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Abstract. In this paper, we consider a nonlocal boundary value problem for a multidimensional lin-
ear parabolic equation containing the integral of the desired solution. The coefficients of the considered
parabolic equation are discontinious functions. The integral boundary condition represents the relation-
ship that binds the value of the derivative of the desired solution with respect to the spatial variables
at the boundary points and the value of the solution in the internal area. By using Galerkin method the
existence of the generalized solution from V 1,0

2 (QT ) is proved. The energy inequality is obtained and the
uniqueness of the generalized solution is proved. It is proved that for many strong assumptions about the
data of the problem, the generalized solution from V 1,0

2 (QT ) belongs to space W 1,1
2 (QT ).

Keywords. parabolic equation · integral boundary condition · generalized solution.

Mathematics Subject Classification (2010): 35K20, 49J20

1 Introduction

In the mathematical modeling of numerous practice processes, boundary value problems
with nonlocal boundary conditions for partial differential equations arise. Nonlocal bound-
ary conditions represent relations connecting the values of the desired solution at the bound-
ary and interior points of the domain. Integral conditions hold a special place among non-
local boundary conditions. Nonlocal boundary value problems for parabolic equations with
integral conditions were studied in [1-4, 6, 9] and others. Note that such boundary value
problems in the classes of generalized solutions are studied least of all.

2 Statement of the problem

Suppose that,Ω is a bounded domain in Rn (n ≥ 2) with a smooth boundary S = S′
⋃
S′′,

QT = Ω × (0, T ) is a cylinder, T > 0 is a given number, ST = S × (0, T ) is the lateral
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surface of the cylinder QT , S′T = S′ × (0, T ) , S′′T = S′′ × (0, T ). The designations of
functional spaces and their norms used in this work correspond to [5].

Consider the linear parabolic equation in the cylinder QT

ut −
n∑

i,j=1

(
aij (x, t)uxj

)
xi
+ a (x, t)u = f (x, t) , (x, t) ∈ QT . (2.1)

For equation (2.1), we pose the following boundary value problem: it is required to find
a solution subject to the initial condition in the domain QT

u (x, 0) = ϕ (x) , x ∈ Ω, (2.2)

with boundary condition
u|S′

T
= 0, (2.3)

and the nonlocal condition

∂u

∂N

∣∣∣∣
(x,t)∈S′′

T

=

∫
Ω
K (x, y, t)u (y, t) dy|(x,t)∈S′′

T
, (2.4)

where ∂u
∂N =

n∑
i,j=1

aij (x, t)uxj cos (ν, xi) is the derivative corresponding to the conor-

mal, ν is the outer normal to the boundary S′′, aij (x, t) , i, j = 1, n, a (x, t) , f (x, t) ,
ϕ (x) , K (x, y, t) are the given measurable functions satisfying the conditions

aij (x, t) = aji (x, t) , i, j = 1, n,

νξ2 ≤
n∑

i,j=1

aij (x, t) ξiξj ≤ µξ2, ξ = (ξ1, . . . , ξn) , ξ2 =
n∑
i=1

ξ2i ,

|a (x, t)| ≤ µ al.e. QT ,

|K (x, y, t)| ≤ µ1 al.e. S′′ ×Ω × (0, T ) , ν, µ, µ1 = const > 0, (2.5)

ϕ ∈ L2 (Ω) , f ∈ L2,1 (QT ) . (2.6)

We define a generalized solution u = u (x, t) for the problem (2.1)-(2.4) from V 1,0
2 (QT )

as an element of V 1,0
2,0 (QT ) =

{
u : u ∈ V 1,0

2 (QT ) , u|S′
T
= 0
}

satisfying the integral
identity ∫

QT

−uηt + n∑
i,j=1

aij (x, t)uxjηxi + a(x, t)uη

 dxdt

−
∫
S′′
T

[∫
Ω
K (s, y, t)u (y, t) dy

]
η (s, t) dsdt

=

∫
Ω
ϕ (x) η (x, 0) dx+

∫
QT

f (x, t) ηdxdt (2.7)

for any function η = η (x, t) ∈ Ŵ 1,1
2,0 (QT ) =

{
η : η ∈W 1,1

2 (QT ) , η
∣∣∣
S′
T

= 0,

η (x, T ) = 0, x ∈ Ω }.
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3 Existence and uniqueness of a generalized solution for the problem (2.1) - (2.4)

Theorem 3.1 Let the conditions (2.5), (2.6) be satisfied. Then problem (2.1) - (2.4) is
uniquely solvable in the class V 1,0

2 (QT ) and satisfies the estimate

|u|QT
≡ ‖u‖

V 1,0
2 (QT )

≤M1

(
‖ϕ‖2,Ω + 2 ‖f‖2,1,QT

)
, (3.1)

here constant M1 does not depend on ϕ and f .

Proof. For the proof, we use the Galerkin method. Let {ψm (x)} be some fundamental sys-
tem of functions from W 1

2,0 (Ω) =
{
ψ : ψ = ψ (x) ∈W 1

2 (Ω) , ψ (x) = 0, x ∈ S′
}

and
orthonormal in L2 (Ω). Approximate solutions uN (x, t) of problem (2.1) - (2.4) will be
sought in the form

uN (x, t) =
N∑
m=1

cNm (t)ψm (x) ,

here cNm (t) =
(
uN , ψm

)
2,Ω

are to be determined from the conditions∫
Ω
uNt (x, t) , ψm (x) dx+

∫
Ω

n∑
i,j=1

aij (x, t)u
N
xj (x, t)ψmxi (x) dx

+

∫
Ω
a (x, t)uN (x, t)ψm (x) dx−

∫
S′′

[∫
Ω
K (s, y, t)uN (y, t) dy

]
ψm (s) ds

=

∫
Ω
f (x, t)ψm (x) dx, m = 1, N, (3.2)

cNm (0) =

∫
Ω
ϕ (x)ψm (x) dx, m = 1, N. (3.3)

Conditions (3.2) represent a system of linear ordinary differential equations in the form

dcNm (t)

dt
+

N∑
k=1

Amk (t) c
N
k (t) + Fm (t) = 0, m = 1, N, (3.4)

here

Amk (t) =

∫
Ω

 n∑
i,j=1

aij (x, t)ψkxj (x)ψmxi (x) + a (x, t)ψk (x)ψm (x)

 dx
−
∫
S′′

[∫
Ω
K (s, y, t)ψk (y) dy

]
ψm (s) ds, m, k = 1, N,

Fm (t) = −
∫
Ω
f (x, t)ψm (x) dx, m = 1, N.

It follows from conditions (2.5), (2.6) that the coefficientsAmk (t) for cNk (t) are bounded
with respect to t, and the free terms are summable on (0, T ) functions. Then, by a well-
known theorem from [8, p. 27], we conclude that systems (3.4) with initial conditions
(3.3) have a unique absolutely continuous solution on [0, T ]. Consequently, the functions
uN (x, t) are uniquely determined for any N .
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Let us show that the sequence
{
uN
}

satisfies the estimate∣∣uN ∣∣
QT
≤M2, N = 1, 2, . . . , (3.5)

where the constant M2 > 0 depends only on the input data and does not depend on N .
We multiply each of the equations (3.2) by its own cNm (t), add the resulting equations

over m from 1 to N and integrate the result over t from 0 to t ≤ T. Then we obtain the
equality

1

2

∥∥uN (x, t)
∥∥2
2,Ω

+

∫
Qt

 n∑
i,j=1

aiju
N
xju

N
xi + a

(
uN
)2 dxdt

=
1

2

∥∥uN (x, 0)
∥∥2
2,Ω

+

∫
Qt

fuNdxdt

+

∫
S′′
t

[∫
Ω
K (s, y, t)uN (y, t) dy

]
uN (s, t) dsdt, (3.6)

here Qt = Ω × (0, t) , S′′t = S′′ × (0, t).
Note that any function u ∈W 1,0

2 (QT ) satisfies the inequality [5, p. 77]∫
S′′
u2 (s, t) ds ≤

∫
Ω

[
εu2x (x, t) + cεu

2 (x, t)
]
dx (3.7)

for almost all t ∈ (0, T ), here ε > 0 is any number, cε = c
(
c
4ε + 1

)
, c > 0 is the constant

in inequality (6.23) from [5, p. 77].
Then using conditions (2.5), (2.6), an obvious inequality ab ≤

(
a2 + b2

) /
2 and (3.7)

for ε = ν |Ω|−1 from (3.6) we obtain the inequalities

1

2

∥∥uN (x, t)
∥∥2
2,Ω

+ ν
∥∥uNx ∥∥22,Qt

≤ 1

2

∥∥uN (x, 0)
∥∥2
2,Ω

+
ν

2

∥∥uNx ∥∥22,Qt

+
1

2

(
µ21
∣∣S′′∣∣+ cε |Ω|+ 2µ

) ∥∥uN∥∥2
2,Qt

+ ‖f‖2,1,Qt
max
0≤τ≤t

∥∥uN (x, τ)
∥∥
2,Ω

, (3.8)

here |Ω| = mesΩ, |S′′| = mesS′′.
We use the notation yN (t) = max

0≤τ≤t

∥∥uN (x, τ)
∥∥
2,Ω

. It is obvious that

∥∥uN∥∥2
2,Qt
≤ t
(
yN (t)

)2
,
∥∥uN (x, 0)

∥∥
2,Ω
≤ ‖ϕ‖2,Ω ,∥∥uN (x, 0)

∥∥2
2,Ω
≤ yN (t)

∥∥uN (x, 0)
∥∥
2,Ω

. (3.9)

Multiplying both sides of inequality (3.8) by 2 and taking into (3.9), we have∥∥uN (x, t)
∥∥2
2,Ω

+ ν
∥∥uNx ∥∥22,Qt

≤ yN (t) ‖ϕ‖2,Ω + dt
(
yN (t)

)2
+ 2 ‖f‖2,1,Qt

yN (t) , (3.10)

here d = µ21 |S′′|+ cε |Ω|+ 2µ.
Then from (3.10), as was proved in [5, p. 167], the inequality follows∣∣uN ∣∣

Qt
≤M3

[
‖ϕ‖2,Ω + 2 ‖f‖2,1,QT

]
, (3.11)
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in which the constant M3 > 0 does not depend on N,ϕ and f . Therefore, estimate (3.5) is
valid.

By virtue of (3.5), a subsequence
{
uNm

}
can be distinguished from the sequence

{
uN
}

which converges to some function u ∈ W 1,0
2,0 (QT ) weakly in L2 (QT ) together with the

derivatives
{
uNm
x

}
and converges to u weakly in L2 (Ω) uniformly with respect to

t ∈ [0, T ]. Without loss of generality, we will assume that the whole sequence
{
uN
}

con-
verges to u this way. By virtue of the well-known property of weak convergence, inequality
(3.11) remains for the limit function u and, therefore, the function u satisfies estimate (3.1)
and it is an element of V 1,0

2,0 (QT ). Let us show that the limit function u = u (x, t) satis-
fies identity (2.7), that is, it is a generalized solution of the problem (2.1) - (2.4). For this,
we take arbitrary absolutely continuous functions dm (t) , m = 1, N with d′m (t) from
L2 (0, T ) and equal to zero at t = T . We multiply each equation (3.2) for uN = uNm by its
function dm (t), add the obtained equalities over all m from 0 to N and integrate the result
over t from 1 to T . This gives the identity

∫
QT

−uNmΦNt +
n∑

i,j=1

aij (x, t)u
N
xjΦ

N
xi + a (x, t)uNmΦN

 dxdt

−
∫
S′′
T

(∫
Ω
K (s, y, t)uNm(y, t)dy

)
ΦN (s, t) dsdt

=

∫
Ω
uNm (x, 0)ΦN (x, 0) dx+

∫
QT

fΦNdxdt, (3.12)

where ΦN (x, t) =
N∑
m=1

dm (t)ψm (x).

Passing to the limit along the chosen subsequence
{
uNm

}
in equality (3.12), we obtain

the integral identity

∫
QT

−uΦNt +
n∑

i,j=1

aij (x, t)uxjΦ
N
xi + a (x, t)uΦN

 dxdt

−
∫
S′′
T

(∫
Ω
K (s, y, t)u(y, t)dy

)
ΦN (s, t) dsdt

=

∫
Ω
ϕ (x)ΦN (x, 0) dx+

∫
QT

fΦNdxdt. (3.13)

Let us denote the set of all functions ΦN (x, t) =
N∑
m=1

dm (t)ψm (x) by PN . The family

of functions
∞⋃
p=1

Pp is everywhere dense in Ŵ 1,1
2,0 (QT ). Let the function η = η (x, t) be

the limit of a sequence
{
ΦN
}

from
∞⋃
p=1

Pp in the norm of W 1,1
2 (QT ). Let us show that the

equality

lim
N→∞

∫
S′′
T

(∫
Ω
K (s, y, t)u(y, t)dy

)
ΦN (s, t) dsdt
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=

∫
S′′
T

(∫
Ω
K (s, y, t)u(y, t)dy

)
η (s, t) dsdt. (3.14)

According to the theorem about traces [7, p. 140], the following inequality holds:∥∥ΦN (s, t)− η (s, t)
∥∥
2,S′′

T
≤M4

∥∥ΦN (x, t)− η (x, t)
∥∥(1,1)
2,QT

, (3.15)

where the constant M4 > 0 does not depend on N .
Then using the Cauchy-Bunyakovsky inequality, condition (2.5) for the function

K (x, y, t), estimate (3.1), and inequality (3.15), we obtain∣∣∣∣∣
∫
S′′
T

(∫
Ω
K (s, y, t)u(y, t)dy

)[
ΦN (s, t)− η (s, t)

]
dsdt

∣∣∣∣∣
≤

{∫
S′′
T

(∫
Ω
K (s, y, t)u(y, t)dy

)2

dsdt

}1/2{∫
S′′
T

∣∣ΦN (s, t)− η (s, t)
∣∣2 dsdt}1/2

≤ µ1
√
|Ω| ‖u‖2,QT

·M4

∥∥ΦN − η∥∥(1,1)
2,QT

≤ µ1M1M4

√
|Ω|
[
‖ϕ‖2,Ω + 2 ‖f‖2,1,QT

] ∥∥ΦN − η∥∥(1,1)
2,QT

→ 0,

for N →∞.
Consequently, equality (3.14) is true.
Then, when passing to the limit for N → ∞ in equality (3.13), we obtain that it holds

for any η ∈ Ŵ
(1,1)
2,0 (QT ). Therefore, the function u (x, t) satisfies the integral identity

(2.7) from the definition of a generalized solution of the problem (2.1)-(2.4). Therefore,
a generalized solution of problem (2.1)-(2.4) exists.

Let us show that problem (2.1)-(2.4) cannot have two different generalized solutions
from the class V 1,0

2,0 (QT ). Indeed, if it had two such solutions as u1 and u2 then their dif-
ference would be a generalized solution of problem (2.1)-(2.4) from the class V 1,0

2,0 (QT )
corresponding to the functions ϕ = 0, f = 0. Then, according to (3.1), for the function u
we have the estimate: |u|QT

≤ 0, which means the coincidence of the solutions u1 and u2.
Theorem 1 is proved.

4 Smoothness of the generalized solution

Let us show that under several stronger assumptions about the data of problem (2.1)-(2.4),
generalized solutions from V 1,0

2,0 (QT ) belong to W 1,1
2,0 (QT ) = {u : u ∈ W 1,1

2 (QT ) ,

u|S′
T
= 0}. Let, in addition to conditions (2.5) and (2.6), the following conditions be ful-

filled:

|aijt (x, t)| ≤ µ2, i, j = 1, n, al.e. QT , |Kt (x, y, t)| ≤ µ3 al.e. S′′ ×Ω × (0, T ) , (4.1)

ϕ ∈W 1
2,0 (Ω) , f ∈ L2 (QT ) , (4.2)

where µ2, µ3 > 0 are some constants.
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Theorem 4.1 Let conditions (2.5), (2.6), (4.1), (4.2) be satisfied. Then problem (2.1)-(2.4)
is uniquely solvable in the class W 1,1

2,0 (QT ) and satisfies the estimate

max
0≤t≤T

‖ux (x, t)‖22,Ω + ‖ut‖22,QT
≤M5

[(
‖ϕ‖(1)2,Ω

)2
+ ‖f‖22,QT

]
, (4.3)

where the constant M5 > 0 does not depend on ϕ and f .

Proof. For the proof, we again use the Galerkin method. We multiply each of the equations
(3.2) by its own dcNm(t)

dt , add all the obtained equalities over m from 1 to N and integrate
over t from 0 to t. This will give the relationship∫

Qt

(uNt )2 + n∑
i,j=1

aij (x, t)u
N
xju

N
txi + auNuNt

 dxdt
−
∫
S′′
t

(∫
Ω
K (s, y, t)uN (y, t)dy

)
uNt (s, t) dsdt =

∫
Qt

fuNt dxdt. (4.4)

Using the formulas for integration by parts, we obtain the following equalities:∫
Qt

n∑
i,j=1

aij (x, t)u
N
xju

N
txidxdt =

1

2

∫
Ω

n∑
i,j=1

aiju
N
xju

N
xi dx|

t=t
t=0

−1

2

∫
Qt

n∑
i,j=1

aijtu
N
xju

N
xidxdt,∫

S′′
t

(∫
Ω
K (s, y, t)uN (y, t)dy

)
uNt (s, t) dsdt

=

∫
S′′

(∫
Ω
K (s, y, t)uN (y, t)dy

)
uN (s, t) ds

∣∣∣∣t=t
t=0

−
∫
S′′
t

(∫
Ω

(
Kt (s, y, t)u

N (y, t) +K (s, y, t)uNt (y, t)
)
dy

)
uN (s, t) dsdt.

Substituting these equalities into (4.4), we obtain the relationship

1

2

∫
Ω

n∑
i,j=1

aiju
N
xju

N
xidx+

∫
Qt

(
uNt
)2
dxdt =

1

2

∫
Ω

n∑
i,j=1

aij (x, 0)u
N
xj (x, 0)u

N
xi (x, 0) dx

+
1

2

∫
Qt

n∑
i,j=1

aijtu
N
xju

N
xidxdt−

∫
Qt

auNuNt dxdt

+

∫
S′′

(∫
Ω
K (s, y, t)uN (y, t)dy

)
uN (s, t) ds

−
∫
S′′

(∫
Ω
K (s, y, 0)uN (y, 0)dy

)
uN (s, 0) ds

−
∫
S′′
t

(∫
Ω

(
Kt (s, y, t)u

N (y, t) +K (s, y, t)uNt (y, t)
)
dy

)
uN (s, t) dsdt+

∫
Qt

fuNt dxdt.
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Hence, by virtue of conditions (2.5), (4.1) and the “Cauchy inequality with ε” [5, p. 33],
we derive the following inequality

ν

2

∥∥uNx (x, t)
∥∥2
2,Ω

+
∥∥uNt ∥∥22,Qt

≤ µ

2

∥∥uNx (x, 0)
∥∥2
2,Ω

+
µ2
2

∥∥uNx ∥∥22,Qt
+
ε1
2
‖f‖22,Qt

+
1

2ε1

∥∥uNt ∥∥22,Qt
+ µ

[
ε2
2

∥∥uN∥∥2
2,Qt

+
1

2ε2

∥∥uNt ∥∥22,Qt

]
+µ1

[
ε3
2

∥∥uN (x, t)
∥∥2
2,Ω

+
|Ω|
2ε3

∫
S′′

(
uN (s, t)

)2
ds

]
+µ1

[
1

2

∥∥uN (x, 0)
∥∥2
2,Ω

+
|Ω|
2

∫
S′′

(
uN (s, 0)

)2
ds

]

+µ1

[
ε4
2

∥∥uNt ∥∥22,Qt
+
|Ω|
2ε4

∫
S′′
t

(
uN (s, t)

)2
dsdt

]

+µ3

[
1

2

∥∥uN∥∥2
2,Qt

+
|Ω|
2

∫
S′′
t

(
uN (s, t)

)2
dsdt

]
, (4.5)

where εi > 0, i = 1, 4 are arbitrary constants.
Further, to estimate

(
uN (s, t)

)2, we use inequality (3.7) and present similar terms. Then
from (4.5) we derive the inequality(

ν

2
− µ1ε |Ω|

2ε3

)∥∥uNx (x, t)
∥∥2
2,Ω

+

(
1− µ

2ε2
− 1

2ε1
− µ1ε4

2

)∥∥uNt ∥∥22,Qt

≤
(
µ1
2

+
µ1 |Ω| cε

2

)∥∥uN (x, 0)
∥∥2
2,Ω

+

(
µ

2
+
µ1ε |Ω|

2

)∥∥uNx (x, 0)
∥∥2
2,Ω

+

(
µε2
2

+
µ1cε |Ω|

2ε4
+
µ3
2

+
µ3cε |Ω|

2

)∥∥uN∥∥2
2,Qt

+

(
µ1 |Ω| cε

2ε3
+
µ1ε3
2

)∥∥uN (x, t)
∥∥2
2,Ω

+

(
µ2
2

+
µ1 |Ω| ε
2ε4

+
µ3ε |Ω|

2

)∥∥uNx ∥∥22,Qt
. (4.6)

Let’s take ε = ν
4 , ε1 = 4, ε2 = 4µ, ε3 = µ1|Ω|

2 , ε4 = 1
µ1

. Then (4.6) transforms
into the following inequality:

ν
∥∥uNx (x, t)

∥∥2
2,Ω

+
∥∥uNt ∥∥22,Qt

≤ 2µ1 (1 + |Ω| cε)
∥∥uN (x, 0)

∥∥2
2,Ω

+

(
2µ+

µ1ν |Ω|
2

)∥∥uNx (x, 0)
∥∥2
2,Ω

+ 2
(
4µ2 + µ21cε |Ω|+ µ3 + µ3cε |Ω|

) ∥∥uN∥∥2
2,Qt

+

(
2µ2 +

µ21ν |Ω|
2

+
µ3ν |Ω|

2

)∥∥uNx ∥∥22,Qt

+
(
4cε + µ21 |Ω|

) ∥∥uN (x, t)
∥∥2
2,Ω

+ 8 ‖f‖22,Qt
. (4.7)

Then, using estimates (3.11) from (4.7), we derive the estimate

max
0≤t≤T

∥∥uNx (x, t)
∥∥2
2,Ω

+
∥∥uNt ∥∥22,QT

≤M3

[(
‖ϕ‖(1)2,Ω

)2
+ ‖f‖22,QT

]
. (4.8)
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in which the constant M6 > 0 does not depend on N,ϕ and f .
Thus, estimate (4.8) with a constant M6 independent of the number of approxima-

tions is valid for the Galerkin approximations uN . By virtue of (3.5) and (4.8), a sub-
sequence

{
uNm

}
can be selected from the sequence

{
uN
}

converging to some function

u ∈W 1,1
2,0 (QT ) weakly in L2 (QT ) together with the derivatives

{
uNm
x

}
,
{
uNm
t

}
, and sub-

sequences
{
uNm

}
,
{
uNm
x

}
, converging to u, ux weakly inL2 (Ω) uniformly with respect

to t ∈ [0, T ]. By virtue of the well-known property of weak convergence, inequality (4.8)
remains valid for the limit function and, therefore, estimate (4.3) is valid.

Theorem 2 is proved.
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