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Abstract. In this paper, we prove the existence of the solution to the Dirichlet problem for the linear
elliptic equation of the type

− ∂

∂zi

(
aij (z)

∂u

∂zj

)
= f, z ∈ Ω, u

∣∣∣
∂Ω

= 0

in an open bounded domain Ω ⊂ RN , N ≥ 2. The coefficients matrix A =
{
aij(z)

}N
i,j=1

satisfies the
non-uniform ellipticity condition, meaning that it is positive almost everywhere in Ω and

c1(ω(x) |ξ|2 + |η|2) ≤ A(z)ζ · ζ ≤ c2(ω(x) |ξ|2 + |η|2)

for all, z ∈ Ω, ζ ⊂ RN with ζ = (ξ, η), ξ ∈ Rn, η ∈ Rm; the positive weight function ω ∈ A2 is of
Muckenhoupt’s class in Rn and the f is a Radon measure.

Keywords. liner elliptic equation, non-uniformly elliptic equation, degenerate elliptic equation, weak
solution, Dirichlet problem, weights, Sobolev spaces.
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1 Introduction

This paper relates to the solvability question of the Dirichlet problem for a class of
equations with principal part is a second-order divergent structure linear elliptic operator of
N variables

− ∂

∂zi

(
aij (z)

∂u

∂zj

)
= f, z ∈ Ω, u

∣∣∣
∂Ω

= 0, (1.1)

where the coefficients matrix A = ∥aij (z) ∥ (1 ≤ i, j ≤ N) is of measurable functions
class on an open bounded domain Ω of N -dimensional Euclidean space RN . Following
the usual summation convention, repeated indexes indicate summation from 1 to N . The
equation we consider is elliptic in Ω , since the coefficients matrix A(z) = {aij (z)} is
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positively definite almost everywhere in Ω. Moreover, we assume that there exist positive
constants c1, c2 such that

c1(ω(x) |ξ|2 + |η|2) ≤ A(z)ζ · ζ ≤ c2(ω(x) |ξ|2 + |η|2) (1.2)

a.e. z ∈ Ω, with ∀ζ = (ξ, η) ∈ RN , N = n+m, ξ ∈ Rn, η ∈ Rm. Throughout the paper
we have taken the m,n ≥ 1. We use the terminology non-uniformly elliptic equation for
(1.1) since condition (1.2) in general does not imply the uniform ellipticity condition:

c′1 |ζ|
2 ≤ A(z)ζ · ζ ≤ c′2 |ζ|

2 .

Here the µ in (1.1) is a Radon measure defined on Borelian subsets of Ω, that is a
functional f : C0(Ω) → R satisfying |⟨f, φ⟩| ≤ c ∥φ∥C(Ω) for all continuous functions
with compact support in Ω. Also we may assume that ⟨f, φ⟩ =

∫
Ω φdµ with ∥f∥ = Varµ.

The weight function ω(x) is in from Ap (Rn) -class. The term ”weight function” is used to
denote a positive measurable function receiving finite positive values a.e. x ∈ Rn.

We say the positive weight function ω : Rn → [0,∞) (n ≥ 1) is a function of the
Ap (Rn)-class (or simply, Ap (Rn)-class for p > 1 if(∫

Q
ω dx

)(∫
Q
ω−1/(p−1) dx

)p−1

≤ α|Q|p (1.3)

or for p = 1 if (∫
Q
ω dx

)
1

inf ω
x∈Q

≤ α|Q|

for all the Euclidean balls Q ⊂ Rn, where |Q| denotes the Lebesgue measure of the ball Q.
The constant α > 0 does not depend on Q.

The model problem for the case is

divx (ω (x)▽xu) +∆yu = f (x; y) , (x; y) ∈ Ω, u
∣∣∣
∂Ω

= 0,

where, ▽x =
(

∂
∂x1

, ∂
∂x2

, ..., ∂
∂xn

)
, ∆y = ∂2

∂y21
+ ∂2

∂y22
+ ...+ ∂2

∂y2m
.

LetΩ ⊂ RN be a domain and p > 1.Define the weighted Sobelev space W̊ 1,p(Ω;ωdz).
For that, denote the non-uniformly degenerate gradient

∇ωg =
(
ω1/p∇xg,∇yg

)
, |∇ωg| = (ω(x)|∇xg|p + |∇yg|p)1/p ,

for a function g(x, y) dependent on two variables of the function x ∈ Rn and y ∈ Rm. Do
not mix the non-uniform gradient with partial gradients ∇xg and ∇yg of the total gradient
vector ∇g .

Define the Banach space W 1,p(Ω;ωdz) a closer of the Lipshitz continuous functions
g : Ω → R under the norm

∥g∥W 1,p(Ω;ωdz) = ∥g∥Lp(Ω) + ∥∇ωg∥Lp(Ω).

For the case p = 2 and ω ∈ A2 (Rn) we deal with the following Hilbert space. Set an
inner production for ∀u, φ ∈ Lip0(Ω) as

⟨u;φ⟩ = (∇ωu,∇ωφ) =

∫
Ω

[
ω(x)uxiφxi + uyjφyj

]
dz
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and set the corresponding norm ∥u∥ :=
√

⟨u;u⟩. Closure of Lip0(Ω) on this norm is a

Hilbert space and denote it W̊ 1,2(Ω;ωdz), the norm is equivalently
(∫

Ω |∇ωg|2 dz
)1/2

(
see the Lemma 4.1 below).

A solution of the problem (1.1) is defined using the distributional approach. We say
u ∈ W̊ 1,1(Ω;ωdz) is a (weak) solution of problem (1.1) if ∀φ ∈ Lip0(Ω)∫

Ω

aij (z)
∂u

∂zi

∂φ

∂zj
dz =

∫
Ω

φdµ. (1.4)

A study of non-uniform elliptic equations on the subject of boundary value problem
and regularity properties of weak solutions is rising in many applications. This is explained
mainly by the development of associated Sobolev and Poincare-type inequality approaches
to the area. Many studies are started in this connection in the last 30 years by Franchi,
Gutierrez, Wheeden, and Mamedov (see, e.g., [14], [15], [16], [23], [24], [25], [27]). On
the study of regularity properties of weak solutions of the non-uniformly elliptic equations,
we refer to Trudinger (see, [31]), Wang (see, [32]) and Franchi, Gutierrez, Wheeden (see,
e.g., [15], [16]); the last time studies see the works by DiFazio, Fanciullo, Zamboni (see,
e.g., [11], [12], [13]). The topic of this paper is a study of the measure data problems for
a class of non-uniformly elliptic equations which is new and not much studied. We make
a step to make attention to the case. For that, the approach by Bocardo-Gallouet is applied
(see, e.g., [2], [3]). Note that the measure data regularity problems for uniformly elliptic
equations ( also for the nonlinear equations with small terms ) were intensively studied
in the 80th year by Boccardo, Benilan, Brezis, Gallouet, Kilpelainen, Pierre, Stampacchia,
Vazguees, and many other authors (see, e.g., [1], [3], [4], [5], [6], [7], [8], [17], [18], [19],
[21], [22], [30], [7] (see, also [26], [28], [29])).

2 A quasi-metric

In this section, we define a quasi-metric in order to propose the Sobolev-type inequality
results in Lemma 4.1 below. Following the ideas of (see, [15, Proposition 2.2, 2.2a, 2.2b])
or (see, e.g., [14], [16]) set up the quasi-metric corresponding to the equation (1.1) for
p = 2.

Define the function hx(.) : [0,∞) → [0,∞),

hx(t) = t

(
t−n

∫
Q(x,t)

ω−1/(p−1)(s)ds

)1/p′

, t > 0, x ∈ Rn,

where Q(x, t) = {ξ ∈ Rn : |ξ − x| < t}; the ω : Rn → (0,∞)} is an Ap (Rn)- class
function (satisfying the condition (1.3)). Assume that hx(0) = 0 and hx(∞) = ∞.
Consider also the inverse function h−1

x (.) : [0,∞ → [0,∞) defined

h−1
x (v) = sup {ρ > 0 : hx(ρ) ≤ v} , v > 0.

Define the quasi-metric on RN = Rn × Rm of points z = (x, y) as following. Define
the distance between two points z1 = (x1, y1) and z2 = (x2, y2) as

ρ(z1, z2) = max
{
|x2 − x1|, h−1

x1
(|y2 − y1|), h−1

x2
(|y2 − y1|)

}
. (2.1)
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Theorem 2.1 Let ω ∈ Ap(Rn)-class function. The distance (2.1) makes Rn+m a homo-

geneous space
(
Rn+m, ρ, µ

)
using on place of the doubling measure the dz = dxdy or

ωdz.

See the proof e.g. in [23]. In those proofs, the main step is to show the quasi-metric
ρ : RN × RN → [0,∞) satisfies the triangle property

ρ(z1, z2) ≤ K0

(
ρ(z1, z3) + ρ(z2, z3)

)
(2.2)

with a constant K0 ≥ 1 independent from z1, z2, z3 ∈ RN following the ideas e.g. of [15].
Denote Bz0

R the quasi-metric ball
{
ζ ∈ RN : ρ(ζ, z0) < R

}
with center z0 = (a, b) ∈

Rn × Rm of radius R, also the presentation

B(z0, R) = Q(a,R)× E

(
b, R

(
R−n

∫
Q(a,R)

ω−1/(p−1)(s) ds
)1/p′)

, (2.3)

valid for it, where

E(b, R) =
{
y ∈ Rm : |y − b| < R

(
R−n

∫
Q(a,R)

ω−1/(p−1)(τ) dτ
)1/p′}

,

where Q(a,R) ⊂ Rn is the n-dimensional Euclidean ball with center a of radius R.

3 Main results

Consider the Dirichlet problem

− ∂

∂zi

 N∑
i,j=1

aij (z)
∂u

∂zj

 = f(z), z ∈ Ω,

u = 0 in ∂Ω,

(3.1)

whenever f ∈ L1(Ω) ∩W−1,2(Ω) for a bounded domain Ω ⊂ RN . The following main
result is asserted for the problem (3.1).

Theorem 3.1 Let condition (1.2) be satisfied and µ be a Radon measure with support
in Ω. Then there exists a weak solution u(z) of the problem (3.1) with regularity u ∈
W̊ 1,r(Ω;ωdz) for r ∈ (1, N/(N − 1)) .

We use the following main assertion to prove Theorem 3.1 .

Lemma 3.1 Let r ∈ (1, N/(N − 1)) and f(z) ∈ L1(Ω)∩W−1,2(Ω;ωdz) with
∥f∥L1(Ω) ≤ B for a B > 0. Then there exists C > 0 depending on the function ω, the do-
main Ω and c1, c2, α,m, n (m,n ≥ 1) such that for the solution u(z) of problem (3.1) the
estimate

∥u∥W̊ 1,r(Ω;ωdz) ≤ C ∥f∥L1(Ω) (3.2)

holds.
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4 Useful assertion

Also to prove Theorem 3.1, we use several assertions for the problem equation (3.1). Also,
we use the next result on non-uniform Sobolev inequality of Fabes-Kenig-Serapioni (see,
[10]) and Chanillo-Wheeden (see, [9]) type.

Lemma 4.1 Let B(z0, R) be a fixed ball of the quasi-metric (2.1) with z0 = (a, b) ∈
RN ; a ∈ Rn, b ∈ RN−n. Let p > 1 and ω : Rn → (0,∞) be positive measurable function
on Rn satisfying the Muckenhoupt condition Ap(Rn) such that for a q ≥ p(∫

Q(x,r)
ω(s)ds

/∫
Q(x,R)

ω(s)ds
) 1

p
−m

p

(
1
p
− 1

q

)
≥ C

(
r
/
R
)1−m(n+p)

p

(
1
p
− 1

q

)
(4.1)

for all r ∈ (0, R), x ∈ Q(a,R). Then 1

|B(z0, R)|

∫
B(z0,R)

|f(z)|qdz


1/q

≤ CR

(
−
∫
Q(a,R)

ω−1/(p−1)(s)ds

)1/p′

×

(
1∣∣B(z0, R)

∣∣ ∫
B(z0,R)

(
ω(x)|∇xf |p + |∇yf |p

)
dz

)1/p

(4.2)

holds for all Lipschitz continuous functions f in the ball B(z0, R) ⊂ RN vanishing on
∂B(z0, R) (of Sobolev type ) or with zero average fB(z0,R) =

∫
B(z0,R) f(z)dz = 0 (of

Poincare type); the constant C0 depends on n,m, q and C, δ from condition Ap(Rn).

The proof of Lemma 4.1 is obtained from the general results of [24] (or see, [25] ) by
the way e.g. of [23, Remark 2.1 as v ≡ 1 ].

Throughout the paper, we denote by C,C1, C2, C3 different positive constants which
may change their values at each appearance and which may depend on the c1, c2, q, n,m, α,Ω
and the weight function ω ∈ A2(Rn).

5 Lax-Milgram solution

Lemma 5.1 Let (1.2) be satisfied, the positive weight function ω is of A2(Rn) -class func-
tion and for that the condition (4.1) is satisfied by p = 2 and q ≥ 2. Suppose f(z) ∈
L1(Ω) ∩W−1,2(Ω;ωdz). Then, there exists a unique solution u(z) of the problem (3.1) in
space W 1,2(Ω;ωdz).

Proof. Apply Lax-Milgram principle (see, [20]) to prove Lemma 5.1. Solution of the prob-
lem (3.1) due to the understanding∫

Ω

aij (z)
∂u

∂zi

∂φ

∂zj
dz =

∫
Ω

f (z)φdz, ∀φ ∈ W̊ 1,2(Ω;ωdz).

Set the bilinear form

B(u, φ) =

∫
Ω

aij (z)
∂u

∂zi

∂φ

∂zj
dz
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and establish that the bilinear form is coercive and bounded on space W̊ 1,2(Ω;ωdz). Using
(1.2) and that,

|B(u, φ)| =

∣∣∣∣∣∣
∫
Ω

aij (z)
∂u

∂zi

∂φ

∂zj
dz

∣∣∣∣∣∣
≤

∫
Ω

aij (z)
∂u

∂zi

∂u

∂zj
dz

1/2∫
Ω

aij (z)
∂φ

∂zi

∂φ

∂zj
dz

1/2

≤ c2 ∥∇ωu∥L2(Ω) ∥∇ωφ∥L2(Ω) = c2 ∥u∥ ∥φ∥ ,

(5.1)

the boundedness is ready. Using the assumption (4.1) for the function ω ∈ A2(Rn) we have
the inequality (4.2) with p = 2 and q ≥ 2 for a function u ∈ W̊ 1,2(Ω;ωdz) :

∥u∥L2(Ω) ≤ |Ω|1−1/q∥u∥Lq(Ω) ≤ C1|Ω|1−1/q∥∇ωu∥L2(Ω), (5.2)

where C1 > 0 depends on ω,Ω, n,m, α and the constant C from (4.1). On basis of (5.2)
and (6.4) we get

B(u, u) =

∫
Ω

aij (z)
∂u

∂zi

∂u

∂zj
dz ≥ c1 ∥∇ωu∥2W̊ 1,2(Ω;ωdz)

≥ C2∥u∥2W̊ 1,2(Ω;ωdz)
.

Show, the functional

⟨f, φ⟩ =
∫
Ω

f(z)φ(z)dz

is bounded on W̊ 1,2(Ω;ωdz). On basis of the assumptions,

|⟨f, φ⟩| ≤ ∥f∥W̊−1,2(Ω;ωdz) ∥φ(z)∥W̊ 1,2(Ω;ωdz) = ∥f∥W̊−1,2(Ω;ωdz)∥φ∥.

In order to have the bounded norm ∥f∥W−1,2(Ω;ωdz) propose a summability condition,
where W−1,2(Ω;ωdz) is the conjugate space of W 1,2(Ω;ωdz).

Setting in Lemma 4.1 the p = 2 we set the condition (4.1) in order to have the inclusion
W̊ 1,2(Ω;ωdz) ⊂ Lq(Ω), i.e. to be valid the inequality (4.2).

Propose a summability condition on the function f(z) in order to have f(z) ∈W−1,2(Ω;ωdz).
On basis of Holder’s inequality,

|⟨f, φ⟩| ≤ ∥φ∥Lq,ω(Ω) ∥f∥L
q′,ω−1/(q−1) (Ω)

It remains to request to be finite ∥f∥L
q′,ω−1/(q−1) (Ω) for some q > 2. Therefore and using

(4.2) as p = 2 we get

|⟨f, φ⟩| ≤ c1 ∥φ∥W̊ 1,2(Ω;ωdz) ∥f∥L
q′,ω−1/(q−1) (Ω) = c1∥φ∥|f∥L

q,ω−1/(q−1)dz
(Ω),

i.e. Lq′,ω−1/(q−1) (Ω) ⊂ W̊−1,2 (Ω;ωdz) for any bounded domain Ω ⊂ RN if ω ∈ A2

over the n-dimensional balls of Rn and (4.1) is satisfied as p = 2. Also, assume that
Lq′,ω−1/(q−1)(Ω) ⊂ L1(Ω). This is fulfilled e.g. by using Holder’s inequality, ∥f∥L1(Ω) ≤
ω (Ω)1/q ∥f∥L

q′,ω−1/(q−1) (Ω)· Applying now Lax-Milgram’s principle we obtain a unique
solution to the problem (3.1).
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6 Proof of Lemma 3.1

Proof. We may approximate the functions of L1(Ω) with smooth functions fk → f a.e.
in Ω. Hence the request lies on summability of the function ω−1/(q−1) ⊂ L1(Ω) for some
q > 2. Let fk(z) be an element of L1(Ω)∩W 1,−2(Ω;ωdz) and u(z) be the corresponding
solution of (3.1), and suppose that ∥f∥L1(Ω) ≤ B.

Let k be a fixed integer and define ψ as

ψ(s) =


k if s > k,

s if − k ≤ s ≤ k,

−k if s < −k.

where s ∈ R. The using of ψ(u) as test function in (1.4) yields∫
Ω

ψ(u)′aij (z)
∂u

∂zi

∂u

∂zj
dz =

∫
Ω

f (z)ψ(u)dz.

We have
c1

∫
Ω

ψ(u)′ |∇ωu|2 dz ≤
∫
Ω

f (z)ψ(u)dz. (6.1)

By virtue of the non-uniformly ellipticity condition this yields∫
Dn

|∇ωu|2dz ≤
1

c1

∣∣∣∣∣∣
∫
Ω

f(z)ψ(u)dz

∣∣∣∣∣∣
≤
∫
Ω

|f(z)| |ψ(u)| dz ≤ k

c1

∫
Ω

|f(z)| dz = k

c1
∥f∥L1(Ω)

= kc̃1

(6.2)

with
Dk = {z ∈ Ω, |u(z)| ≤ k, |∇ωu| ≥M}. (6.3)

Now we define ψ as
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ψ(s) =



1 if s > k + 1,

s− k if k ≤ s ≤ k + 1,

0 if − k < s < k,

s+ k if − k − 1 ≤ s ≤ −k,
−1 if s < −k − 1

Then, if we denote (1/c1) ∥f∥L1(Ω)
by c̃1,∫

Bk

|∇ωu|2dz ≤ c̃1 (6.4)

with
Bk = {z ∈ Ω, k ≤ |u(z)| ≤ k + 1, |∇ωu| ≥M}. (6.5)

The using (6.2) we have
Dk = B0 ∪B1 ∪ · · · ∪Bk−1

For any r < 2, Applying Holder’s inequality

∞∑
i=1

|aibi| =

( ∞∑
i=1

|ai|α
) 1

α
( ∞∑

i=1

|bi|β
) 1

β

, 1 < α, β <∞, 1/α+ 1/β = 1,

it follows that

∫
Bk

|∇ωu|rdz ≤

∫
Bk

|∇ωu|2dz


r/2

|Bk|(2−r)/2 , |Bk| = measNBk.
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If we take 1/q = 1/r − 1/N for 1 < r < N/(N − 1) and using the inequality |Bk| ≤
(1/kq)

∫
Bk

|u|q dz, we get

∫
Bk

|∇ωu|rdz ≤ c̃2

∫
Bk

|u|qdz


(2−r)/2

1

k(2−r)q/2
, c̃2 = c̃

q/2
1 . (6.6)

Now applying Holder’s inequality for the number series with the exponents 2/(2 − r) and
2/r we obtain for all positive integers n0

∞∑
k=k0

∫
Bk

|∇ωu|rdz ≤ c̃2

 ∞∑
l=l0

∫
Bn

|u|qdz

(2−r)/2 ∞∑
k=k0

1

n(2−r)q/r

r/2

where q(2−r)
r > 1.

The last estimate, together with (6.5), yields

∫
Ω

|∇ωu|rdz ≤ c3 + c4k
r/2
0 + c̃2 ∥u∥q(2−r)/2

Lq

 ∞∑
k=k0

1

k(2−r)q/r

r/2

, (6.7)

where c3 =M r |Ω| , c4 = c̃
r/2
1 |Ω|(2−r)/2 .

By virtue of Sobolev imbedding theorem we have,

∥u∥rLq ≤ c5

kr/20 + ∥u∥(2−r)q/2
Lq

 ∞∑
k=k0

1

k(2−r)q/r

r/2
 . (6.8)

Also (2−r)q
r > 1 and r ≥ (2− r)q/2 as r < N/(N − 1). Therefore the relevant choice

of k0 in estimate (6.8) implies
∥u∥Lq ≤ c6. (6.9)

Then, due to (6.7),
∥∇ωu∥Lr ≤ c7,

which proves the main Lemma 3.1.

7 Proof of Theorem 3.1

Now we are ready to prove Theorem 3.1 basing on the obtained estimates (3.2), (6.9).
Let f be a Radon measure and ∇ωu ∈ L1(Ω) satisfies (1.4) and the non-uniform ellipticity
condition (1.2) is satisfied. A sequence (fk) ⊂ W−1,2(Ω;ωdz) ∩ L1(Ω) and converges to
f in the distribution sense, meaning that for ∀φ ⊂ W̊ 1,2(Ω;ωdz) ∩ L∞(Ω) and ⟨fk, φ⟩⇀∫
Ω φdµ, therefore ∫

Ω

aij (z)
∂uk
∂zi

∂φ

∂zj
dz =

∫
Ω

fk (z)φdz (7.1)

Let uk be the solution of (3.1) with f = fk. Then for every integer k,

− ∂

∂zi

(
aij (z)

∂uk
∂zj

)
= fk (z) (7.2)
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has a solution uk ∈ W̊ 1,2(Ω;ωdz) in the distribution sense, by virtue of the Lemma 5.1.
On basis of Lemma 5.1 there exists M1 > 0 such that ∥uk∥W̊ 1,r(Ω;ωdz) ≤ M1. Using

the Banach-Aloglu theorem, there exist an u ∈ W̊ 1,r(Ω;ωdz) and some subsequence
{uk} satisfying uk ⇀ u in the weak topology of W̊ 1,r(Ω;ωdz). Therefore, uk → u

in L1(Ω). This follows from the compact imbedding W̊ 1,r(Ω;ωdz) ⊂⊂ Ls(Ω), where
1 ≤ s < rN/(N − r). Thus ∥uk∥s ≤ c ∥uk∥W̊ 1,r(Ω;ωdz) , and uk → u in the sense of
almost everywhere convergence.

The assumption,
N∑

i,j=1

aijζiζj ≥ c1

(
ω(x) |ξ|2 + |η|2

)
plays a central role in proving such a convergence, moreover, the following result holds
true.

Let the conditions (1.2) is fulfilled, ω ∈ A2, (fk) be a sequence of W 1,−2(Ω;ωdz) ∩
L1(Ω) for which uk is a solution of (3.1) with µ = fkdz. We get the boundedness of the
sequence in L1(Ω). We get uk is relatively compact in W̊ 1,r(Ω;ωdz) as r is in [1, N/(N −
1)).

Now let ψ ∈ C(R,R) be such that, for fixed ε > 0,

ψ(s) =


ε if s > ε,

s if − ε ≤ s ≤ ε,

−ε if s < −ε.

Then, using (1.4) with dµ = fkdz and fmdz, u = uk and um, as well as v = ψ(uk−um)
we get ∫

Ω

 N∑
i,j=1

aij(z)

(
∂un
∂zi

− ∂um
∂zi

)(
∂un
∂zj

− ∂um
∂zj

)ψ′(un − um)

=

∫
Ω

(fn − fm)ψ(un − um).

(7.3)
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Since ∥fn∥L1(Ω) ≤ B, ∀B > 0, by virtue of above assumption,

N∑
i,j=1

aij(z)
(
ζi − ζ ′i

) (
ζj − ζ ′j

)
≥ c1

(
ω(x)

∣∣ξ − ξ′
∣∣2 + ∣∣η − η′

∣∣2)
and (7.3) we have∫

Dk,m,ε

|∇ωuk −∇ωum|2 ≤ 2εB, Dk,m,ε = {z ∈ Ω, |uk(z)− um(z)| ≤ ε} . (7.4)

Thus, ∫
Dk,m,ε

(
ω(x) |∇x(uk − um)|2 + |∇y(uk − um)|2

)
dz ≤ 2εB. (7.5)

Using (7.5) and Holder’s inequality we get∫
Dk,m,ε

|∇ωuk −∇ωum| ≤ c̃1ε
1/2|Dk,m,ε|1/2, (7.6)

where c̃1 = (2B)1/2

Estimate (7.6) is used to prove that (∇ωuk) is Cauchy sequence in L1(Ω). We have∫
Ω

|∇ω (uk − um)| =
∫

Dk,m,ε

|∇ω (uk − um)|+
∫

Ω\Dk,m,ε

|∇ω (uk − um)| .

Then using (7.6),∫
Ω

|∇ω (un − um)| ≤ c̃1ε
1/2 + c̃2 |{z ∈ Ω; |un(z)− um(z)| > ε}|1−1/q , (7.7)

where q is in (1, N/(N − 1)).
Let uk be a Cauchy sequence in measure, (7.7) implies that for some k0(ε) depending

on ε ∫
Ω

|∇ω (uk − um)| ≤ c̃1ε
1/2 + ε for all k,m ≥ k0(ε),

which proves that (∇ωuk) is a Cauchy sequence in L1(Ω), means that

∇ωuk → ∇ωu in L1(Ω).

By (6.9), we get the convergence

∇ωun → ∇ωu in Lr(Ω), for all r ∈ [1, N/(N − 1)).

Thus, uk is relatively compact in W̊ 1,r(Ω;ωdz) . By (3.1) together with Vitali’s theorem,
we have  N∑

j=1

aij(z)
∂uk
∂zj

→

 N∑
j=1

aij(z)
∂u

∂zj

 in Lr(Ω)
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for all r in [1, N/(N − 1)). Now we can pass to limit in (7.1) and conclude that

− ∂

∂zi

(
aij (z)

∂u

∂zj

)
= µ.

Thus, u is a weak solution of (1.4), i.e. it is a solution of problem (1.1), this completes the
proof of Theorem 3.1.
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