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Abstract. The work is devoted to the study of the solvability of the inverse boundary value problem with
an unknown time depended coefficient for a fourth order Boussinesq equation . The goal of paper consists
of determination of the unknown coefficient and the solution of the considered problem. We introduce the
definition of the classical solution, and then the considered problem is reduced to an auxiliary equivalent
problem. Further, the existence and uniqueness of the solution of the equivalent problem are proved using
a contraction mapping principle. Finally, using equivalency, the unique existence of a classical solution
is proved.
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1 Introduction

There are many cases where the needs of the practice leads to problems in determining the
coefficients or the right-hand side of the differential equations according to some known
data of its solutions. Such problems are called inverse value problems of mathematical
physics. Inverse value problems arise in various areas of human activity such as seismol-
ogy, mineral exploration, biology, medicine, quality control of industrial products, etc., that
states them in a number of actual problems of modern mathematics.The inverse problems
are favorably developing section of up-to-date mathematics. Recently, the inverse problems
are widely applied in various fields of science. Different inverse problems for various types
of partial differential equations have been studied in many papers. First of all we note the
papers of A.N.Tikhonov [9], M.M.Lavrentyev [4,5], A.M.Denisov [2], M.I.Ivanchov [3]
and their followers.

Recently, much attention has been paid to the study of various nonlinear evolution equa-
tions describing wave processes in media with dispersion. One of them is the Boussinesq
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equation, derived by the author in [1] and describing the propagation of long waves in shal-
low water. This equation is interesting from both physical and mathematical points of view.

For the Boussinesq equation of the fourth order, inverse problems were considered in [7,
8].

In this paper, we proved the existence and uniqueness of the solution of the inverse
boundary value problem for the fourth order Boussinesq equation with integral conditions.

2 Problem statement and its reduction to equivalent problem

Let T > 0 be some fixed number and denote by DT := {(x, t) : 0 < x < 1, 0 < t < T}.
Consider the one-dimensional inverse problem of identifying an unknown pair of functions
{u(x, t) , a(t)} for the following fourth order Boussinesq equation [1]

utt(x, t)− 2αutxx(x, t) + βuxxxx(x, t) = a(t)u(x, t) + f(x, t) (2.1)

with the nonlocal initial conditions

u(x, 0) = ϕ(x) +

∫ T

0
p1(t)u(x, t)dt, ut(x, 0) = ψ(x)

+

∫ T

0
p2(t)u(x, t)dt (0 ≤ x ≤ 1) (2.2)

Neumann boundary conditions

ux(0, t) = ux(1, t) = uxxx(0, t) = 0 (0 ≤ t ≤ T ), (2.3)

nonlocal integral condition ∫ 1

0
u(x, t)dx = 0(0 ≤ t ≤ T ) (2.4)

and overdetermination condition

u(0, t) = h(t) (0 ≤ t ≤ T ) , (2.5)

where α > 0, β > α2 given numbers ,f(x, t), ϕ(x), ψ(x), pi(t) (i = 1, 2), and h(t) are
given sufficiently smooth functions of x ∈ [0, 1] and t ∈ [0, T ].

Definition 2.1 The pair {u(x, t) , a(t)} is said to be a classical solution to the problem
(2.1)-(2.5), if the functions u(x, t) ∈ C̃4,2(D̄T ) and a(t) ∈ C[0, T ] satisfies an Equation
(2.1) in the region DT , the condition (2.2) on [0, 1], and the statements (2.3)-(2.5) on the
interval [0, T ], where

C̃(4,2)(DT ) =
{
u(x, t) : u(x, t) ∈ C2(DT ), utxx(x, t), uxxx(x, t), uxxxx(x, t) ∈ C(DT )

}
.

In order to investigate the problem (2.1) - (2.5), first we consider the following auxiliary
problem

y′′(t) = a(t)y(t), t ∈ [0, T ], (2.6)

y(0) =

∫ T

0
p1(t)y(t)dt, y′(0) =

∫ T

0
p2(t)y(t)dt, (2.7)

where p1(t), p2(t), a(t) ∈ C[0, T ] are given functions, and y = y(t) is desired function.
Moreover, by the solution of the problem (2.6), (2.7), we mean a function y(t) belonging to
C2[0, T ] and satisfying the conditions (2.6), (2.7) in the usual sense.
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Lemma 2.1 [7] Assume that p1(t), p2(t) ∈ C[0, T ], a(t) ∈ C[0, T ], ‖a(t)‖C[0,T ] ≤ R =

const, and the condition(
T ‖p2(t)‖C[0,T ] + ‖p1(t)‖C[0,T ] +

T

2
R

)
T < 1

hold. Then the problem (2.6), (2.7) has a unique trivial solution.

Now along with the inverse boundary-value problem (2.1) - (2.5), we consider the following
auxiliary inverse boundary-value problem: It is required to determine a pair {u(x, t), a(t)}
of functions u(x, t) ∈ C̃4,2(D̄T ) and a(t) ∈ C[0, T ], from relations (2.1)-(2.3), and

uxxx(1, t) = 0 (0 ≤ t ≤ T ), (2.8)

a (t)h1 (t) + b (t) g (0, t) + f (0, t)

= h′′1 (t)− 2αutxx (0, t) + βuxxxx (0, t) ( 0 ≤ t ≤ T ) . (2.9)

Using Lemma 1, similarly to [7]. we prove the following

Theorem 2.1 Suppose that f(x, t) ∈ C(D̄T ), ϕ(x), ψ(x) ∈ C[0, 1], pi(t) ∈ C[0, T ] (i =

1, 2), h(t) ∈ C2[0, T ],h(t) 6= 0,
∫ 1
0 f(x, t)dx = 0 (0 ≤ t ≤ T ) and the compatibility

conditions ∫ 1

0
ϕ(x)dx = 0,

∫ 1

0
ψ(x)dx = 0 , (2.10)

ϕ(0) +

∫ T

0
p1(t)h(t)dt = h(0), ψ(0) +

∫ T

0
p2(t)h(t)dt = h′(0) , (2.11)

holds. Then the following assertions are valid:

1 each classical solution {u(x, t), a(t)} of the problem (2.1)-(2.5) is a solution of problem
(2.1)-(2.3), (2.8), (2.9), as well;

2 each solution {u(x, t), a(t)} of the problem (2.1)-(2.3), (2.8), (2.9), if(
T ‖p2(t)‖C[0,T ] + ‖p1(t)‖C[0,T ] +

T

2
‖a(t)‖C[0,T ]

)
T < 1 (2.12)

is a classical solution of problem (2.1)-(2.5).

3 Existence and uniqueness of the classical solution

We seek the first component u(x, t) of classical solution {u(x, t) , a(t)} of the problem
(2.1)-(2.3), (2.8), (2.9) in the form

u(x, t) =

∞∑
k=0

uk(t) cosλkx (λk = kπ) , (3.1)

where

uk(t) = lk

∫ 1

0
u(x, t) cosλkxdx (k = 0, 1, ...), lk =

{
1, k = 0,
2, k = 1, 2, . . . .

Then applying the formal scheme of the Fourier method, from (2.1) and (2.2) we have

u′′k(t) + 2αλ2ku
′
k(t) + βλ4kuk(t) = Fk(t;u, a) (0 ≤ t ≤ T ; k = 0, 1, ...), (3.2)
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uk(0) = ϕk +

∫ T

0
p1(t)uk(t)dt, u′k(0) = ψk +

∫ T

0
p2(t)uk(t)dt (k = 0, 1, ...), (3.3)

where

Fk(t;u) = fk(t) + a(t)uk(t), fk(t) = lk

∫ 1

0
f(x, t) cosλkxdx (k = 0, 1, ...) ,

ϕk = lk

∫ 1

0
ϕ(x) cosλkxdx, ψk = lk

∫ 1

0
ψ(x) cos λkxdx (k = 0, 1, ...),

Solving the problem (3.2), (3.3) gives

u0(t) = ϕ0 +

∫ T

0
p1(t)u0(t)dt+ t

(
ψ0 +

∫ T

0
p2(t)u0(t)dt

)

+

∫ t

0
(t− τ)F0(τ ;u, a)dτ (0 ≤ t ≤ T ) , (3.4)

uk(t) = eαkt

[(
cosβkt−

αk
βk

sinβkt

)(
ϕk +

∫ T

0
p1(t)uk(t)dt

)
+

sinβkt

βk

(
ψk +

∫ T

0
p2(t)uk(t)dt

)]
+

1

βk

∫ t

0
Fk(τ ;u, a) sinβk (t− τ) eαk(t−τ)dτ, ( k = 1, 2, ...; 0 ≤ t ≤ T ), (3.5)

where
αk = −αλ2k, βk = λ2k

√
β − α2..

To determine the first component of the classical solution to the problem (2.1)-(2.3),
(2.8), (2.9) we substitute the expressions uk(t) (k = 0, 1, ...) into (3.1) and obtain

u(x, t) = ϕ0 +

∫ T

0
p1(t)u0(t)dt+ t

(
ψ0 +

∫ T

0
p2(t)u0(t)dt

)
+

∫ t

0
(t− τ)F0(τ ;u)dτ

+
∞∑
k=1

{
eαkt

[(
cosβkt−

αk
βk

sinβkt

)(
ϕk +

∫ T

0
p1(t)uk(t)dt

)

+
sinβkt

βk

(
ψk +

∫ T

0
p2(t)uk(t)dt

)]
+

1

βk

∫ t

0
Fk(τ ;u, a) sinβk (t− τ) eαk(t−τ)dτ

}
cosλkx . (3.6)

It follows from (2.11) and (3.1) that

a(t) = [h(t)]−1
{
h′′(t)− f(0, t) +

∞∑
k=1

λ2k
(
2αu′k (t) + βλ2kuk (t)

)}
. (3.7)

Differentiating (3.5) we get:

u′k(t) = eαkt

[
− 1

βk

(
α2
k + β2k

)(
ϕk +

∫ T

0
p1(t)uk(t)dt

)
sinβkt
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+

(
αk
βk

sinβkt+ cosβkt

)(
ψk +

∫ T

0
p2(t)uk(t)dt

)]
+

1

βk

∫ t

0
Fk(τ ;u) (αk sinβk (t− τ)

+βk cosβk (t− τ)) eαk(t−τ)dτ( 0 ≤ t ≤ T ). (3.8)

Further, from (3.5) and (3.8), we obtain:

2αu′k (t) + βλ2kuk (t)

= eαkt

[(
βλ2k cosβkt−

1

βk

(
βλ2kαk + 2α

(
α2
k + β2k

))
sinβkt

)
×
(
ϕk +

∫ T

0
p1(t)uk(t)dt

)
+

(
1

βk

(
βλ2k + 2ααk

)
sinβkt+ 2α cosβkt

)(
ψk +

∫ T

0
p2(t)uk(t)dt

)]
+

1

βk

∫ t

0
Fk(τ ;u)

((
2ααk + βλ2k

)
sinβk (t− τ)

+2αβk cosβk (t− τ)) eαk(t−τ)dτ
}
. (3.9)

Then from (3.9), taking into account (3.7), respectively, we find:

a(t) = [h(t)]−1
{
h′′(t)− f(0, t)

+
∞∑
k=1

λ2k

{
eαkt

[(
βλ2k cosβkt−

1

βk

(
βλ2kαk + 2α

(
α2
k + β2k

))
sinβkt

)

×
(
ϕk +

∫ T

0
p1(t)uk(t)dt

)
+

(
1

βk

(
βλ2k + 2ααk

)
sinβkt+ 2α cosβkt

)(
ψk +

∫ T

0
p2(t)uk(t)dt

)]
+

1

βk

∫ t

0
Fk(τ ;u, a, b)

((
2ααk + βλ2k

)
sinβk (t− τ)

+2αβk cosβk (t− τ)) eαk(t−τ)dτ
}
. (3.10)

Thus, the solution of problem (2.1) - (2.3), (2.8), (2.9) was reduced to the solution of
system (3.6), (3.10) with respect to unknown functions u(x, t) and a(t).

Lemma 3.1 If {u(x, t), a(t)} is any solution to problem (2.1) - (2.3), (2.8), (2.9), then the
functions

lk(t) = mk

∫ 1

0
u(x, t) cosλkxdx, ( k = 0, 1, 2 . . .)

satisfies the system (3.4), (3.5) in C[0, T ].

It follows from Lemma 3.1 that
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Corollary 3.1 Let system (3.6), (3.10) have a unique solution. Then problem (2.1) - (2.3),
(2.8), (2.9) cannot have more than one solution, i.e. if the problem (2.1) - (2.3), (2.8), (2.9)
has a solution, then it is unique.

With the purpose to study the problem (2.1) - (2.3), (2.8), (2.9), we consider the follow-
ing functional spaces.

Denote by B5
2,T [8] a set of all functions of the form

u(x, t) =
∞∑
k=0

uk(t) cosλkx, λk = kπ,

considered in the region DT , where each of the function uk(t) (k = 0, 1, 2, ...) is contin-
uous over an interval [0 , T ] and satisfies the following condition:

J(u) ≡ ‖u0(t) ‖C[0 , T ] +

{ ∞∑
k=1

(
λ5k ‖uk(t) ‖C[0 , T ]

)2} 1
2

< +∞ .

The norm in this set is defined by

‖u(x, t) ‖B5
2,T

= J(u) .

It is known that B5
2,T is Banach space . Obviously, E5

T = B5
2,T ×C[0, T ] with the norm

‖z(x, t)‖E5
T

= ‖u(x, t)‖B5
2,T

+ ‖a(t)‖C[0,T ] is also Banach space.
Now consider the operator

Φ(u, a) = {Φ1(u, a) , Φ2(u, a) } ,

in the space E3
T , where

Φ1(u, a) = ũ(x, t) ≡
∞∑
k=0

ũk(t) cosλkx , Φ2(u, a) = ã(t)

and the functions ũ0(t) ,ũk(t), k = 1, 2, ... , and ã(t) are equal to the right-hand sides of
(3.4), (3.5), and (3.10), respectively.

It is easy to see that∣∣∣∣cosβkt−
αk
βk

sinβkt

∣∣∣∣ ≤ 1 +
α√
β − α2

≡ ε1,
∣∣∣∣ 1

βk
sinβkt

∣∣∣∣ ≤ 1√
β − α2

1

λ2k
≡ ε2

1

λ2k
,

∣∣∣∣βλ2k cosβkt−
1

βk

(
βλ2kαk + 2α

(
α2
k + β2k

))
sinβkt

∣∣∣∣ ≤
(

3α√
β − α2

+ 1

)
βλ2k ≡ ε3λ2k,∣∣∣∣ 1

βk

(
βλ2k + 2ααk

)
sinβkt+ 2α cosβkt

∣∣∣∣ ≤ β + 2α2√
β − α2

+ 2α ≡ ε4.

1

βk

∣∣(2ααk + βλ2k
)

sinβk (t− τ) + 2αβk cosβk (t− τ)
∣∣ ≤ ε4.

Then, with the help of simple transformations, we find:

‖ũ0(t)‖C[0,T ] ≤ |ϕ0|+ T |ψ0|+ T (‖p1(t)‖C[0,T ] + T ‖p2(t)‖C[0,T ]) ‖u0(t)‖C[0,T ]
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+T
√
T

(∫ T

0
|f0(τ)|2 dτ

) 1
2

+ T 2 ‖a(t)‖C[0,T ] ‖u0(t)‖C[0,T ] , (3.11)

( ∞∑
k=1

(λ5k ‖ũk(t)‖C[0,T ])
2

) 1
2

≤
√

7ε1

( ∞∑
k=1

(λ5k |ϕk|)2
) 1

2

+
√

7ε1

( ∞∑
k=1

(λ3k |ψk|)2
) 1

2

+
√

7
(
‖p1(t)‖C[0,T ] + ‖p2(t)‖C[0,T ]

)
T

( ∞∑
k=1

(λ3k ‖uk
(t)‖C[0,T ])

2

) 1
2

+ε1
√

7T

(∫ T

0

∞∑
k=1

(λ3k |fk(τ)|)2dτ

) 1
2

+
√

7ε1T ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ5k ‖uk(t)‖C[0,T ])
2

) 1
2

, (3.12)

‖ã(t)‖C[0,T ] ≤
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

{∥∥∥∥h′′(t)− f(0, t)

∥∥∥∥
C[0,T ]

+

( ∞∑
k=1

λ−2k

) 1
2

√6

12
ε3

( ∞∑
k=1

(λ5k |ϕk|)2
) 1

2

+

√
6

12
ε4

( ∞∑
k=1

(λ3k |ψk|)2
) 1

2

+

√
6

12
(ε3 + ε4)T

(
‖p1(t)‖C[0,T ] + ‖p2(t)‖C[0,T ]

)( ∞∑
k=1

(λ3k ‖uk
(t)‖C[0,T ])

2

) 1
2

+

√
6T

12
ε4

(∫ T

0

∞∑
k=1

(λ3k |fk(τ)|)2dτ

) 1
2

+

√
6

12
ε4T ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ5k ‖uk(t)‖C[0,T ])
2

) 1
2

 . (3.13)

Suppose that the data for problem (2.1)-(2.3), (2.8), (2.9) satisfy the assumptions:
1. ϕ(x) ∈ C4[0, 1], ϕ5(x) ∈ L2(0, 1) and ϕ

′
(0) = ϕ

′
(1) = ϕ

′′′
(0) = ϕ

′′′
(1) = 0.

2. ψ(x) ∈ C2[0, 1], ψ(3)(x) ∈ L2(0, 1) and ψ
′
(0) = ψ

′
(1) = 0.

3. f(x, t), fx(x, t), fxx(x, t) ∈ C(DT ), fxxx(x, t) ∈ L2(DT ),
fx(0, t) = fx(1, t) = 0 (0 ≤ t ≤ T ).
4. α > 0, β > α2, pi(t) ∈ C[0, T ] (i = 1, 2), h(t) ∈ C2[0, T ],
h(t) 6= 0, (0 ≤ t ≤ T ).
Then from (3.11)-(3.13) we get:

‖ũ(x, t)‖B5
2,T
≤ A1(T )

+B1(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B5
2,T

+ C1(T ) ‖u(x, t)‖B5
2,T

, (3.14)

‖ã(t)‖C[0,T ] ≤ A2(T )+B2(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B5
2,T

+C2(T ) ‖u(x, t)‖B5
2,T

, (3.15)

where
A1(T ) = ‖ϕ(x)‖L2(0,1)

+ T ‖ψ(x)‖L2(0,1)
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+T
√
T ‖f(x, t)‖L2(DT ) + 2

√
7ε1

∥∥∥ϕ(5)(x)
∥∥∥
L2(0,1)

+2
√

7ε2

∥∥∥ψ(3)(x)
∥∥∥
L2(0,1)

+ 2ε2
√

7T ‖fxxx(x, t)‖L2(DT ) ,

B1(T ) = (T+2
√

7ε2)T,C1(T ) = T (1+2
√

7) ‖p1(t)‖C[0,T ]+T (T+2
√

7) ‖p2(t)‖C[0,T ] ,

A2(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

{∥∥∥∥h′′(t)− f(0, t)

∥∥∥∥
C[0,T ]

+

( ∞∑
k=1

λ−2k

) 1
2
[√

6

6
ε3

∥∥∥ϕ(5)(x)
∥∥∥
L2(0,1)

+

√
6

6
ε3
∥∥ψ′′′(x)

∥∥
L2(0,1)

+

√
6T

6
ε4 ‖fxxx(x, t)‖L2(DT )

]}
,

B2(T ) =

√
6

12
ε4

∥∥∥[h(t)]−1
∥∥∥
C[0,T ]

( ∞∑
k=1

λ−2k

) 1
2

T,

C2(T ) =

√
6

6
(ε4 + ε3)

∥∥∥[h(t)]−1
∥∥∥
C[0,T ]

( ∞∑
k=1

λ−2k

) 1
2

T
(
‖p1(t)‖C[0,T ] + ‖p2(t)‖C[0,T ]

)
.

From the inequalities (3.14),(3.15) we conclude:

‖ũ(x, t)‖B5
2,T

+ ‖ã(t)‖C[0,T ]

≤ A(T ) +B(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B5
2,T

+ C(T ) ‖u(x, t)‖B5
2,T

, (3.16)

where

A(T ) = A1(T ) +A2(T ) , B(T ) = B1(T ) +B2(T ) , C(T ) = C1(T ) + C2(T ) .

Thus, we can prove the following theorem

Theorem 3.1 Assume that statements 1-4 and the condition

(B(T )(A(T ) + 2) + C(T ))(A(T ) + 2) < 1 (3.17)

holds, then problem (2.1)-(2.3), (2.8), (2.9) has a unique solution in the ballK = KR(‖z‖E5
T
≤

R ≤ A(T ) + 2) of the space E5
T .

Proof. In the space E5
T , consider the operator equation

z = Φz , (3.18)

where z = {u, a}, and the components Φi(u, a) (i = 1, 2) , of operator Φ(u, a) defined by
the right sides of (3.6) and (3.10).
Consider the operator Φ(u, a)in the ball K = KR out of E5

T . Similarly to (3.16), we obtain
that for any the estimates are valid: respectively and the following inequalities hold:

‖Φz‖E5
T
≤ A(T ) +B(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B5

2,T
+ C(T ) ‖u(x, t)‖B5

2,T

≤ A(T ) +B(T )R2 +C(T )R = A(T ) + (B(T )(A(T ) + 2) +C(T ))(A(T ) + 2) , (3.19)
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‖Φz1 − Φz2‖E5
T
≤ B(T )R(‖u1(x, t)− u2(x, t)‖B5

2,T
+ ‖a1(t)− a2(t)‖C[0,T ])

+C(T ) ‖u1(x, t)− u2(x, t)‖B5
2,T

, (3.20)

Then it follows from (3.17), (3.19), and (3.20) that the operator Φ acts in the ball K =
KR, and satisfy the conditions of the contraction mapping principle. Therefore the operator
Φ has a unique fixed point {z} = {u , a} in the ball K = KR, which is a solution of
equation (3.18); i.e. the pair {u, a} is the unique solution of the systems (3.6) and (3.10) in
K = KR.

hen the function u(x, t) as an element of space B5
2,T is continuous and has continuous

derivatives ux(x, t), uxx(x, t), uxxx(x, t) and uxxxx(x, t) in DT .
Similarly [7], one can prove that ut(x, t), utx(x, t), utxx(x, t) , utt(x, t) are continuous

in DT .
It is easy to verify that Eq. (2.1) and conditions (2.2), (2.3), (2.8), (2.9) satisfy in the

usual sense. So, {u(x, t), a(t)} is a solution of (2.1)-(2.3), (2.8), (2.9), and by Lemma 3.1
it is unique in the ball K = KR. The proof is complete.

In summary, from Theorem 2.1 and Theorem 3.1, straightforward implies the unique
solvability of the original problem (2.1) - (2.5).

Theorem 3.2 Suppose that all assumptions of Theorem 3.1, and the conditions∫ 1

0
f(x, t)dx = 0 , (0 ≤ t ≤ T ),

∫ 1

0
ϕ(x)dx = 0,

∫ 1

0
ψ(x)dx = 0 ,

ϕ(0) +

∫ T

0
p1(t)h(t)dt = h(0), ψ(0) +

∫ T

0
p2(t)h(t)dt = h′(0) .

holds. Then problem (2.1) - (2.5) has a unique classical solution in the ball
K = KR(‖z‖E5

T
≤ A(T ) + 2) of the space E5

T .

4 Conclusion

The existence and uniqueness of the solution of one inverse boundary value problem for one
Bussinsk equation of the fourth order with integral conditions is proved in the work. First,
the original problem is reduced to an equivalent problem, for which the theorem of existence
and uniqueness of the solution is proved. Using these facts, the existence and uniqueness of
the classical solution of one inverse boundary value problem for one Bussinsk equation of
the fourth order with integral conditions is proved.
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