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1 Introduction

Fractional differential equations have attracted much attention and have been the focus
of many studies due mainly to their varied applications in many fields of science and engi-
neering. In other words, fractional differential equations are widely used to describe many
important phenomena in various fields such as physics, biophysics, chemistry, biology, con-
trol theory, economy and so on; see [8]. For an extensive literature in the study of fractional
differential equations, we refer the reader to [4]. However, it should be noted that in recent
years, there have been many works related to fractional integro-differential equations, see
[1], [2] and the references therein.

In this work we give a characterization for boundedness of Riemann-Liouville fractional
integral by nonlinear ordinary fractional differential equation on Lebesgue spaces. The main
contribution in this paper is the characterization of best possible constant by specially quan-
tity. Similar problems for classical Hardy operator were studied in [5]-[7], [9], [10], [12],
[13] and e.t.c.

The paper is structured as follows. Section 2 contains some preliminaries along with the
standard ingredients used in the proofs. The main results are stated and proved in Section 3.
Namely, in Section 3 we found the interval for the best possible constant for boundedness
of Riemann-Liouville fractional integral on Lebesgue spaces.
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2 Preliminaries

For convenience, in this section we recall some basic definitions and properties of the frac-
tional calculus theory and auxiliary lemmas which will be used throughout this work, see
[11].

Let 1 ≤ p < ∞ and let p′ be Hölder conjugate of p defined by p′ =
p

p− 1
. We denote

by Lp(0, 1) the space of Lebesgue measurable functions f on (0, 1) such that

‖f‖Lp(0,1) = ‖f‖p =

 1∫
0

|f(t)|p dt


1
p

<∞.

It is well known that the space Lp(0, 1) is a Banach spaces.
The set of all absolutely continuous functions on (0, 1) is denoted by AC(0, 1).
In this section, we present a review of some definitions and preliminary facts which are

particularly relevant for the results of the book [11].

Definition 2.1 Let f ∈ L1(0, 1). For almost all t ∈ (0, 1) and α > 0, the left and right
Riemann-Liouville fractional integrals of order α are defined by

Iα0+f(t) :=
1

Γ (α)

t∫
0

(t− τ)α−1f(τ)dτ,

and

Iα0−f(t) :=
1

Γ (α)

1∫
t

(τ − t)α−1f(τ)dτ,

respectively, where Γ (α) =
∞∫
0

tα−1 e−t dt is the Euler gamma function.

Definition 2.2 Let f ∈ AC(0, 1). For almost all t ∈ (0, 1) and 0 < α < 1, the left and
right Caputo fractional derivatives of order α are defined by

CDα
0+f(t) :=

1

Γ (1− α)

t∫
0

(t− τ)−αf ′(τ)dτ,

and

CDα
0−f(t) := −

1

Γ (1− α)

1∫
t

(τ − t)−αf ′(τ)dτ,

respectively.

It is obvious that the Caputo fractional derivative of a constant is equal to zero.

Theorem 2.1 Let 0 < α < 1 and let f ∈ C1(0, 1). Then,

CDα
0+I

α
0+f(t) = f(t), CDα

0−I
α
0−f(t) = f(t),

and
Iα0+

CDα
0+f(t) = f(t)− f(0), Iα0−CDα

0−f(t) = f(t)− f(1).
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3 Main results.

Suppose that λ is a positive number. Let us consider the nonlinear fractional integro-differential
equation

λ
(
CDα

0+y(t)
)p−1 − Iα0−y

p−1(t) = 0, (3.1)

where
y(t) > 0, CDα

0+y(t) > 0, CDα
0+y(t) ∈ AC(0, 1), 0 < t < 1. (3.2)

We say that y is a solution of the problem (3.1)-(3.2), if y satisfies the nonlinear frac-
tional integro-differential equation (3.1) almost everywhere on (0, 1) and the condition
(3.2). We set y(0) = lim

t→+0
y(t).

First we prove the following theorem.

Theorem 3.1 Let 1 < p <∞ and let λ be a positive number given in (3.1). Suppose that u
is an absolutely continuous function on (0, 1) satisfies condition u(0) = u(+0) = 0. If the
problem (3.1)-(3.2) has a solution, then

‖u‖p ≤ λ
1
p
∥∥CDα

0+u
∥∥
p
.

Proof. By Theorem 2.1 for any absolutely continuous function the integral representa-
tion

u(x) = u(0) + Iα0+
CDα

0+u(x) = u(0) +
1

Γ (α)

∫ x

0
(x− t)α−1 CDα

0+u(t) dt

holds. Since u(0) = 0, it follows that

u(x) =
1

Γ (α)

∫ x

0
(x− t)α−1 CDα

0+u(t) dt.

Let a function y be a solution of problem (3.1)-(3.2). Then using Hölder inequality, we
have

|u(x)| ≤ 1

Γ (α)

∫ x

0
(x− t)α−1

∣∣CDα
0+u(t)

∣∣ dt
=

1

Γ (α)

∫ x

0
(x− t)

α−1
p (x− t)

α−1
p′
∣∣CDα

0+u(t)
∣∣ [CDα

0+y(t)
]− 1

p′
[
CDα

0+y(t)
] 1
p′ dt

≤
(

1

Γ (α)

∫ x

0
(x− t)α−1 CDα

0+y(t) dt

) 1
p′
(

1

Γ (α)

∫ x

0
(x− t)α−1

∣∣CDα
0+u(t)

∣∣p [CDα
0+y(t)

]− p
p′ dt

) 1
p

=
(
Iα0+

CDα
0+y(x)

) 1
p′

(
1

Γ (α)

∫ x

0
(x− t)α−1

∣∣CDα
0+u(t)

∣∣p [CDα
0+y(t)

]1−p
dt

) 1
p

= (y(x)− y(0))
1
p′

(
1

Γ (α)

∫ x

0
(x− t)α−1

∣∣CDα
0+u(t)

∣∣p [CDα
0+y(t)

]1−p
dt

) 1
p

≤ (y(x))
1
p′

(
1

Γ (α)

∫ x

0
(x− t)α−1

∣∣CDα
0+u(t)

∣∣p [CDα
0+y(t)

]1−p
dt

) 1
p

=

(
1

Γ (α)

∫ x

0
(x− t)α−1

∣∣CDα
0+u(t)

∣∣p [CDα
0+y(t)

]1−p
(y(x))p−1 dt

) 1
p

.
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Thus, we get (∫ 1

0
|u(x)|pdx

) 1
p

≤
(∫ 1

0

(
1

Γ (α)

∫ x

0
(x− t)α−1

∣∣CDα
0+u(t)

∣∣p [CDα
0+y(t)

]1−p
(y(x))p−1 dt

)
dx

) 1
p

=

(
1

Γ (α)

∫ 1

0

∫ 1

0
(x− t)α−1

∣∣CDα
0+u(t)

∣∣p [CDα
0+y(t)

]1−p
(y(x))p−1 χ(0,x)(t) dt dx

) 1
p

=

(∫ 1

0

∣∣CDα
0+u(t)

∣∣p [CDα
0+y(t)

]1−p ( 1

Γ (α)

∫ 1

t
(x− t)α−1 (y(x))p−1 dx

)
dt

) 1
p

=

(∫ 1

0

∣∣CDα
0+u(t)

∣∣p [CDα
0+y(t)

]1−p
Iα0−y

p−1(t) dt

) 1
p

= λ
1
p

(∫ 1

0

∣∣CDα
0+u(t)

∣∣p dt) 1
p

.

This completes the proof.
We need the following Theorem.

Theorem 3.2 Let 1 < p <∞ and let 0 < α < 1. Then the inequality∥∥Iα0+f∥∥p ≤ C ‖f‖p (3.3)

holds if and only if α >
1

p′
.

Besides, if C > 0 is the best constant in (3.3), then(
1− 1

αp′

) 1
p

2
1
p′ ((α− 1)p+ 1)

1
p (αp′)

1
p′((α−1)p+1) Γ (α)

≤ C ≤ 1

((α− 1)p+ 1)
1
p (αp′)

1
p′ Γ (α)

Proof. Sufficiency. By Minkowski’s inequality,we have

∥∥Iα0+f∥∥p ≤ 1

Γ (α)

(∫ 1

0

(∫ x

0
(x− t)α−1 |f(t)| dt

)p
dx

) 1
p

=
1

Γ (α)

(∫ 1

0

(∫ 1

0
(x− t)α−1 |f(t)|χ(0,x)(t) dt

)p
dx

) 1
p

≤ 1

Γ (α)

(∫ 1

0

(∫ x

0
(x− t)(α−1)p |f(t)|p dx

) 1
p

dt

)

=
1

Γ (α)

(∫ 1

0
|f(t)|

(∫ x

0
(x− t)(α−1)p dx

) 1
p

dt

)

=
1

((α− 1)p+ 1)
1
p Γ (α)

(∫ 1

0
|f(t)| (1− t)α−

1
p′ dt

)
.

Applying Hölder’s inequality in the last integral, we get

∥∥Iα0+f∥∥p ≤ 1

((α− 1)p+ 1)
1
p Γ (α)

(∫ 1

0
(1− t)αp′−1 dt

) 1
p′

‖f‖p
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=
1

((α− 1)p+ 1)
1
p (αp′)

1
p′ Γ (α)

‖f‖p.

Necessity. Let us suppose that Iα0+ : Lp(0, 1) → Lp(0, 1) is bounded and (3.3) holds.
Let t > 0 be fixed. We define the test function f as ft(y) = χ(0, t2)

(y). We have

∥∥Iα0+ft∥∥p = 1

Γ (α)

(∫ 1

0

(∫ x

0
(x− y)α−1 ft(y) dy

)p
dx

) 1
p

≥ 1

Γ (α)

(∫ 1

t

(∫ t
2

0
(x− y)α−1 dy

)p
dx

) 1
p

≥ 1

2Γ (α)

(∫ 1

t
x(α−1)p dx

) 1
p

t

=
1

2Γ (α)

(
1− t(α−1)p+1

(α− 1)p+ 1

) 1
p

t.

We set Aα = {α : (α− 1)p+ 1 > 0} and let A?α = {α : (α− 1)p+ 1 < 0} . Then, we
have(

1− t(α−1)p+1

(α− 1)p+ 1

) 1
p

=

(
1− t(α−1)p+1

) 1
p

((α− 1)p+ 1)
1
p

χAα (α) +

(
t(α−1)p+1 − 1

) 1
p

[− ((α− 1)p+ 1)]
1
p

χ
A?α

(α)

≥
(
1− t(α−1)p+1

) 1
p

((α− 1)p+ 1)
1
p

.

By (3.3), we have

∥∥Iα0+ft∥∥p ≥ 1

2 ((α− 1)p+ 1)
1
p Γ (α)

(
1− t(α−1)p+1

) 1
p
t.

On the other hand, ‖ft‖p =
(
t

2

) 1
p

. So, by (3.3), one has

1

2
1
p′ ((α− 1)p+ 1)

1
p Γ (α)

sup
0<t<1

(
1− t(α−1)p+1

) 1
p
t

1
p′ ≤ C.

It is obvious that

sup
0<t<1

(
1− t(α−1)p+1

) 1
p
t

1
p′ =

(
1− 1

αp′

) 1
p
(

1

αp′

) 1
p′((α−1)p+1)

.

Thus, we get (
1− 1

αp′

) 1
p

2
1
p′ ((α− 1)p+ 1)

1
p (αp′)

1
p′((α−1)p+1) Γ (α)

≤ C.

This completes the proof.
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Theorem 3.3 Let 1 < p < ∞ and let 1
p′ < α < 1. Suppose that u is an absolutely

continuous function on (0, 1) satisfies condition u(0) = 0. Let λ > 0 is a possible best
constant such that

‖u‖p ≤ λ
1
p
∥∥CDα

0+u
∥∥
p
.

Then

1− 1
αp′

2p−1 ((α− 1)p+ 1) (αp′)
p−1

(α−1)p+1 Γ 1/p(α)
≤ λ ≤ 1

((α− 1)p+ 1) (αp′)p−1 Γ 1/p(α)
.

Proof. Substituting f with CDα
0+u and take into account u(0) = 0 in inequality (3.3),

we prove Theorem 3.3.
Now we reduce integro-differential equation which corresponds to (3.1).

Theorem 3.4 Let 0 < α < 1. Then every solution to the nonlinear integral equation

λ Iα0+
(
CDα

0+y
)p−1

(t)−
1∫

0

Kα(t, u)y
p−1(u)du = 0 (3.4)

is a solution to nonlinear fractional differential equation

λ CDα
0−
(
CDα

0+y
)p−1

(t) = yp−1(t),

where

Kα(t, u) =
1

Γ 2(α)

t∫
0

q(u, τ)

(t− τ)1−α
dτ,

q(u, τ) =

{
(u− τ)α−1, if 0 < τ < u < 1
0, if 0 < u ≤ τ < 1.

Proof. We have

1∫
0

Kα(t, u)y
p−1(u)du =

1

Γ 2(α)

1∫
0

yp−1(u)

t∫
0

q(u, τ)

(t− τ)1−α
dτdu

=
1

Γ 2(α)

t∫
0

dτ

(t− τ)1−α

1∫
0

yp−1(u)q(u, τ)du

=
1

Γ (α)

t∫
0

dτ

(t− τ)1−α
1

Γ (α)

1∫
τ

yp−1(u)

(u− τ)1−α
du = Iα0+

(
Iα0−y

p−1) (t).
Therefore, we can rewrite the equation (3.4) in the form

λ Iα0+
(
CDα

0+y
)p−1

(t)− Iα0+
(
Iα0−y

p−1) (t) = 0. (3.5)

By Theorem 2.1, we can prove that CDα
0− ◦ CDα

0+ ◦
(
Iα0+

(
Iα0−y

p−1)) = yp−1. Thus, by
applying operator CDα

0− ◦ CDα
0+ to (3.5) we prove Theorem 3.4.
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Remark 3.1 Let p = 2. Then equation (3.1) is a linear fractional integro-differential equa-
tion

λ CDα
0+y(t)− Iα0−y(t) = 0.

It is obvious that the last equation can be reduced to a differential equation

λ CDα
0−
(
CDα

0+y
)
(t)− y(t) = 0,

which contains the left and right fractional Caputo derivatives. Similar differential equations
were studied in [3].
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