
Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci.
Mathematics, 43 (4), 54-64 (2023).
https://doi.org/10.30546/2617-7900.43.4.2023.54

Weak solvability of the first boundary value problem for nonuniformly
and strongly degenerate second-order elliptic-parabolic equations in
divergent form

Narmin R. Amanova

Received: 13.10.2022 / Revised: 28.06.2023 / Accepted: 07.07.2023

Abstract. The paper considers the first boundary value problem for a non-uniformly and strongly degen-
erate second-order elliptic-parabolic equation in divergent form. A Friedrichs-type inequality is proved
and conditions are found under which this problem is uniquely generalized solvable in a weighted anisotropic
Sobolev space.
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1 Introduction

Let Rn and Rn+1 be Euclidean spaces of points x = (x1, ..., xn) and (x, t) = (x1, ..., xn, t),
respectively, Ω ⊂ Rn is a bounded domain with boundary ∂Ω ∈ C2, 0 ∈ Ω,QT is a
cylinder Ω × (−T, 0), where , n ≥ 1 and T > 0 is a constant. Denote

Q0 =
{
(x, t) : x ∈ Ω, t = −T

}
, ST = ∂Ω × [−T, 0] and Γ (QT ) = Q0 ∪ ST .

Consider in QT the first boundary value problem

Lu =
n∑

i,j=1

∂

∂xi

(
aij(x, t)

∂u

∂xj

)
+
∂

∂t

(
ϕ(−t)∂u

∂t

)
− ∂u

∂t
= f(x, t), (1.1)

u|Γ (QT ) = 0 (1.2)

assuming that f(x, t) ∈ L2(QT ), ‖aij(x, t)‖− is a real symmetric matrix with measurable
elements in QT , and for all (x, t) ∈ QT and ξ ∈ En the condition

γ
n∑
i=1

λi(x, t)ξ
2
i ≤

n∑
i,j=1

aij(x, t)ξiξj ≤ γ−1
n∑
i=1

λi(x, t)ξ
2
i , (1.3)

is fulfilled, and ϕ(z) is a continuous non-negative non-decreasing function on [−T, 0] and
for sufficiently small z > 0

ϕ(0) = 0, ϕ(z) ≥ 0, ϕ
′
(z) ≥ 0, ϕ′(0) = 0, ϕ

′′
(z) ≥ 0, ϕ

′
(z) ≥ ϕ(z)ϕ′′(z). (1.4)
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Here γ ∈ (0, 1] is a constant, and the functions λi(x, t), i = 1, ..., n are finite almost
everywhere in QT and are positive.

Let δ > 0 be a constant. We impose the following conditions on the functions λi(x, t), i =
1, ..., n:

λi(x, t) ∈ L1(QT ), λ
−1
i (x, t) ∈ Ln/2(Ω), if n ≥ 2; (1.5)

λ−11 (x1, t) ∈ L1+δ(Ω), if n = 1. (1.6)

The aim of this paper is to find conditions on the functions f(x, t), ϕ(z) and λi(x, t), i =
1, ..., n for which problem (1.1)-(1.2) is uniquely generalized solvable in the corresponding
Sobolev space. We find conditions on the function ϕ(z) under which the properties of so-
lutions of problem (1.1)-(1.2) are identical to the properties of solutions of this problem for
non-uniformly degenerate second-order parabolic equations (for ϕ ≡ 0 ) (see e.g. [24]).

Initially, the theory of degenerate elliptic-parabolic equations was studied in the classi-
cal work of Keldysh [1], in which, in the case of one space variable and a power type of
the function ϕ(z), the correct formulations of boundary value problems for second-order
elliptic-parabolic equations were indicated. The results of Keldysh found their development
in the work of Fichera [2], in which the weak solvability of the first boundary value problem
for second-order elliptic-parabolic equations of a non-divergence structure with smooth co-
efficients was studied. Let us note the works of Petrushko [3–7], who studied the problems
of weak solvability of boundary value problems and the behavior on the boundary of solu-
tions of second-order elliptic-parabolic equations with a divergent structure. As for similar
questions for elliptic-parabolic equations of non-divergence structure with smooth coeffi-
cients, we point out the works [8–12]. We also note the works [13–18], where the existence
and uniqueness of the solution of the first boundary value problem for second-order ellip-
tic and parabolic equations with discontinuous coefficients and Cordes-type conditions are
proved. A more complete survey of results on the solvability of boundary value problems
for elliptic-parabolic equations can be found in [19–23].

Let us accept some notation and definitions. We will say that u(x, t) ∈ A(QT ), if there
exists a compact Ku ⊂ Ω such that suppu(x, t) ⊂ Ku × [−T, 0], u(x, t) ∈ C∞(QT ),
u|t=−T = 0 . Denote by W 1,1

2,λ (QT ), W
1,1
2,λ,ϕ(QT ) and W 2,2

2,λ,ϕ(QT ) Banach spaces of mea-
surable functions defined on QT , for which the norms

‖u‖
W 1,1

2,λ(QT )
=
(∫

QT

(
u2 +

n∑
i=1

λi(x, t)

(
∂u

∂xi

)2

+

(
∂u

∂t

)2
)
dxdt

)1/2
,

‖u‖
W 1,1

2,λ,ϕ(QT )
=
(∫

Ω
u2(x, 0)dx+

∫
QT

( n∑
i=1

λi(x, t)

(
∂u

∂xi

)2

+ϕ(−t)
(
∂u

∂t

)2 )
dxdt

)1/2
,

and

‖u‖
W 2,2

2,λ,ϕ(QT )
=
( ∫
QT

(
u2 +

n∑
i=1

λi(x, t)
( ∂u
∂xi

)2
+

n∑
i,j=1

λi(x, t)λj(x, t)
( ∂2u

∂xi∂xj

)2

+

(
∂u

∂t

)2

+ ϕ2(−t)
(
∂2u

∂t2

)2

+ ϕ(−t)
n∑
i=1

λi(x, t)

(
∂2u

∂xi∂t

)2 )
dxdt

) 1
2
,

are finite, respectively, where λ = (λ1(x, t), ..., λn(x, t)). Let
◦
W

1,1

2,λ(QT ),
◦
W

1,1

2,λ,ϕ(QT ) and
◦
W

2,2

2,λ,ϕ(QT ) subspaces of W 1,1
2,λ (QT ), W

1,1
2,λ,ϕ(QT ) and W 2,2

2,λ,ϕ(QT ) are completion of
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the set of all functions u(x, t) ∈ A(QT ) with respect to the norm of the space W 1,1
2,λ (QT ),

W 1,1
2,λ,ϕ(QT ) and W 2,2

2,λ,ϕ(QT ), respectively.

The function u(x, t) ∈
◦
W

1,1

2,λ,ϕ(QT ) is called a weak solution to problem (1.1)- (1.2) if

for the function v(x, t) ∈
◦
W

1,1

2,λ(QT ) and t1 ∈ (−T, 0] the integral identity∫
Qt1

( n∑
i,j=1

aij(x, t)
∂u

∂xi

∂v

∂xj
+ ϕ(−t)∂u

∂t

∂v

∂t
− u∂v

∂t

)
dxdt

+

∫
Ω
u(x, t1)v(x, t1)dx = −

∫
Qt1

fvdxdt, (1.7)

is valid, where Qt1 = Ω × (−T, t1). Throughout what follows, the notation C(· · · ) means
that the positive constant C depends only on the contents of the brackets.

Theorem 1.1 Let conditions (1.5) and (1.6) be satisfied. Then for any function u(x, t) ∈
◦
W

1,1

2,λ(Qt1) and t1 ∈ (−T, 0] the following inequality∫
Qt1

u2(x, t)dxdt ≤ C1.1(λ, n,Ω)

∫
Qt1

n∑
i=1

λi(x, t)

(
∂u

∂xi

)2

dxdt. (1.8)

holds.

Proof. Let n ≥ 2. Obviously, it suffices to prove (1.8) for the function u ∈ A(QT ). We will
use the following classical embedding theorem (see e.g. [21]): for any function u(x, t) ∈
C∞0 (Ω) for 1 ≤ p < n the inequality

‖u‖L pn
n−p (Ω) ≤ C1.2(n, p,Ω) ‖Ou‖Lp(Ω) , (1.9)

holds. Setting p = 2n
n+2 in (1.9), we obtain

‖u‖L2(Ω) ≤ C1.2(n,Ω) ‖Ou‖L 2n
n+2

(Ω) . (1.10)

But on the other hand

‖Ou‖L 2n
n+2

(Ω) =
(∫

Ω

n∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣ 2n
n+2 ) 2+n

2n

=
(∫

Ω

n∑
i=1

λ−qi (x, t)λqi (x, t)

∣∣∣∣ ∂u∂xi
∣∣∣∣ 2n
n+2

dx
)n+2

2n

≤
( n∑
i=1

(∫
Ω
λqSi (x, t)

∣∣∣∣ ∂u∂xi
∣∣∣∣ 2nSn+2

dx

) 1
S (∫

Ω
λ−qS

′

i (x, t)dx

) 1
S′ )n+2

2n
,

where q > 0 and S > 1 are arbitrary numbers and, S′ = S
S−1 . Let us now set S = n+2

n , q =
n
n+2 . Then S′ = n+2

2 and therefore

‖Ou‖L 2n
n+2

(Ω) ≤
( n∑
i=1

(∫
Ω
λi(x, t)

∣∣∣∣ ∂u∂xi
∣∣∣∣2 dx) n

n+2
(∫

Ω
λ
−n/2
i (x, t)dx

)2/(n+2))n+2
2n
.

(1.11)
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By virtue of condition (1.5), we have(∫
Ω
λ
−n/2
i (x, t)dx

)1/n
≤ C1.3(λ, n,Ω), i = 1, ..., n.

Thus, from (1.11) we conclude that

‖Ou‖L 2n
n+2

(Ω) ≤ C1.4(λ, n,Ω)
( n∑
i=1

∫
Ω
λi(x, t)

(
∂u

∂xi

)2

dx
)1/2

. (1.12)

Then from (1.10) and (1.12) it follows(∫
Ω
u2(x, t)dx

)1/2
≤ C1.2 · C1.4

( n∑
i=1

∫
Ω
λi(x, t)

(
∂u

∂xi

)2

dx
)1/2

.

We integrate the last inequality with respect to t from −T to t1. Thus, the required estimate
(1.8) follows from this expression if n ≥ 2.

Let, now n = 1. We will use the following embedding theorem (see e.g. [21]):for any
function u(x, t) ∈ C∞0 (Ω) for 1 < p < 2 the inequality

sup
Ω
|u(x1, t)| ≤ C1.5(p,Ω)

∥∥∥∥ ∂u∂x1
∥∥∥∥
Lp(Ω)

,

holds.
Then(∫
Ω
u2(x1, t)dx1

)1/2
≤ sup

Ω
|u(x1, t)| ≤ C1.5

(∫
Ω
λ
−p/2
1 (x1, t)λ

p/2
1

∣∣∣∣∂u(x1, t)∂x1

∣∣∣∣p dx1)1/p
≤ C1.5

(∫
Ω
λ1(x1, t)

(
∂u

∂x1

)2

dx1

)1/2(∫
Ω
λ
−p/(2−p)
1 (x1, t)dx1

) 2−p
2p
.

Let p
2−p = 1 + δ, then p = 1+δ

1+δ/2 and if n = 1 then the required estimate (1.8) is proved.
Theorem 1.1 is proved.

Theorem 1.2 Let the coefficients of the operator L satisfying conditions (1.3)-(1.6) be de-
fined in the cylindrical region QT ⊂ Rn+1. Then the first boundary value problem (1.1)-

(1.2) is uniquely generalized solvable in the space
◦
W

1,1

2,λ,ϕ(QT ) for any f(x, t) ∈ L2(QT ).
Moreover, for the solution u(x, t) the following estimate is true:

‖u‖
W 1,1

2,λ,ϕ(QT )
≤ C1.6(γ, λ, n,Ω) ‖f‖L2(QT )

. (1.13)

Proof. Suppose ∂Ω ∈ C2. Let us introduce the following notation for natural numbers
m, (x, t) ∈ QT and i = 1, ..., n :

λmi (x, t) =


1
m , if λi(x, t) < 1

m ;
λi(x, t), if 1

m ≤ λi(x, t) ≤ m,
m, if λi(x, t) > m.

Let
∥∥∥amij (x, t)∥∥∥ be a real symmetric matrix with measurable elements in QT and for i, j =

1, ..., n as m→∞ in QT amij (x, t)→ aij(x, t), and for (x, t) ∈ QT and ξ ∈ En

γ
n∑
i=1

λmi (x, t)ξ
2
i ≤

n∑
i,j=1

amij (x, t)ξiξj ≤ γ−1
n∑
i=1

λmi (x, t)ξ
2
i .



58 Weak solvability of the first boundary value problem ...

Denote by (aij)h the Friedrichs averaging of the function amij (x, t) with the parameter
h > 0. Further, by λhi (x, t) and uh(x, t) we denote the Friedrichs averaging of the function
λmi (x, t) and um(x, t) with parameter h > 0, respectively.

Consider for h > 0 the family of the following first boundary value problems

Lhuh =
n∑

i,j=1

∂

∂xi

(
(aij)h

∂uh

∂xj

)
+
∂

∂t

(
ϕ(−t)∂u

h

∂t

)
− ∂uh

∂t
= f(x, t), (1.14)

uh
∣∣∣
Γ (QT )

= 0, (1.15)

where ϕ satisfies conditions (1.4).
It is clear that (aij)h ∈ C∞(QT ), and for all h > 0 with respect to (aij)h a condition of

type (1.3) with constant γ is satisfied. Then, according to [23], there exists a uniquely strong

solution uh(x, t) ∈
◦
W

2,2

2,λ,ϕ(QT ) of problem (1.14)-(1.15). It is obvious that uh(x, t) ∈
◦
W

1,1

2,λ(QT ).

We multiply both sides of equation (1.14) by the functions υ(x, t) ∈
◦
W

1,1

2,λ(QT ), and
then integrate it over the domain QT :∫

QT

Lhuhυdxdt =

∫
QT

fυdxdt. (1.16)

Since uh ∈
◦
W

1,1

2,λ(QT ), we can substitute υ = uh in (1.16). Then we have∫
QT

n∑
i,j=1

(aij)h
∂uh

∂xi

∂uh

∂xj
dxdt−

∫
QT

uh
∂uh

∂t
dxdt

+

∫
Ω

(uh(x, 0))2dx+

∫
QT

ϕ(−t)
(
∂uh

∂t

)2

dxdt = −
∫
QT

fuhdxdt. (1.17)

On the other hand, it follows from (1.3) that

γ

∫
QT

n∑
i=1

λhi (x, t)

(
∂uh

∂xi

)2

dxdt ≤
∫
QT

n∑
i,j=1

(aij)h
∂uh

∂xi

∂uh

∂xj
dxdt.

Let us represent the second term on the left-hand side of equality (1.17) as follows∫
QT

uh · ∂u
h

∂t
dxdt =

1

2

∫
Ω

(
uh(x, t)

)2
dx

∣∣∣∣t=0

t=−T
=

1

2

∫
Ω

(
uh(x, 0)

)2
dx.

As a result we have the following inequality

γ

∫
QT

n∑
i=1

λhi (x, t)

(
∂uh

∂xi

)2

dxdt+
1

2

∫
Ω

(
uh(x, 0)

)2
dx

+

∫
QT

ϕ(−t)
(
∂uh

∂t

)2

dxdt ≤ σ

2

∫
QT

(
uh
)2
dxdt+

1

2σ

∫
QT

f2dxdt,
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where σ > 0 will be chosen later.
By inequality (1.8), we have∫

QT

(uh)2dxdt ≤ C1.7(λ, n,Ω)

∫
QT

n∑
i=1

λhi (x, t)

(
∂uh

∂xi

)2

dxdt.

Thus, the number σ can be chosen so small that the inequality∥∥∥uh∥∥∥
W 1,1

2,λ,ϕ(QT )
≤ C1.8(λ, n,Ω) ‖f‖L2(QT )

, (1.18)

is fulfilled. It follows from (1.18) that the sequence
{
uh(x, t)

}
is strongly bounded in

◦
W

1,1

2,λ,ϕ(QT ). Thus, this sequence is weakly compact in
◦
W

1,1

2,λ,ϕ(QT ). In other words, there

is a subsequence
{
uhk(x, t)

}
, hk → 0 for k →∞ and the function u(x, t) ∈

◦
W

1,1

2,λ,ϕ(QT )

such that for any ψ(x, t) ∈ C∞0 (QT )

lim
k→∞

(
Luhk , ψ

)
= (Lu, ψ). (1.19)

Moreover, the function u(x, t) satisfies the estimate

‖u‖
W 1,1

2,λ,ϕ(QT )
≤ C1.8 ‖f‖L2(QT )

.

Let us now show that the function u(x, t) satisfies equality (1.7) for any υ(x, t) ∈
◦
W

1,1

2,λ(QT ). Since the function uhk ∈
◦
W

2,2

2,λ,ϕ(QT ) is a weak solution of equation (1.14)

(see [22]), then for any υ(x, t) ∈
◦
W

1,1

2,λ(QT ) and t1 ∈ (−T, 0] the following equality holds∫
Qt1

( n∑
i,j=1

(ai,j)hk
∂uhk

∂xj

∂υ

∂xi
+ ϕ(−t)∂u

hk

∂t

∂υ

∂t
− uhk ∂υ

∂t

)
dxdt

+

∫
Ω
uhk(x, t1)υ(x, t1)dx = −

∫
Qt1

fυdxdt. (1.20)

Hence if we pass to the limit as k →∞, then by virtue of (1.19) it remains to prove that∫
Qt1

n∑
i,j=1

(aij)hk
∂uhk

∂xj

∂υ

∂xi
dxdt→

∫
Qt1

n∑
i,j=1

aij
∂u

∂xj

∂υ

∂xi
dxdt,

for k →∞. We have∫
Qt1

n∑
i,j=1

(aij)hk
∂uhk

∂xj

∂υ

∂xi
dxdt =

∫
Qt1

n∑
i,j=1

((aij)hk − aij)
∂uhk

∂xj

∂υ

∂xi
dxdt

+

∫
Qt1

n∑
i,j=1

aij(x, t)
∂uhk

∂xj

∂υ

∂xi
dxdt. (1.21)

The first term on the right-hand side of equality (1.21) tends to zero as k →∞. Indeed∣∣∣ ∫
Qt1

n∑
i,j=1

((aij)hk − aij)
∂uhk

∂xj

∂υ

∂xi
dxdt

∣∣∣
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≤
∫
Qt1

n∑
i,j=1

∣∣∣∣((aij)hk − aij) ∂uhk∂xj

∂υ

∂xi

∣∣∣∣√λj(x, t)√λ−1j (x, t)dxdt

≤
n∑

i,j=1

sup
Qt1

|(aij)hk − aij | ·
(∫

Qt1

λ−1i (x, t)

(
∂υ

∂xi

)2

dxdt
) 1

2

×
(∫

Qt1

λj(x, t)

(
∂uhk

∂xj

)2

dxdt
) 1

2 → 0, k →∞

due to estimate (1.18).
The second term on the right-hand side of equality (1.21) can be represented as∫

Qt1

n∑
i,j=1

aij(x, t)
∂uhk

∂xj

∂υ

∂xi
dxdt =

∫
Qt1

n∑
i,j=1

aij(x, t)

(
∂uhk

∂xj
− ∂u

∂xj

)
∂υ

∂xi
dxdt

+

∫
Qt1

n∑
i,j=1

aij(x, t)
∂u

∂xj

∂υ

∂xi
dxdt.

We have ∫
Qt1

n∑
i,j=1

aij(x, t)

(
∂uhk

∂xj
− ∂u

∂xj

)
∂υ

∂xi
dxdt

=

∫
Qt1

n∑
i,j=1

aij(x, t)
∂

∂xj
(uhk − u) ∂υ

∂xi
dxdt→ 0, k →∞

due to the weak convergence of the sequence {uhk(x, t)} to the function u(x, t) in space
W 1,1

2,λ,ϕ(QT ).
Consequently∫
Qt1

n∑
i,j=1

(aij(x, t))hk
∂uhk

∂xj

∂υ

∂xi
dxdt→

∫
Qt1

n∑
i,j=1

aij(x, t)
∂u

∂xj

∂υ

∂xi
dxdt, k →∞.

Thus, the existence of a weak solution to problem (1.1)-(1.2) for ∂Ω ∈ C2 is proved.
Now let ∂Ω∈C2. Consider a sequence of domains Ωm,m = 1, 2, ..., for which ∂Ωm ∈

C2; Ωm ⊂ Ωm+1 ⊂ Ωm+1 ⊂ Ω, lim
m→∞

Ωm = Ω. Assume QmT = Ωm × (−T, 0).
Let um− be the solution of the boundary value problem

Lum = f(x, t), (x, t) ∈ QmT ; um|Γ (QmT ) = 0.

By what was proved above, for every natural number m such a solution exists, and

‖um‖
W 1,1

2,λ,ϕ(Q
m
T )
≤ C1.10 ‖f‖L2(QmT ) ,

holds, where the constant C1.10 is independent of m.
Let us extend the function um by zero in QT \QmT and denote the extended function

again by um. It is clear that um ∈
◦
W

1,1

2,λ,ϕ(QT ) and

‖um‖
W 1,1

2,λ,ϕ(QT )
≤ C1.10 ‖f‖L2(QT )

.



N.R. Amanova 61

Thus the sequence {um} is strongly bounded in
◦
W

1,1

2,λ,ϕ(QT ) and therefore, it is weakly

compact in the same space, i.e., there is a function u(x, t) ∈
◦
W

1,1

2,λ,ϕ(QT ) and a sequence
{mk},mk → 0 as k → ∞ such that the corresponding sequence {umk(x, t)} weakly

converges to the function u(x, t) in
◦
W

1,1

2,λ,ϕ(QT ) as k →∞. It remains to show that u(x, t)
is a solution of the equation Lu = f . This is done quite similarly to the previous one.

Let us now prove the uniqueness of the solution of the problem (1.1)-(1.2). To do this, it
suffices to prove that the homogeneous boundary value problem Lu = 0, u|Γ (QT ) = 0 has
only the zero solution.

In equality (1.7) we set f = 0, and then as υ(x, t) we take the function

υ(h)(x, t) =
1

h

t∫
t−h

υ(x, τ)dτ, (1.22)

where υ(x, t) is an arbitrary element of
◦
W

1,1

2,λ,ϕ(Q
−h
T ), equal to zero for t ≥ −h and for

t ≤ −T (see [21]), and fix h > 0. Here Q−hT = Ω × (−h, 0). Therefore, we have∫
Q−h

n∑
i,j=1

aij(x, t)
∂u

∂xj

∂(υ(h))

∂xi
dxdt−

∫
Q−h

u
∂(υ(h))

∂t
dxdt

+

∫
Q−h

ϕ(−t)∂u
∂t

∂(υ(h))

∂t
dxdt = 0. (1.23)

In all terms of equality (1.23), we transfer the averages (·)h from υ by the factors in front
of it, in addition, in the second term we will integrate by parts over t. Then we obtain∫

Q−h

n∑
i,j=1

(
aij(x, t)

∂u

∂xj

)
(h)

∂υ

∂xi
dxdt+

∫
Q−h

∂(u(h))υ

∂t
dxdt

+

∫
Q−h

(
ϕ(−t)∂u

∂t

)
(h)

∂υ

∂t
dxdt = 0, (1.24)

where

u(h)(x, t) =
1

h

∫ t+h

t
u(x, τ)dτ.

We have

∂(u(h))

∂t
=

∂

∂t

(1
h

∫ t+h

t
u(x, τ)dτ

)
=

1

h
(u(x, t+ h)− u(x, t)).

Consequently, u(h) ∈
◦
W

1,1

2,λ(QT ). Therefore, in equality (1.24), instead of υ we can take
the function u(h). Then∫

Q−h

n∑
i,j=1

(
aij(x, t)

∂u

∂xj

)
(h)

∂(u(h))

∂xi
dxdt+

∫
Q−h

∂(u(h))u(h)

∂t
dxdt

+

∫
Q−h

(
ϕ(−t)∂u

∂t

)
(h)

(
∂u

∂t

)
(h)

dxdt = 0.
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Since ∫
Q−h

∂(u(h))u(h)

∂t
dxdt =

1

2

∫
Ω

(
u(h)(x, 0)

)2
dx ≥ 0,

then ∫
Q−h

n∑
i,j=1

(
aij

∂u

∂xj

)
(h)

∂(u(h))

∂xi
dxdt+

∫
Q−h

(
ϕ(−t)∂u

∂t

)
(h)

(
∂u

∂t

)
(h)

dxdt ≤ 0.

Fix an arbitrary h0 ∈ (−T, 0). Then in the previous inequality the domain Q−h can be
replaced by the domain Q−h0 , where h ≤ h0. Thus∫

Q−h0

n∑
i,j=1

(
aij

∂u

∂xj

)
(h)

∂(uh)

∂xi
dxdt+

∫
Q−h0

(
ϕ(−t)∂u

∂t

)
(h)

(
∂u

∂t

)
(h)

dxdt ≤ 0.

Hence as h→ 0, we have∫
Q−h0

n∑
i,j=1

aij
∂u

∂xj

∂u

∂xi
dxdt+

∫
Q−h0

ϕ(−t)
(
∂u

∂t

)2

dxdt ≤ 0.

Taking into account condition (1.3), we have∫
Q−h0

(
γ

n∑
i=1

λi(x, t)

(
∂u

∂xi

)2

+ ϕ(−t)
(
∂u

∂t

)2
)
dxdt ≤ 0. (1.25)

From (1.25) it follows that
∫

Q−h0

n∑
i=1
λi(x, t)

(
∂u
∂xi

)2
dxdt = 0.

On the other hand∫
Q−h0

u2dxdt ≤ C1.11

∫
Q−h0

n∑
i=1

λi(x, t)

(
∂u

∂xi

)2

dxdt = 0.

Thus, the function u(x, t) = 0 almost everywhere in Q−h0 . Since h0 is arbitrary, it follows
that u(x, t) = 0 almost everywhere in QT . Theorem 1.2 is proved.
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