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Abstract. In the paper we study Fredholm property of a boundary value problem in a finite domain
of a class of second-order differential equation of elliptic type in a seperable Hilbert space. Sufficient
conditions that provide regular and Fredholm solvability of the given problem, are found. These conditions
are expressed only by the coefficients. The paper shows how the regular and Fredholm solvability of the
boundary value problem are related with the norms of the intermediate derivative operators. Furthermore,
the property of the internal compactness of the homogeneous equation is proved.
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1 Introduction

Solvability of operator-differential equations and related problems originate from the
works of E. Hille, K. Iosido, T. Kato and others. These authors have mainly studied the
Cauchy problem. Further, boundary value problems and related problems have been studied
by many authors. Some of these results have found their reflection in the books of A.A.
Dezin [6], V.I. Gorbachuk and M.L. Gorbachuk [11], S.Ya. Yakubov [21] and others. In
an infinite domain, boundary value problems have been studied in the important papers of
Yu.A. Dubinsky [7], M.G. Gasymov [8 ], S.S. Mirzoev [19], A.A. Shkalikov [20], A.R.
Aliyev [4, 5], G.M. Gasymova [ 9, 10], S.S. Mirzoev, A.R. Aliyev, L.M. Rustamov [17, 18],
S.S. Mirzoev, A.R. Aliyev, G. M. Gasymova [16] and others. In an finite domain, boundary
value problems with variable coefficients have been studied very little. We can note the
works of S.S. Mirzoev with G.A.Agayeva [14, 15 ], G.A.Agayeva [1, 2, 3].

LetH be a separable Hilbert space. Assume thatC is a self-adjoint operator with domain
of definition D(C). Then for all γ ≥ 0 the domain of definition of the operator Cγ will be
a Hilbert space Hγ(γ ≥ 0) with a scalar product (x, y)γ = (Cγx,Cγy). For γ = 0 we
assume H0 = H and (x, y)0 = (x, y).
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4 On fredholm property of a periodic type boundary value problem

Denote by L2((0, 1) : H) a Hilbert space of vector –functions determined almost every-
where in (0, 1) for which

‖f‖L2((0,1):H) =

(∫ 1

0
‖f(t)‖2 dt

)1/2

.

Following the book [13], we determine the Hilbert space W 2
2 ((0, 1) : H) = {u : u′′ ∈

L2((0, 1) : H), C2u ∈ L2((0, 1) : H)} with the norm

‖u‖W 2
2 ((0,1):H) =

(∥∥u′′∥∥2
L2((0,1):H)

+
∥∥C2u

∥∥2
L2((0,1):H)

)1/2
.

We determine the subspace W 2
2,ψ((0, 1) : H) as follows

W 2
2,ψ((0, 1) : H) = {u : u′′ ∈W 2

2 ((0, 1) : H),

u(0) = eiψu(1), u′(0) = eiψu′(1), ψ ∈ R = (−∞,∞)}.
From the trace theorem it follows that W 2

2,ψ is a complete Hilbert space [13, p.41]. Note
that for ψ = 2π k (k = 0, 1, 2, ...) we obtain a subspace of periodic functions, while for
ψ = π(2k + 1) (k = 0, 1, 2, ...) we obtain a space of anti periodic functions.

Consider in H the boundary value problem

L(d/dt)u(t) = −u′′(t) + ρ(t)A2u(t) + (A1 +K1)u
′(t)

+(A2 +K2)u(t) = f(t), t ∈ (0, 1), (1.1)

u(0) = eiψu(1), u′(0) = eiψu′(1), (1.2)

where the operator coefficients of the equation (1.1) satisfy the conditions:
1) is a normal operator with a completely continuous operator inH , whose set of spectra

is contained in the angular sector

Sε = {λ : | arg λ < ε, 0 ≤ ε ≤ π/4} ;

2) ρ(t) is a scalar function defined in (0, 1), measurable and bounded, moreover 0 <
α ≤ ρ(t) ≤ β <∞, where α, β ∈ R ;

3) The operators B1 = A1A
−1 and B2 = A2A

−2 are bounded in H;
4) The operators T1 = K1A

−1 and T2 = K2A
−2 are completely continuous operators

in H .
Note that subject to the conditions 1), the operator A has an orthonormal basis system

in H , i.e. Aek = λkek (k = 1, 2, ...) 0 < |λ1| ≤ |λ2| ≤ ... ≤ |λk| < ..., moreover

(ek, ej) = δk,j =

{
0, k 6= j
1, k = j

and λk = |λk|eiϕk , ϕk ∈ Sε, k = 1, 2, ...,

A(·) =
∞∑
k=1

λk(·, ek)ek,

C(·) =
∞∑
k=1

|λk|(·, ek)ek,

U(·) =
∞∑
k=1

eiϕk(·, ek)ek, ϕk ∈ Sε, k = 1, 2, ....

In what follows, we will use the theorems on intermediate derivatives and from the trace
theorem [13 , pp. 31, 41 ], i.e.
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1. if u ∈W 2
2 ((0, 1) : H), then Cu′ ∈ L2((0, 1) : H) and

‖Cu′‖ ≤ const‖u‖W 2
2 ((0,1):H),

2. if u ∈W 2
2 ((0, 1) : H), then for any t0 ∈ [0, 1] u(t0) and u′(t0) these exists u(t0) ∈

H3/2, u′(t0) ∈ H1/2 and we have the inequality

‖u(t0)‖3/2 ≤ const ‖u‖W 2
2 ((0,1):H), 0 ≤ t0 ≤ 1

and
‖u′(t0)‖1/2 ≤ const ‖u‖W 2

2 ((0,1):H).

Definition 1.1 If for f ∈ L2((0, 1) : H) there exist u ∈W 2
2 ((0, 1) : H), then u(t) is called

a regular solution of the equation (1.1).

Definition 1.2 If for any f ∈ L2((0, 1) : H) there exists a regular solution to the equation
(1.1) satisfying the boundary conditions (1.2) in the sense of convergence

lim
t→0
‖u(t)− eiψu(1− t)‖3/2 = 0 , lim

t→+0
‖u′(t)− eiψu′(1− t)‖1/2 = 0

and we have the estimates

‖u(t)‖W 2
2 ((0,1):H) ≤ const‖f‖L2((0,1):H)

then the problem (1.1) –(1.2) is called regularly solvable.

Denote by
Lu = Pu+Ku, u ∈W 2

2,ψ((0, 1) : H), (1.3)

where
Pu = −u′′ + ρ(t)A2u+A1u

′ +A2u, u ∈W 2
2,ψ((0, 1) : H) (1.4)

and
Ku = K1u

′ +K2u, u ∈W 2
2,ψ((0, 1) : H). (1.5)

Definition 1.3 If the operator L mapping u ∈ W 2
2,ψ((0, 1) : H) to L2((0, 1) : H) is

Fredholm, we say that the problem (1.1), (1.2) is Fredholm solvable.

2 Some results

Thus, the set of spectra of the operator A is contained in the spectrum of Sε, i.e. there exists
bounded spectra e−At(t ≥ 0) generated by the operator A.

We have.

Lemma 2.1 For ϕ ∈ H3/2 the inequality

‖e−tAϕ‖W 2
2 ((0,1):H) ≤

1√
cos ε

‖ϕ‖3/2 (2.1)

holds.
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Proof. Since ϕ ∈ H3/2, then C3/2ϕ = x ∈ H . Then

‖e−tAϕ‖2W 2
2 ((0,1):H) = ‖A2e−tAϕ‖2L2((0,1):H) + ‖C2e−tAϕ‖2L2((0,1):H).

Since for y ∈ D(A2), |A2x‖ = ‖C2x‖, then

‖e−tAϕ‖2W 2
2 ((0,1):H) = 2‖C2e−tAϕ‖2L2((0,1):H) = 2‖C1/2e−tAx‖2L2((0,1):H).

Using spectral expansion of the operators A and C , we have:

‖C1/2e−tAx‖2L2((0,1):H) =

∫ 1

0
(C1/2e−tAx , C1/2e−tAx)dt =

∫ 1

0
(Ce−t(A+A

∗)x, x)dt =

=

∫ 1

0

∞∑
k=1

|λk|e−2t|λk|Reϕk |(x, ek)|2dt =
∞∑
k=1

|λk| |(x, ek)|2
1

2|λk|Reϕk
e−2|λk| cosϕkt

∣∣∣1
0
≤

≤
∞∑
k=1

|(x, ek)|2
1

2 cos ε
(1−e−2|λ1| cos ε) ≤ 1

2 cos ε
‖x‖2 =

1

2 cos ε
‖C3/2ϕ‖2 =

1

2 cos ε
‖ϕ‖23/2.

Then

‖e−tAϕ‖2W 2
2 ((0,1):H) ≤

2

2 cos ε
‖ϕ‖23/2 =

1

cos ε
‖ϕ‖23/2.

The lemma is proved .

Lemma 2.2 Let x ∈ D(A), then

Re(A∗x,Ax) ≥ cos 2ε‖Cx‖2. (2.2)

Proof. From spectral expansion of the operator A it follows that

(A∗x,Ax) = (
∞∑
k=1

λ̄k(x, ek)ek,
∞∑
p=1

λp(x, ep)ep) =
∞∑
k=1

λ̄k(x, ek)(ek, λk(x, ek)ek)

=
∞∑
k=1

λ̄2k|(x, ek)|2 =
∞∑
k=1

|λk|2e−2ϕk |(x, ek)|2 , ϕk ∈ Sε

then Re(A∗x,Ax) =
∞∑
k=1

|λk|2Re e−2ϕk |x, ek|2 ≥ cos 2ε‖Cx‖2.

The lemma is proved.
The operator P : W 2

2,ψ((0, 1) : H) → L2(R+;H) determined by the equality (1.4) are
represented in the form

P = P0 + P1,

where
P0u = −u′′(t) + ρ(t)A2u(t) , u ∈W 2

2,ψ((0, 1) : H) (2.3)

P1u = A1u
′ +A2u, u ∈W 2

2 ((0, 1) : H). (2.4)

We have
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Theorem 2.1 Let conditions 1) and 2) be fulfilled. Then for any u ∈ W 2
2,ψ((0, 1) : H) we

have the inequality ∥∥Au′∥∥
L2((0,1):H)

≤ d1(ε) ‖P0u‖L2((0,1):H) (2.5)

and ∥∥A2u
∥∥
L2((0,1):H)

≤ d0(ε) ‖P0u‖L2((0,1):H) , (2.6)

where
d1(ε) =

1

2
√
α

1

cos ε
, d0 =

1

α
.

Proof. Obviously,

‖ρ−1/2P0u‖2L2((0,1):H) = ‖ − ρ−1/2u′′ + ρ1/2u‖2L2((0,1):H) = ‖ − ρ−1/2u′′‖2L2((0,1):H)

+‖ρ1/2A2u‖2L2((0,1):H) − 2Re(ρ−1/2u′′, ρ1/2A2u) = ‖ρ−1/2u′′‖2L2((0,1):H)

+‖ρ1/2A2u‖2L2((0,1):H) −Re(u
′′, A2u)L2((0,1):H). (2.7)

On the other hand, integrating by parts and considering u ∈ W 2
2,ψ((0, 1) : H) , u(0) =

eiψu(1), u′(0) = eiψu′ we obtain

(u′′, A2u)L2((0,1):H) =

∫ 1

0
(u′′(t), A2u(t))Hdt =

∫ 1

0
(u′′(t), U2C2u(t))Hdt

= (C1/2u′(t), U2C3/u(1))|10 −
∫ 1

0
U∗Cu′(t), UCu′(t))dt = (C1/2u′(1), U2C3/2u(1))

−(C1/2u′(0), U2C3/2u(0))− (A∗u′(t), Au′(t))dt. (2.8)

Since u(0) = eiψu(1), u′(0) = eiψu′(1), then

C1/2u′(1), U2C3/2u(1))− (C1/2eiψu′(1), U2C3/2e−iψu(1)) = 0.

Then it follows from the equality (2.8) that

−(Reu′′, A2u) = (A∗u′(t), Au(t)).

Applying the inequality (2.2) from Lemma 2.2 from the equality (2.7) we obtain

‖ρ−1/2P0u‖2L2((0,1):H) ≥ ‖ρ
−1/2u′′‖2L2((0,1):H)

+‖ρ1/2A2u‖2L2((0,1):H) + 2 cos 2ε‖Cu′‖2L2(R+:H). (2.9)

It follows from inequality (2.9) that

‖ρ1/2A2u‖2L2((0,1):H) ≤ ‖ρ
−1/2P0u‖2L2((0,1):H),

then

‖A2u‖2L2((0,1):H) = ‖ρ1/2ρ−1/2A2u‖2L2((0,1):H) ≤
1

α
‖ρ−1/2P0u‖2 =

1

α2
‖P0u‖2L2((0,1):H),

i.e.
‖A2u‖L2((0,1):H) ≤

1

α
‖P0u‖|L2((0,1):H).
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Inequality (2.6) is proved. We now prove inequality (2.5).
Obviously, for u ∈W 2

2,ψ((0, 1) : H) integrating by parts, we obtain

‖Au′‖2L2((0,1):H) = ‖Cu′‖2L2((0,1):H) = (Cu′, Cu′)L2((0,1):H)

= −(u′′, C2u)L2((0,1):H) ≤ −(ρ−1/2u′′, ρ1/2C2u)L2((0,1):H)

≤ 1

2

(
‖ρ−1/2u′′‖2L2((0,1):H) + ‖ρ1/2C2u‖2L2((0,1):H)

)
. (2.10)

Using inequality (2.9) in inequality (2.10), we get

‖Au′‖2L2((0,1):H) ≤
1

2

(
‖ρ−1/2P0u‖2L2((0,1):H) − 2 cos 2ε‖Au′‖2L2((0,1):H)

)
or

(1 + cos 2ε) ‖Au′‖2L2((0,1):H) ≤
1

2
‖ρ−1/2P0u‖2L2((0,1):H),

i.e.

2 cos2 ε‖Au′‖2L2((0,1):H) ≤
1

2
(‖ρ−1/2P0u‖2L2((0,1):H).

Hence we obtain

‖Au′‖2L2((0,1):H) ≤
1

4 cos2 ε
‖ρ−1/2P0u‖2L2((0,1):H).

Hence we obtain

‖Au′‖L2((0,1):H) ≤
1

2 cos ε
‖ρ−1/2P0u‖L2((0,1):H) (2.11)

or

‖Au′‖L2((0,1):H) ≤
1

2 cos ε

1

α
‖P0u‖L2((0,1):H). (2.12)

Inequality (2.5) is also proved.
Considering the operator P0 in L2((0, 1) : H with domain of definition D(P0) =

W 2
2,ψ((0, 1) : H) we obtain that the adjoint

P0
∗u = −u′′ + ρ(t)A∗u

has the domain of definition W 2
2,ψ((0, 1) : H) and A and A∗ have the same properties, we

obtain the following corollary.

Corollary 2.1 For u ∈W 2
2,ψ((0, 1) : H) we have the inequalities∥∥A∗u′∥∥

L2((0,1):H)
≤ d1(ε) ‖L∗u‖L2((0,1):H) (2.13)

and ∥∥A∗2u∥∥
L2((0,1):H)

≤ d0(ε) ‖L∗u‖L2((0,1):H) . (2.14)
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3 Main results

At first we prove the following theorem.

Theorem 3.1 The operator L0 isomorphically maps the space W 2
2,ψ((0, 1) : H) onto the

space L2((0, 1) : H .

Proof. From the inequalities (2.5) and from (2.13) it follows KerP0 = {0} and KerP∗0 =
{0}.

Indeed, if Pu = 0, then from inequality (2.5) it follows that A2u = 0, i.e. u = 0
since KerP ∗0 = {0}, then ImP is everywhere dense in L2(R : H). On the other hand, for
u ∈ D(P )

‖P0u‖L2((0,1):H) = ‖ρ1/2P0u‖L2((0,1):H)

≤ β1/2P0u‖2L2((0,1):H) ≤ β
1/22(‖ρ−1/2u′′‖2L2((0,1):H))

+‖ρ1/2A2u‖2L2((0,1):H)) ≤ const‖u‖
2
W 2

2 ((0,1):H),

i.e. P0 is a continuous operator . On the other hand

‖ρ1/2P0u‖2L2((0,1):H) ≥ ‖ρ
1/2u′′‖2L2((0,1):H) + ‖ρ1/2A2u‖2L2((0,1):H)

≥ const‖u‖2W 2
2 ((0,1):H) ≥ const‖u‖

2
L2((0,1):H),

then
‖P0u‖2L2((0,1):H) = ‖ρ1/2ρ−1/2P0u‖L2((0,1):H)

≥ α‖ρ−1/2P0u‖2L2((0,1):H)) ≥ const‖u|L2((0,1):H)

Thus, there exists P−10 and it is bounded.

The theorem is proved.

Theorem 3.2 Let conditions 1)-4) be fulfilled and we have the inequality

q =
1

2
√
α

1

cos ε
‖B1 + T1‖

1

α
‖B2 + T2‖ < 1. (3.1)

Then the problem (1.1)-(1.2) is regularly solvable.

Proof. Let’s write the problem (1.1)-(1.2) as an equation Lu = f , where u ∈W 2
2,ψ((0, 1) :

H),f ∈ L2((0, 1) : H while Lu = P0u+ P1u+Ku, where P0u = −u′′ + ρ(t)u, P1u =
A1u

′ +A2u, Ku = K1u
′ +K2u.

Since the operator implements isomorphism between the spaces W 2
2,ψ((0, 1) : H) and

L2((0, 1) : H , then for any w ∈ L2((0, 1) : H there exists u ∈ W 2
2,ψ((0, 1) : H), where

Lu = w. Then from the equation Lu = f we obtain the equation

w + (P1P
−1
0 +KP−10 )w = f.

In the space L2((0, 1) : H , we estimate the norms of the operator P1P
−1
0 +KP−10

‖P1P
−1
0 +KP−10 ‖L2((0,1):H) = ‖P1u+Ku‖L2((0,1):H)

≤ ‖(A1 +K1)A
−1Au′‖L2((0,1):H) + ‖(A2 +K2)A

−2A2u‖L2((0,1):H)

≤ ‖B1 + T1‖ ‖Au′‖L2((0,1):H) + ‖B2 + T21‖ ‖A2u‖L2((0,1):H). (3.2)



10 On fredholm property of a periodic type boundary value problem

Taking into account the inequalities (2.11) and (2.12) in the inequality (3.2), we get

‖P1P
−1
0 +KP−10 w‖L2((0,1):H) ≤ ‖(

1

2
√
α

1

cos ε
‖B1

+T1‖
1

α
‖B2 + T2‖)‖P0u‖L2((0,1):H) = q‖w‖L2((0,1):H).

Since q < 1, the operator E + (P1 +K)P−10 is invertible in the space L2((0, 1) : H , then

w = (E + (P1 +K)P−10 )−1f

while
u = P−10 (E + (P1 +K)P−10 )f.

Hence it follows that
‖u‖W 2

2 ((0,1):H) ≤ cons‖f‖L2((0,1):H).

The theorem is proved.
Note that in proving the theorem we did not use complete continuity of the operators

T1 = K1A
−1 and T ′2 = K2A

−2, we used their boundedness in H .

Corollary 3.1 If the conditions 1)-3) are fulfilled, and

q1 =
1

2
√
α

1

cos ε
‖B1‖

1

α
‖B2‖ < 1 (3.3)

where Bj = AjA
−j (j = 0, 2), the problem (1.1), (1.2) is regularly solvable for T1 =

0, T2 = 0.

Let us now prove a theorem on the Fredholm solvability of problem (1.1)-(1.2).

Theorem 3.3 Let the conditions 1)-4) and inequality (3.3) be fulfilled. Then problem (1.1)-
(1.2) is Fredholm solvable.

Proof. It suffices to prove the operator L = P + K is a Fredholm operator, where the
operators P and K are determined from the equalities (1.4), (1.5).

Corollary 3.1 yields that the operator P isomorphically maps the spaceW 2
2,ψ((0, 1) : H)

onto the space L2((0, 1) : H . At first we show that for rather small ε > 0 the following
inequality is fulfilled.

‖Ku‖L2((0,1):H) ≤ ε‖u‖W 2
2 ((0,1):H) + η(ε)‖u‖L2((0,1):H). (3.4)

Since
Ku = K1u

′ +K2u = K1A
−1u′ +K2A

−2u = T1Au
′ + T2A

2u,

where T1 8 T2 are completely continuous operators in H . Therefore, they can be repre-
sented in the form of a finite-dimensional operator of the poles of the operators with rather
small norms: i.e.

K1 = S1 + F1, K2 = S2 + F2

moreover S1(·) =
m∑
k=1

(·, ϕ(1)
k )ψ1

k , S2(·) =
p∑
j=1

(·, ϕ(1)
k ψ

(1)
k , ϕ1

k, ψ
1
k, ϕ

2
j , ψ

2
j ∈ H , (k =

1, ...,m, j = 1, .., p), a ‖F1‖ < ε and ‖F2‖ < ε. Then obviously it follows from the
theorem on intermediate derivatives, that

‖F1(Cu
′)‖L2((0,1):H) ≤ ε‖Cu′‖L2((0,1):H ≤ ε‖u‖

2
W 2

2 ((0,1):H),
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‖F2(C
2u)‖L2((0,1):H) ≤ ε‖C2u‖L2((0,1):H ≤ ε‖u‖

2
W 2

2 ((0,1):H).

Therefore, we must prove the inequality (3.4) for the operators S1 and S2. Since S1 and
S2 is the sum of the finite number of finite -dimensional operators of the form T0 (·) =
(·, ϕ)ψ,ϕ, ψ ∈ H , we prove inequality (3.4) for the operators T0.
Since

ϕ =
∞∑
k=1

(ϕ, ek)ek =
N∑
k=1

(· , ϕ)ek +
∞∑
N+1

(· , ϕ)ek

we choose N rather large so that ‖ϕ̃‖ =
∑∞

k=1(· , ϕ)ek‖ < ε. Thus

ϕ =
N∑
k=1

(ϕ, ek) + ϕ̃ , ‖ϕ̃‖ < ε.

Then, obviously it follows from the theorem on intermediate derivatives that

‖Au′, ϕ̃)ψ‖L2((0,1):H) ≤ ‖Au′‖L2((0,1):H)‖ϕ̃‖ ‖ψ‖

≤ ‖Cu′‖ ‖ϕ̃‖ ‖ψ‖ ≤ ε1‖u‖W 2
2 ((0,1):H). (3.5)

In a similar way, we have

‖A2u, ϕ̃)ψ‖L2((0,1):H) ≤ ε1‖u‖W 2
2 ((0,1):H).

On the other hand,

‖S1(Au′)‖L2((0,1):H) =

h∑
k=1

((Au′, ek)ek, ek)ψ)L2((0,1):H)

= ‖
h∑
k=1

((u′, λ̄kek)ek, ek)ψ)L2((0,1):H) ≤ |λN |
h∑
k=1

‖u′‖L2((0,1):H)‖ψ‖.

Since A−1 is a completely continuous operator, then the imbedding W 2
2 ((0, 1) : H) →

W 1
2 ((0, 1) : H) → L2((0, 1) : H) is compact in finite interval (0,1), applying theorem

(16.4 p. 126 from the book [13] we obtain

‖u‖W 1
2 ((0,1):H) ≤ ε‖u‖W 2

2 ((0,1):H) + η(ε)‖u‖L2((0,1):H).

Hence it follows that

‖u′‖L2((0,1):H) ≤ ε‖u‖W 2
2 ((0,1):H) + η(ε)‖u‖L2((0,1):H),

i.e.
‖S1(Au′)‖L2((0,1):H) ≤ ε‖u‖W 2

2 ((0,1):H) + η(ε)‖u‖L2((0,1):H). (3.6)

In a similar way we have

‖S2(A2u)‖L2((0,1):H) ≤ ε‖u‖W 2
2 ((0,1):H) + η(ε)‖u‖L2((0,1):H). (3.7)

It follows from the inequality (3.7) that for ε > 0 the inequality (3.4) is valid. We now prove
that the operator T is a compact operator acting from W 2

2 ((0, 1) : H) to L2((0, 1) : H).
Let M > 0 while

QM =
{
u : u ∈W 2

2,ψ((0, 1) : H), ‖u‖W 2
2 ((0,1):H) ≤M

}
.
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Since the imbeddings W 2
2 ((0, 1) : H)→ L2((0, 1) : H), then there exists such a sequence

un ∈ QM (‖u‖W 2
2 ((0,1):H) ≤ M) that un converges in L2((0, 1) : H). Then, using the

inequality (3.4), we have

‖Kun −Kum‖L2((0,1):H) ≤ ε‖un − um‖W 2
2 ((0,1):H) + η(ε)‖un − um‖|L2((0,1):H)

≤ ε(‖un‖|W 2
2 ((0,1):H) + ‖um‖|W 2

2 ((0,1):H) + η(ε))‖un − um‖|L2((0,1):H)

≤ |2εM + η(ε)‖un − um‖L2((0,1):H).

Now, choosing rather large n and m, we obtain

‖Kun −Kum‖L2((0,1):H) ≤ δ,

where δ is a rather small number. Thus, the operator K is a compact operator acting from
W 2

2 ((0, 1) : H) to L2((0, 1) : H).
On the other hand,

Lu = Pu+Ku = P (E + P−1K)u

the operatorE+P−1K is Fredholm, the operator P isomorphic, the operatorL is Fredholm,
and the solution of the equation Lu = f satisfies the estimates

‖u‖W 2
2 ((0,1):H) ≤ const‖f‖L2((0,1):H).

The theorem is proved.
Acknowledgements: The author expresses her gratitude to Prof. S.S. Mirzoev for valu-

able discussions.
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