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Abstract. The paper considers a perturbed system of exponents Eλ ≡ 1 ∪
{
e±iλnt

}
n∈N

, where the

sequence {λn} is defined by the expression λn = m
√
|Pm (n)|, and Pm (x) = xm + am−1x

m−1 +

... + a0 is a polynomial of the m-th degree with real coefficients. The basicity problem of this system in
rearrangement invariant space X (−π, π) over the interval (−π, π) is studied. A sufficient condition for
the system Eλ to be a basis in X (−π, π) is found depending on m, the coefficient am−1, and on the Boyd
indices αX and βX of the space X (−π, π). Some special cases of the space X (−π, π) are considered.
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1 Introduction

Consider the following perturbed system of exponents

Eλ ≡ 1 ∪
{
e±iλnt

}
n∈N

,

where λn = m
√
|Pm (n)|, Pm (x) = xm+am−1x

m−1 + ...+a0− is a polynomial of them-
th degree with real coefficients . In connection with both theoretical and practical points of
view, interest in studying the basis properties (completeness, minimality, basicity and etc.)
of a system of the formEλ in various functional spaces has always been very high and is not
weakening at the present time. This direction is associated with the names of very famous
mathematicians such as Paley-Wiener [28], N. Levinson [19], M.I. Kadets [21] and others.
In the case when λn = n + α sign n, n ∈ Z, the criterion for the basicity of the system
Eλ in Lp (−π, π) , 1 < p < +∞ , was found by A.M. Sedletsky [31] with respect to the
real parameter α ∈ R. For the complex case of the parameter α this result was carried over
by G.G. Devdariani [15,16]. Another method for establishing the basicity of the system
Eλ, in Lp (−π, π), when λn = n + α sign n, n ∈ Z, was proposed by E.I. Moiseev [23,
24] and he also found a criterion for the basicity of a system of sines and cosines. Further
development of this method belongs to B.T. Bilalov [4–9]. In the work of S.R. Sadigova
and A.E. Guliyeva [29] established the basicity of the same system of exponents in the
weighted Lebesgue space Lp;ν (−π, π), 1 < p < +∞, with a weight function ν (·) from
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the Mackenhoupt class Ap (−π, π). The criterion for this system to be a basis in a Morrey-
type space was found by B.T. Bilalov [10,11]. A similar result for the Lebesgue space with
a variable summability exponent was obtained in [12], the weighted case of the space was
considered in [25,26]. In [27], a sufficient condition for the basicity of the system Eλ in
Lebesgue spaces with a variable summability exponent is found. Similar problems have
been also studied in [2,17,18,30].

The present paper considers a perturbed system of exponents Eλ ≡ 1 ∪
{
e±iλnt

}
n∈N ,

where the sequence {λn} is defined by the expression λn = m
√
|Pm (n)|, and Pm (x) =

xm + am−1x
m−1 + ...+ a0−is a polynomial of the mth degree with real coefficients. The

basicity problem of this system in rearrangement invariant spaceX (−π, π) over the interval
(−π, π) is studied. A sufficient condition for the system Eλ to be a basis in X (−π, π) is
found depending on m, the coefficient am−1, and on the Boyd indices αX and βX of the
space X (−π, π). Some special cases of the space X (−π, π) are considered.

2 Auxiliary facts

First, we give the following standard notation used in the article.
N− will be a set of all positive integers; Z+ = {0}∪N ;Z− will be a set of all integers;

C will stand for the field of complex numbers; L [·]−will be a linear span; M̄−will be a
closure of the set M ; KerT− will be a kernel of the operator T ; RT−will be a range of
the operator T ; [X]− is an algebra of bounded operators in X; dimM− dimension of M ;
+̇−is a direct sum; X∗−is a dual space to X; T ∗ is conjugate to T operator; X/M−is a
quotient space of a space X in the subspace M ; B-space-is a Banach space ; ∃ !− there
exists a unique; p′ : 1

p + 1
p′ = 1−is the conjugate number to p; γ is a unit circle in C.

We will need some concepts and facts from the basis theory.

Definition 2.1 The system {x+n ;x−n }n∈N ⊂ X is called a double basis (or simply a basis)
in the B-space X , if ∀x ∈ X; ∃ ! {λ+n ;λ−n }n∈N ⊂ C:∥∥∥∥∥

n1∑
k=1

λ+k x
+
k +

n2∑
k=1

λ−k x
−
k − x

∥∥∥∥∥
X

→ 0 , n1;n2 →∞.

We also need some concepts and facts from the theory of close bases.

Definition 2.2 The systems {ϕn}n∈N and {ψn}n∈N ⊂ X in B-space X are said to be
p-close if ∑

n

‖ϕn − ψn‖pX < +∞.

Let us define the concept of a p-Bessel system.

Definition 2.3 A minimal system {xn}n∈N ⊂ X in a B-space X with conjugate system
{x∗n}n∈N ⊂ X∗ is called p-Besselian if

(∑
n

|x∗n (f)|p
) 1

p

≤M ‖f‖X , ∀f ∈ X.

The following theorem is true.
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Theorem 2.1 ([14]) Let p-Besselian system {xn}n∈N ⊂ X form a basis for B-space X
and the system {yn}n∈N ⊂ X be a p′-close to {xn}n∈N . Then the following properties of
the system {yn}n∈N ⊂ X in X are equivalent: i) {yn}n∈N is complete; ii) {yn}n∈N is
minimal; iii) {yn}n∈N ω-linearly independent; iv) {yn}n∈N forms a basis isomorphic to
{xn}n∈N .

Let us recall the definition of ω-linear independence.

Definition 2.4 The system {xn}n∈N ⊂ X is called ω-linearly independent in B-space X
if it follows from

∑∞
n=1 λnxn = 0 that λn = 0, ∀n ∈ N .

More details of these and other facts can be found, for example, from the monograph
[14].

We also accept the following

Definition 2.5 A system {xn}n∈N ⊂ X in B-spaces X is called defective if, after adding
to it and eliminating a finite number of elements from it, it becomes complete and minimal
in X .

We will need the following theorem from the monograph [27, p. 129].

Theorem 2.2 ([27]) The system of exponents
{
eiλnt

}
is complete in C [a, b] if and only if

its closed linear span contains on other exponential function eiλt.

We will need some concepts and facts from the theory of Banach function spaces (see
e.g. [3,20,22]).

Let (R;µ) be a measure space. Let M+ be the cone of µ-measurable functions on R
whose values lie in [0,+∞]. The characteristic function of a µ-measurable subset E of R
denote by χE .

Definition 2.6 A mapping ρ : M+ → [0,+∞] is called a Banach function norm (or simply
a function norm) if, for all f, g, fn, n ∈ N, in M+, for all constants a ≥ 0 and for all µ-
measurable subsets E ⊂ R, the following properties hold:

(P1) ρ (f) = 0⇔ f = 0 µ-a.e.; ρ (af) = aρ (f) ; ρ (f + g) ≤ ρ (f) + ρ (g);
(P2) 0 ≤ g ≤ f µ-a.e.⇒ ρ (g) ≤ ρ (f);
(P3) 0 ≤ fn ↑ f µ-a.e.⇒ ρ (fn) ↑ ρ (f);
(P4) µ (E) < +∞⇒ ρ (χE) < +∞;
(P5) µ (E) < +∞ ⇒

∫
E fdµ ≤ CEρ (f), for some constant CE : 0 < CE < +∞,

depending on E and ρ, but independent of f .

Let M denote the collection of all extended scalar-valued (real or complex) µ-measurable
functions and M0 ⊂M the subclass of functions that are finite µ-a.e. .

Definition 2.7 Let ρ be a function norm. The collection X = X (ρ) of all functions f in
M for which ρ (|f |) < +∞, is called a Banach function space. For each f ∈ X , define
‖f‖X = ρ (|f |).

It is valid the following

Theorem 2.3 Let ρ be a function norm and let X = X (ρ) and ‖·‖X be as above. Then
under the natural vector space operations, (X; ‖·‖X) is a normed linear space for which
the inclusions

Ms ⊂ X ⊂M0,

hold, where Ms is the set of µ-simple functions. In particular, if fn → f in X , then fn →
f in measure on sets of finite measure, and hence some subsequence converges point wise
µ-a.e. to f .
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A space X equipped with the norm ‖f‖X = ρ (|f |) is called a Banach function space.
Let

ρ′ (g) = sup

{∫
γ
f (τ) g (τ) |dt| : f ∈M+; ρ (f) ≤ 1

}
,∀g ∈M+.

A space
X ′ =

{
g ∈M : ρ′ (|g|) < +∞

}
,

is called an associate space (Kothe dual) of X .
The functions f ; g ∈M0 are called equimeasurable if

|{τ ∈ R : |f (τ)| > λ}| = |{τ ∈ R : |g (τ)| > λ}| , ∀λ ≥ 0.

Banach function norm ρ : M+ → [0,∞] is called rearrangement invariant if for arbitrary
equimeasurable functions f ; g ∈M+

0 the relation ρ (f) = ρ (g) holds. In this case, Banach
function space X with the norm ‖ · ‖X = ρ (| · |) is said to be rearrangement invariant
function space (r.i.s. for short). Classical Lebesgue, Orlicz, Lorentz, Lorentcz–Orlicz spaces
are r.i.s.

Let αX and βX be upper and lower Boyd indices for the spaceX (regarding the Boyd in-
dices see e.g. [3,20,22]). To obtain our main results, we will significantly use the following
result of [3] (see also [13]).

Theorem 2.4 For every p and q such that

1 ≤ q < 1

βX
≤ 1

αX
< p ≤ ∞,

we have
Lp ⊂ X ⊂ Lq,

with the inclusion maps being continuous.

We will use some results related to Fourier series in r.i.s. Let’s state some relevant con-
cepts and notations.

Definition 2.8 Let X be a Banach function space. The closure in Xof the set of simple
functions Ms is denoted by Xb.

Recall the definition of resonant space

Definition 2.9 Suppose f (·) belongs to M0. The decreasing rearrangement of f (·) is the
function f∗ defined on [0,∞) by

f∗ (t) = inf {λ : µf (λ) ≤ t} , t ≥ 0,

where µf (λ) = µ {t : |f (t)| > λ} , λ ≥ 0 is a distribution function of f (·).

It is valid the following well known

Theorem 2.5 (Hardy, Littlewood). If f (·) and g (·) belong to M0, then∫
R
|f g| dµ ≤

∫ ∞
0

f∗ (s) g∗ (s) ds. (2.1)

An immediate consequence of the Hardy-Littlewood inequality (2.1) is that∫
M
|f g̃| dµ ≤

∫ ∞
0

f∗ (t) g∗ (t) dt, (2.2)

for every function g̃ on M equimeasurable with g.
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Definition 2.10 If the supremum on g̃ of the integrals on the left of (2.2) coincide with
the value on the right, such measure spaces is called resonant. If the supremum is in fact
attained, then the measure space will be called strongly resonant.

In the sequel we will consider the case R = γ and µ will be Lebesgue measure (linear)
on γ. Moreover, we will identify the circle γ and the segment [−π, π) by eit : [−π, π)↔ γ,
and we will identify the function f : γ → C with f : [−π, π)→ C by f (t) = f

(
eit
)
.

We denote by Ts the translation operator (Tsf) (t) = f
(
ei(s+t)

)
, −π < s; t ≤ π and

by ωX (f, · )the X -modulus of continuity of f :

ωX (f ; δ) = sup
|s|≤δ
‖Tsf − f‖X , 0 ≤ δ ≤ π.

Definition 2.11 Let X be a rearrangement-invariant Banach space (r.i.s.) over a resonant
space (R;µ). For each finite value of t belonging to the range of µ, let E be a subset of R
with µ (E) = t and let

ϕX (t) = ‖χE‖X .

The function ϕX is called the fundamental function of X .
If f belongs to L1 (γ), then for each integer n the n-th Fourier coefficient of f is defined

by

f̂ (n) =
1

2π

∫ π

−π
f
(
eiθ
)
e−inθdθ , n ∈ Z.

So called the “multiplier” operator m is defined initially on trigonometric polynomials
P
(
eiθ
)

=
∑r

n=−r ane
inθ by mP

(
eiθ
)

=
∑r

n=−r −isignn aneinθ.
So, it is evidently that (

∧
mP

)
(n) =

{
−isignn an, ∀n = −r, r,
0, n 6= −r, r ,

for arbitrary trigonometric polynomial P
(
eiθ
)

=
∑r

n=−r ane
inθ .

Let S′ns be partial sums of the Fourier series of the function f :

Sn (f) =
∑
|k|≤n

f̂ (k) eikt.

In the sequel we also need the following
In the sequel we also need the following

Theorem 2.6 SupposeX is a r.i.s. on γ whose fundamental function satisfies ϕX (+0) = 0.
Then the following conditions are equivalent:

i) Fourier series converge in norm in Xb;
ii) the partial-sum operators Sn are uniformly bounded on Xb;

iii) the multiplier operator m is bounded on Xb;
iv) the conjugate-function operator is bounded on Xb;
v) the Calderon operator

S f∗ (t) =

∫ 1

0
f∗ (s) min

(
1,
s

t

) ds
s
,

is bounded on (Xb)
−−the Luxemburg representation of Xb on the interval [0, 1].
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The conjugate-function operatorf̃ is defined by

f̃
(
eiθ
)

=
1

2π
lim
ε→+0

∫
ε<|s|≤π

f
(
ei(θ−s)

)
cot

s

2
ds,∀θ : −π < θ ≤ π.

If any one of these conditions holds, then mf = f̃ a.e. for ∀f ∈ Xb.

Corollary 2.1 Let X be a separable r.i.s. on [−π, π]. Fourier series converge in norm in X
if and only if the Boyd indices of X satisfy 0 < αX ;βX < 1.

We will need also the following lemma from the work [3].

Lemma 2.1 ([3]) Let X = X (ρ) be a Banach function space and suppose fn ∈ X , n ∈
N .

i) If 0 ≤ fn ↑ f µ-a.e., then either f /∈ X and ‖fn‖X ↑ +∞, or f ∈ X and ‖fn‖X ↑
‖f‖X .

ii) (Fatous lemma) If fn → f µ-a.e., and if lim
n→∞

inf ‖fn‖X < +∞, then f ∈ X and

‖f‖X ≤ lim
n→∞

inf ‖fn‖X .

More details on these results can be found, e.g. in the monographs [3,20,22].
To obtain the main results, we need some results from the work [13].

Lemma 2.2 LetX (−π, π) be a r.i.s. with Boyd indicesαX ;βX ∈ (0, 1). ThenXb (−π, π) =

Xs (−π, π) = C∞ [−π, π] (the closure is taken in the norm X (−π, π)).

So, consider the following system of exponents

Eα ≡
{
ei(n−α signn)t

}
n∈Z

,

where α ∈ C is some complex parameter. In [13] the following theorem was proved.

Theorem 2.7 ([13]) Let X (−π, π) be a r.i.s. with Boyd indices αX ;βX ∈ (0, 1). If the
system Eα forms a basis for Xb (−π, π) , then it is isomorphic in Xb (−π, π) to the system
Eλ ≡ 1 ∪

{
e±iλnt

}
n∈N , and the isomorphism is given by the operator

T
[
eint
]

= e−iαteint , ∀n ∈ Z+;

T
[
e−int

]
= eiαte−int , ∀n ∈ N.

To present further results, we also need the following characterization of the space
X (−π, π):

γX = inf {α ∈ R : |t|α ∈ X (−π, π)} .
The set of all weight functions on (−π, π) will be denoted by W (−π, π), i.e. w ∈

W (−π, π), means that w (·) : [−π, π]→ R̄+ = [0,+∞]− is a measurable (according to
Lebesgue) function and

∣∣w−1 {0,+∞}∣∣ = 0. Denote by K the following singular Cauchy
operator

K f =
1

2πi

∫
γ

f (ξ) dξ

ξ − τ
, τ ∈ γ.

Assume
AX ≡ {w ∈W (−π, π) : K ∈ [Xw (−π, π)] } ,

where Xw (−π, π) is a weighted space

Xw (−π, π) ≡ {f : fw ∈ X (−π, π)} ,
with the norm

‖f‖Xw
= ‖f w‖X .

Thus, in [13] the following theorem was proved.
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Theorem 2.8 ([13]) Let X (−π, π) be a r.i.s. with Boyd indices αX ;βX ∈ (0, 1) and let
the following conditions be satisfied

γX′ < 2Reα < αX ; w0 ∈ AX ,

where w0 (t) =
∣∣t2 − π2∣∣2Reα . Then the system Eα forms a basis for Xb (−π, π) .

In the case where the Boyd indices coincide, i.e. αX = βX , then, as established in [13]
γX = αX ⇒ γX′ = αX′ , holds. In this case, the result of this theorem is strengthened as
follows.

Theorem 2.9 ([13]) Let X (−π, π) be a r.i.s. with Boyd indices αX = βX ∈ (0, 1) and
2Reα+αX /∈ Z. Then the systemEα forms a basis forXb (−π, π) if and only if [2Reα+ αX ] =
0. For [2Reα+ αX ] < 0 this system is not complete, but is minimal in Xb (−π, π); for
[2Reα+ αX ] > 0 it is complete, but is not minimal in Xb, moreover, its defect is equal to
d (Eα) = | [2Reα+ αX ] |.

Before turning to the main results, we prove the following

Theorem 2.10 LetX (−π, π) be a r.i.s. with Boyd indices αX ;βX ∈ (0, 1). The system Eλ
is complete in Xb (−π, π) if and only if L [Eλ] contains an exponent eiλt different from Eλ.

Proof. The necessity is obvious. Let us prove the sufficiency. Let(
eiλt
)
/∈ Eλ &

(
eiλt
)
∈ L [Eλ].

From the axioms of the norm for a Banach function space it immediately follows

‖f g‖X ≤ ‖f‖L∞(−π,π) ‖g‖X .

From this inequality and from
{
eiλt
}
∈ L [Eλ] it follows that 1 ∈ L

[ {
ei(λn−λ)t

}
n∈Z

]
.

Further, taking into account that |f (t)| ≤ |g (t)|, a.e. t ∈ (−π, π)⇒ ‖f‖X ≤ ‖g‖, we have∥∥∥∥∥
∫ x

0

(
1−

∑
n

ane
i(λn−λ)t

)
dt

∥∥∥∥∥
X

=

∥∥∥∥∥x−∑
n

bne
i(λn−λ)x +

∑
n

bn

∥∥∥∥∥
X

,

where bn = an
i(λn−λ) . It is clear that

∑
n bn ∈ L

[ {
ei(λn−λ)t

}
n∈Z

]
. We also have∥∥∥∥∥

∫ x

0

(
1−

∑
n

ane
i(λn−λ)t

)
dt

∥∥∥∥∥
X

≤ c

∥∥∥∥∥
∫ π

−π

∣∣∣∣∣eiλt −∑
n

ane
i λnt

∣∣∣∣∣ dt
∥∥∥∥∥
X

≤

≤ c

∥∥∥∥∥eiλt −∑
n

ane
i λnt

∥∥∥∥∥
L1(−π,π)

≤ c

∥∥∥∥∥eiλt −∑
n

ane
i λnt

∥∥∥∥∥
X

.

It follows directly from these relations that x ∈ L
[ {
ei(λn−λ)t

}
n∈Z

]
. Continuing this pro-

cess, as a result we get that

L
[
{xn}n∈Z+

]
⊂ L

[ {
ei(λn−λ)t

}
n∈Z

]
.
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Since the polynomials are dense in C [−π, π] it follows that

C [−π, π] ⊂ L
[ {
ei(λn−λ)t

}
n∈Z

]
.

Then, paying attention to Lemma 2.2, hence we obtain that

L
[ {
ei(λn−λ)t

}
n∈Z

]
≡ Xb [−π, π] .

Theorem is proved.

3 Main results

So, consider the system of exponents

Eλ ≡ 1 ∪
{
e±iλnt

}
n∈N

,

where λn = m
√
|Pm (n)|, Pm (x) = xm+am−1x

m−1+...+a0 is am-th degree polynomial.
We will consider the case when the coefficients ak, k = 0,m− 1, are real. As shown in
[27], the following asymptotic formula holds

λn = n+
am−1
m

+O

(
1

n

)
, n→∞.

Assume µn = n+ am−1

m , n ∈ N . We have∣∣∣eiλnt − eiµnt∣∣∣ ≤ 2π |λn − µn| = O

(
1

n

)
, n→∞.

Hence it immediately follows

Lemma 3.1 The system Eλ is r-close in X (−π, π) to the system of exponent

Eµ = 1 ∪
{
e±iµnt

}
n∈N ,

for ∀r > 1.

The validity of the lemma follows from the following obvious relation∑
n

∥∥∥eiλnt − eiµnt∥∥∥r
X
≤ c

∑
n

∥∥∥∥O( 1

n

)∥∥∥∥r
X

≤ c
∑
n

1

nr
< +∞.

Denote α = −am−1

m . Consequently, µn = n − α. Let us assume that all the conditions of
Theorem 2.8 are satisfied, i.e.

αX ;βX ∈ (0, 1) ; γX′ < 2Reα < αX ; w0 ∈ AX .

Then by the results of this theorem the system Eα forms a basis for Xb (−π, π). By Theo-
rem 2.7, it is isomorphic to the classical system E ≡

{
eint
}
n∈Z in Xb (−π, π). Consider

the following functionals

e∗n (f) =
1

2π

∫ π

−π
f (t) e−intdt , n ∈ Z.
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We have
|e∗n (f)| ≤ c ‖f‖L1(−π,π) ≤ c ‖f‖X , ∀n ∈ Z,

where c is a constant, independent of f and n. Hence it follows that {e∗n} ⊂ X∗ (−π, π),
and moreover γ = sup

n
‖e∗n‖ < +∞. Since the system E forms a basis forXb (−π, π), then

it is clear that
1 ≤

∥∥eint∥∥
X
‖e∗n‖ ≤ const < +∞ , ∀n ∈ Z,

holds. It is quite obvious that
∥∥eint∥∥

X
≡ ‖1‖X ≡ const > 0 , ∀n ∈ Z. Then from the

previous relation we get

0 ≤ δ ≤ ‖e∗n‖ ≤ γ < +∞ , ∀n ∈ Z.

Let us show that for some r ∈ (1, 2], the system Eµ is r′-Besselian in X (−π, π) (1r +
1
r′ = 1). Let us first establish this fact for the system E. As αX ;βX ∈ (0, 1), then it is clear
that ∃r; p ∈ (1,+∞), for which

1 < r <
1

βX
≤ 1

αX
< p < +∞.

Then by Theorem 2.4 we have continuous embeddingsLp (−π, π) ⊂ X (−π, π)⊂ Lr (−π, π).
Therefore, the inequality

‖f‖Lr(−π,π) ≤ c ‖f‖X , ∀f ∈ X (−π, π) ,

holds. It is quite obvious that we can assume that r belongs to the interval (1, 2], i.e.1 <
r ≤ 2. Then, according to the classical Hausdorff-Young theorem, we have(∑

n

|e∗n (f)|r
′

) 1
r′

≤ cr ‖f‖Lr(−π,π) ≤ c ‖f‖X , ∀f ∈ X (−π, π) .

This implies that the system of exponent E is r′-Besselian in X (−π, π).
Now let us show that the systemEµ is also r′-Besselian inX (−π, π). So, the systemEµ

forms a basis for X (−π, π) and therefore it is isomorphic to the system E in X (−π, π).
Denote by

{
e∗α;n

}
n∈Z the system biorthogonal to Eµ. Let T ∈ [X (−π, π)] be an auto-

morphism such that T [Eµ] = E, i.e. T transforms the system Eµ to the system E. We
have

δnk = e∗n (ek) = e∗n (T [eα;k]) = (T ∗e∗n) (eα;k) , ∀n, k ∈ Z,
where

eα;0 ≡ 1; eα;n = ei(n−α signn)t, ∀n 6= 0.

Hence, from the uniqueness of the biorthogonal system to the basis, we obtain

T ∗e∗n = e∗α;n , ∀n ∈ Z.

Consequently(∑
n

∣∣e∗α;n (f)
∣∣r′) 1

r′

=

(∑
n

|T ∗e∗n (f)|r
′

) 1
r′

=

(∑
n

|e∗n (Tf)|r
′

) 1
r′

≤ c ‖T f‖X ≤

≤ c ‖T‖[X] ‖f‖X , ∀f ∈ X (−π, π) .

This implies that the system Eµ is also r′-Besselian in X (−π, π). As a result, we obtain
that all the conditions of Theorem 2.1 [14] are satisfied with respect to the systems Eλ and
Eµ, and hence the following theorem is true
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Theorem 3.1 Let X (−π, π) be a r.i.s. with Boyd indices αX ;βX ∈ (0, 1). Let the condi-
tions

γX′ < −2α < αX ; w0 ∈ AX ,

be fulfilled, where w0 (t) =
∣∣t2 − π2∣∣2α, α = −am−1

m .
Then, with respect to the systemEλ the following properties are equivalent inX (−π, π):
i) Eλ is complete;
ii) Eλ is minimal;
iii) Eλ is ω-linearly independent;
iv) Eλ forms a basis isomorphic to Eµ.

In what follows, we will assume that the sequence {λn} satisfies the condition

λn 6= 0 , ∀n 6= 0 &λi 6= λj , i 6= j. (3.1)

Let us assume that all the conditions of Theorem 3.1 are satisfied. Consequently, with re-
spect to the systems Eλ and Eµ all the conditions of Theorem 2.1 [14] are true, and as a
result, the system Eλ forms a defect basis for X (−π, π), and there exists a Fredholm oper-
ator F ∈ [X (−π, π)], which transfers the system Eλ to the system Eµ, i.e. F [Eλ] = Eµ.
It is easy to see that for sufficiently large n0 ∈ N , the system Eλ;n0 ≡

{
e±iλnt

}
n>n0

is
minimal in X (−π, π), and hence its defect is 2n0 + 1. Then it follows directly from The-
orem 2.10 that eiλkt /∈ L [Eλ;n0 ] , ∀k : |k| ≤ n0. Therefore, the system

{
eiλkt

}
∪ Eλ;n0

is minimal in X (−π, π). Continuing this process, we finally obtain that if condition (3.1)
is satisfied, then the system Eλ is minimal in X (−π, π). Applying Theorem 3.1 to Eλ we
see that it forms a basis in X (−π, π) isomorphic to Eµ. So, the following main theorem is
true.

Theorem 3.2 LetX (−π, π) be a r.i.s. with Boyd indicesαX ;βX ∈ (0, 1). Let the following
conditions be satisfied for the sequence {λn}

γX′ < −2α < αX ; w0 ∈ AX ;

λn 6= 0 , ∀n 6= 0 &λi 6= λj , i 6= j.

Then the system Eλ forms a basis for X (−π, π), isomorphic to the classical system of
exponents E.

Let us consider the case when the Boyd indices coincide, i.e. . αX = βX . Whereas, as
follows from the results of [1], γX = −αX ⇒ γX′ = −αX′ holds. Taking into account that
αX + αX′ = 1 (since αX ;βX ∈ (0, 1)), then with respect to the parameter α we obtain the
condition

−αX′ < −2α < 1− αX′ ; w0 ∈ AX .

And now as the space X (−π, π) we take X (−π, π) ≡ Lp (−π, π), 1 < p < +∞. In this
case, as is known, the Boyd indices are equal.

αX = βX =
1

p
⇒ αX′ =

1

p′
⇒ − 1

p′
< −2α < 1− 1

p′
⇔ −1

p
< 2α < 1− 1

p
.

It is well known that this inequality implies that the weight w0 satisfies the Mackenhoupt
condition Ap (γ) and, as a result, S ∈ [Lp;w0 (γ)]. As a result, from Theorem 3.2 we obtain
the following
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Corollary 3.1 Let the sequence {λn} satisfy the condition

−1

p
< 2α <

1

p′
,

λn 6= 0 , ∀n 6= 0 &λi 6= λj , i 6= j.

Then the systemEλ forms a basis for Lp (−π, π), 1 < p < +∞, isomorphic to the classical
system of exponents E.

It should be noted that a result similar to this corollary for the Lebesgue spaceLp(·) (−π, π)
with variable summability exponent was obtained in [27].
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