently, from 3.4 and 3.5 we obtain

B−1 ‖h‖2H ≤
∑
α∈I
‖Sfα(h)‖2X ≤ A

−1 ‖h‖2H ,∀h ∈ H.

Thus, by 2.5, the system {Sfα}α∈I forms an uncountable g-frame for H with the bounds
B−1 and A−1. The theorem is proved.

Similar to the expansion of every element with respect to the frame elements, for ∀h ∈
H , by 3.2, the following representation holds:

h = SS−1(h) =
∑
α∈I

b(ωb(S
−1h, fα), fα) =

∑
α∈I

b(Sfα(h), fα). (3.6)

Definition 3.3 Let {fα}α∈I ⊂ E be an uncountable b-frame in H . The system {Sfα}α∈I
will be called an uncountable dual g-frame of the b-frame {fα}α∈I in H .

The following theorem is true for the coefficients of expansion with respect to the ele-
ments of a b-frame.

Theorem 3.3 Let {fα}α∈I ⊂ E be an uncountable b-frame in H , h ∈ H have an expan-
sion h =

∑
α∈I b(xα, fα), x̄ = {xα}α∈I ∈ l2(X), and {Sfα}α∈I be an uncountable dual

g-frame of {fα}α∈I . Then∥∥{xα}α∈I∥∥2

l2(X)
=
∥∥{Sfα(h)}α∈I

∥∥2

l2(X)
+
∥∥{xα − Sfα(h)}α∈I

∥∥2

l2(X)
. (3.7)
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Proof. From 3.6 we obtain

(S−1h, h) =
∑
α∈I
‖Sfα(h)‖2X =

∥∥{Sfα(h)}α∈I
∥∥2

l2(X)
.

We also have

(h, S−1h)H = (
∑
α∈I

b(xα, fα), S−1h)H =
∑
α∈I

(xα, ωb(S
−1h, fα))H

=
∑
α∈I

(xα, Sfα(h))H = (x̄, {Sfα(h)}α∈I)l2(X).

Consequently,
0 = (x̄− {Sfα(h)}α∈I , {Sfα(h)}α∈I)l2(X).

Therefore, ∥∥{xα}α∈I∥∥2

l2(X)
=
∥∥{xα − Sfα(h) + Sfα(h)}α∈I

∥∥2

l2(X)

=
∥∥{xα − Sfα(h)}α∈I

∥∥2

l2(X)
+
∥∥{Sfα(h)}α∈I

∥∥2

l2(X)
.

The theorem is proved.

Corollary 3.1 Let {fα}α∈I ⊂ E be an uncountable b-frame in H and {Sfα}α∈I be an
uncountable dual g-frame of {fα}α∈I . Then ∀h ∈ H

∥∥{Sfα(h)}α∈I
∥∥
l2(X)

= inf

{∥∥{xα}α∈I∥∥l2(X)
: h =

∑
α∈I

b(xα, fα), {xα}α∈I ∈ l2(X)

}
.

Proof. The proof follows immediately from the equality 3.7. The corollary is proved.

Corollary 3.2 Let {fα}α∈I ⊂ E be an uncountable b-frame in H , β ∈ I and {Sfα}α∈I be
an uncountable dual g-frame of {fα}α∈I . Then ∀x ∈ X the relation

∑
α 6=β
‖Sfαb(x, fβ)‖2X =

‖x‖2X − ‖(IX − Sβ)x‖2X − ‖Sβx‖
2
X

2
(3.8)

holds, where the operator Sβ is defined by Sβx = Sfβb(x, fβ).

Proof. From 3.6 we obtain

b(x, fβ) =
∑
α∈I

b(Sfα(b(x, fβ)), fα).

We also have
b(x, fβ) =

∑
α∈I

b(δαβx, fα).

Then, by 3.7, we obtain

‖x‖2X =
∥∥{Sfα(b(x, fβ))}α∈I

∥∥2

l2(X)
+
∥∥{δαβx− Sfα(b(x, fβ))}α∈I

∥∥2

l2(X)

=
∑
α 6=β
‖Sfαb(x, fβ)‖2X + ‖Sβ(x)‖2X +

∑
α 6=β
‖Sfαb(x, fβ)‖2X + ‖(IX − Sβ)(x)‖2X .

Hence we get the validity of 3.8. The corollary is proved.
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Now let’s consider the uncountable b-frameness of the system obtained by elimination
of arbitrary element from the uncountable b-frame.

Theorem 3.4 Let {fα}α∈I ⊂ E be an uncountable b-frame in H , β ∈ I , {Sfα}α∈I be an
uncountable dual g-frame of {fα}α∈I , and Sβx = Sfβb(x, fβ). Then,
1) if ker(IX − Sβ) 6= {0}, then the system {fα}α 6=β is not b-complete in H;
2) if ker(IX − Sβ) = {0} and (IX − Sβ)−1 ∈ L(X), then {fα}α 6=β forms an uncountable
b-frame for H .

Proof. 1) Let x ∈ ker(IX − Sβ) and x 6= 0. Then Sβ(x) = x and from 3.8 we obtain∑
α 6=β
‖Sfαb(x, fβ)‖2X = 0.

It follows that 0 = Sfαb(x, fβ) = ωb(S
−1b(x, fβ), fα), ∀α ∈ I\ {β}. As S−1b(x, fβ) 6= 0,

by Lemma 1, the system {fα}α 6=β is not b-complete in H .
2) For ∀x ∈ X we have

b(x, fβ) =
∑
α∈I

b(Sfα(b(x, fβ)), fα)

Hence we obtain

b(x, fβ)− b(Sfβb(x, fβ), fβ) =
∑
α 6=β

b(Sfα(b(x, fβ)), fα)

or
b((IX − Sβ)x, fβ) =

∑
α 6=β

b(Sfα(b(x, fβ)), fα). (3.9)

Consider an arbitrary h ∈ H . Let’s perform scalar multiplication of both sides of 3.9 by
h ∈ H . Then we obtain

(b((IX − Sβ)x, fβ), h)H =
∑
α 6=β

(b(Sfα(b(x, fβ)), fα), h)H .

This is equivalent to

((IX − Sβ)x, ωb(h, fβ))H =
∑
α 6=β

(Sfαb(x, fβ), ωb(h, fα))H . (3.10)

Let ωb(h, fβ) 6= 0. Choose x = 1

‖ωb(h,fβ)‖
X

(IX − Sβ)−1ωb(h, fβ). Then from 3.10 we

obtain
‖ωb(h, fβ)‖X =

∑
α6=β

(Sfαb(x, fβ), ωb(h, fα))H .

From here, using Cauchy-Bunyakovsky inequality, we get

‖ωb(h, fβ)‖2X ≤
∑
α 6=β
‖Sfαb(x, fβ)‖2X

∑
α 6=β
‖ωb(x, fβ)‖2X

≤ A−1 ‖b(x, fβ)‖2
∑
α 6=β
‖ωb(x, fβ)‖2X
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≤ A−1M2 ‖x‖2X ‖fβ‖
2
E

∑
α 6=β
‖ωb(x, fβ)‖2X

≤ A−1M2
∥∥(IX − Sβ)−1

∥∥2 ‖fβ‖2E
∑
α 6=β
‖ωb(x, fβ)‖2X

= Cβ
∑
α 6=β
‖ωb(x, fβ)‖2X . (3.11)

From 3.1 and 3.11 we obtain

A ‖h‖2H ≤
∑
α∈I
‖ωb(x, fα)‖2X = ‖ωb(x, fβ)‖2X +

∑
α 6=β
‖ωb(x, fα)‖2X

≤ Cβ
∑
α 6=β
‖ωb(x, fα)‖2X +

∑
α 6=β
‖ωb(x, fα)‖2X

= (1 + Cβ)
∑
α 6=β
‖ωb(x, fα)‖2X . (3.12)

So, taking into account 3.1 and 3.12, for ∀h ∈ H we have

A

1 + Cβ
‖h‖2H ≤

∑
α 6=β
‖ωb(x, fα)‖2X ≤

∑
α∈I
‖ωb(x, fα)‖2X ≤ B ‖h‖

2
H .

The theorem is proved.
Like in the case of uncountable b-Besselness, the uncountable b-frameness of the system

on everywhere dense set implies its uncountable b-frameness on the whole space.
The following theorem is true.

Theorem 3.5 Let V be an everywhere dense set of H and the system {fα}α∈I ⊂ E be an
uncountable b-frame in V with the bounds A and b. Then {fα}α∈I forms an uncountable
b-frame for H with the bounds A and b.

Proof. Consider ∀h ∈ H . By Theorem 3, the right-hand side of 3.1 is true for h ∈ H . It
remains to show the validity of the left-hand side of 3.1. As V is dense in H , ∃hn ∈ H:
lim
n→∞

hn = h. Let the operator T be defined by 2.2. From the b-frameness of {fα}α∈I in V
and the relation 2.3 we obtain

A ‖hn‖2H ≤ ‖T
∗hn‖l2(X) .

Passing here to the limit as n → ∞, we obtain A ‖h‖2H ≤ ‖T ∗h‖l2(X), i.e. the left-hand
side of the inequality 3.1 is true for h ∈ H . The theorem is proved.

4 Perturbation and stability of uncountable b-frame

In this section, we consider the stability and the compact Noetherian perturbation of an
uncountable b-frame in non-separable Hilbert space.

We will need the following theorem.

Theorem 4.1 Let the numbers λ1, λ2 ∈ [0, 1) and the linear operator G : E → E be
such that ‖f −Gf‖E ≤ λ1 ‖f‖E + λ2 ‖Gf‖E , f ∈ E. Then the operator G is boundedly
invertible and

1− λ2

1 + λ1
‖f‖E ≤

∥∥G−1f
∥∥ ≤ 1 + λ2

1− λ1
‖f‖E , f ∈ E.
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Theorem below is true.

Theorem 4.2 Let {fα}α∈I ⊂ E be an uncountable b-frame in H with the bounds A and b
and {gα}α∈I ⊂ E be some system. Assume that there exist the numbers λ, µ, γ ≥ 0 such

that max
{
λ+ γ√

A
, µ
}
< 1, and the condition∥∥∥∥∥∑

α∈J
b(xα, fα − gα)

∥∥∥∥∥
H

≤ λ

∥∥∥∥∥∑
α∈J

b(xα, fα)

∥∥∥∥∥
H

+µ

∥∥∥∥∥∑
α∈J

b(xα, gα)

∥∥∥∥∥
H

+γ ‖{xα}α∈J‖l2(X)

(4.1)
holds for ∀J ∈ I0 and {xα}α∈J ⊂ X . Then the system {gα}α∈I is an uncountable b-frame
for H with the bounds(

(1− λ)
√
A− γ)

1 + µ

)2

and

(
(1 + λ)

√
B + γ)

1− µ

)2

.

Proof. Using 3.12, we obtain∥∥∥∥∥∑
α∈J

b(xα, gα)

∥∥∥∥∥
H

≤

∥∥∥∥∥∑
α∈J

b(xα, fα)

∥∥∥∥∥
H

+

∥∥∥∥∥∑
α∈J

b(xα, fα − gα)

∥∥∥∥∥
H

≤ (1 + λ)

∥∥∥∥∥∑
α∈J

b(xα, fα)

∥∥∥∥∥
H

+ µ

∥∥∥∥∥∑
α∈J

b(xα, gα)

∥∥∥∥∥
H

+ γ ‖{xα}α∈J‖l2(X) .

After some transformations, we get∥∥∥∥∥∑
α∈J

b(xα, gα)

∥∥∥∥∥
H

≤ 1 + λ

1− µ

∥∥∥∥∥∑
α∈J

b(xα, fα)

∥∥∥∥∥
H

+
γ

1− µ
‖{xα}α∈J‖l2(X) .

It follows that the series
∑

α∈I b(xα, gα) is convergent for ∀x̄ = {xα}α∈I ∈ l2(X) and∥∥∥∥∥∑
α∈I

b(xα, gα)

∥∥∥∥∥
H

≤ 1 + λ

1− µ

∥∥∥∥∥∑
α∈I

b(xα, fα)

∥∥∥∥∥
H

+
γ

1− µ
‖{xα}α∈J‖l2(X) .

Consequently, by Theorem 1,∥∥∥∥∥∑
α∈I

b(xα, gα)

∥∥∥∥∥
H

≤ (1 + λ)
√
B + γ

1− µ
‖x̄‖l2(X) ,

and ∑
α∈I
‖ωb(x, gα)‖2X ≤

(
(1 + λ)

√
B + γ

1− µ

)2

‖h‖2H .

Let U : l2(X) → H be defined by U(x̄) =
∑

α∈I b(xα, gα). Consider the operator G =

UT ∗S−1. We have

Gh = UT ∗S−1(h) =
∑
α∈I

b(ωb(S
−1h, fα), gα) =

∑
α∈I

b(Sfα(h), gα). (4.2)
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Taking into account 3.6, 4.1 and 4.2, we obtain

‖h−Gh‖H =

∥∥∥∥∥∑
α∈I

b(Sfα(h), fα)−
∑
α∈I

b(Sfα(h), gα)

∥∥∥∥∥
H

≤ λ ‖h‖H + µ ‖Gh‖H + γ
∥∥{Sfα(h)}α∈I

∥∥
l2(X)

≤ (λ+
γ√
A

) ‖h‖H + µ ‖Gh‖H .

By Theorem 9, the operator G is boundedly invertible and∥∥G−1
∥∥ ≤ 1 + µ

1− (λ+ γ√
A

)
.

Consequently, for ∀h ∈ H we get

‖h‖4H = ((h, h)H)2 = (G(G−1h), h)H)2

=

(∑
α∈I

(b(Sfα(G−1h), gα), h)H

)2

=

(∑
α∈I

(Sfα(G−1h), ωb(h, gα))X

)2

≤
∑
α∈I

∥∥Sfα(G−1h)
∥∥2

X

∑
α∈I
‖ωb(h, gα)‖2X ≤ A

−1
∥∥G−1h

∥∥2

H

∑
α∈I
‖ωb(h, gα)‖2X

≤ A−1(
1 + µ

1− (λ+ γ√
A

)
)2 ‖h‖2H

∑
α∈I
‖ωb(h, gα)‖2X .

Thus,

≤

(
(1− λ)

√
A− γ

1 + µ

)2

‖h‖2H ≤
∑
α∈I
‖ωb(h, gα)‖2X .

The theorem is proved.

Like in the case of ordinary frames, there is a following compact perturbation of un-
countable b-frame.

Theorem 4.3 Let {fα}α∈I ⊂ E be an uncountable b-frame in H with the bounds A and b,
{gα}α∈I ⊂ E be some system and K ∈ L(l2(X), H) be a compact operator such that

K(x̄) =
∑
α∈I

b(xα, gα − fα), x̄ = {xα}α∈I ∈ l2(X).

Then {gα}α∈I is an uncountable b-frame in spanb {gα}α∈I .

Proof. By Theorem 1, for ∀x̄ = {xα}α∈I ∈ l2(X) the series
∑

α∈I b(xα, fα) is con-
vergent, the operator T (x̄) =

∑
α∈I b(xα, fα) is bounded and ‖T‖ ≤

√
B. It is clear

that the series
∑

α∈I b(xα, gα) is also convergent. Let U(x̄) =
∑

α∈I b(xα, gα). Then
U = T + K ∈ L(l2(X), H). Consequently, by Theorem 1, the system {gα}α∈I is un-
countable b-Besselian in H . Further, we have

UU∗ = (T +K)(T ∗ +K∗) = S(I +W ),
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where W = S−1(TK∗ + KT ∗ + KK∗) is a compact operator. Consequently, RUU∗ is
closed. Let h ∈ spanb {gα}α∈I and UU∗h = 0. Then

0 = (UU∗h, h)H =
∑
α∈I
‖ωb(h, gα)‖2X .

Hence we obtain ωb(h, gα) = 0, ∀α ∈ I . Then from Lemma 1 it follows that h = 0. Thus,
the operator UU∗ is boundedly invertible in spanb {gα}α∈I . Consequently,

RUU∗ = (kerUU∗)⊥ = spanb {gα}α∈I ,

and therefore,RU = spanb {gα}α∈I . By Theorem 2, the system {gα}α∈I is an uncountable
b-frame in spanb {gα}α∈I . The theorem is proved.

Let E1 be a Banach space, H1 be a non-separable Hilbert space, and b1 : X ×E1 → H1 be
a bounded bilinear mapping.

Next theorem establishes the Noetherian perturbation of an uncountable b-frame.

Theorem 4.4 Let {fα}α∈I ⊂ E be an uncountable b-frame in H with the bounds A and b,
{gα}α∈I ⊂ E1 be some system, and F ∈ B(H,H1) be a Noether operator such that for

∀x ∈ XFb(x, fα) = b1(x, gα), α ∈ I.

Then {gα}α∈I is an uncountable b1-frame in spanb1 {gα}α∈I .

Proof. It is not difficult to show that for ∀h ∈ H1 the relation

ωb1(h, gα) = ωb(F
∗h, fα), α ∈ I,

is true. So, for ∀h ∈ H1 we have

{α ∈ I : ωb1(h, fα) 6= 0} = {α ∈ I : ωb(F
∗h, fα) 6= 0} ∈ Ia.

Then, using 3.1, we obtain∑
α∈I
‖ωb1(h, gα)‖2X =

∑
α∈I
‖ωb(F ∗h, fα)‖2X ≤ B ‖F‖

2 ‖h‖2H1
,∀h ∈ H1,

i.e. the system {gα}α∈I is uncountable b1-Besselian in H1.
Further, the closedness of RF and the b-completeness of {fα}α∈I in H imply RF =

spanb1 {gα}α∈I . Let H = kerF + Z. Denote by F1 the restriction of the operator F to Z.
It is clear that F1 : Z → spanb1 {gα}α∈I is a boundedly invertible operator. Consider an
arbitrary h ∈ spanb1 {gα}α∈I . Let F−1

1 h = z. We have

h = F1z = Fz = F

(∑
α∈I

b(Sfα(z), fα)

)
=
∑
α∈I

b1(Sfα(z), gα).

Then
‖h‖4H1

= ((h, h)H1)2 = ((
∑
α∈I

b1(Sfα(z), gα), h)H1)2

=

(∑
α∈I

(b1(Sfα(z), gα), h)H1

)2

=

(∑
α∈I

(Sfα(z), ωb1(h, gα))X

)2

≤
∑
α∈I
‖Sfα(z)‖2X

∑
α∈I
‖ωb1(h, gα)‖2X ≤ A

−1 ‖z‖2H
∑
α∈I
‖ωb1(h, gα)‖2X
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= A−1
∥∥F−1

1 h
∥∥2

H

∑
α∈I
‖ωb1(h, gα)‖2X ≤ A

−1
∥∥F−1

1

∥∥2 ‖h‖2H1

∑
α∈I
‖ωb1(h, gα)‖2X .

Thus,
A
∥∥F−1

1

∥∥−1 ‖h‖2H1
≤
∑
α∈I
‖ωb1(h, gα)‖2X .

The theorem is proved.
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