Some notions of *I*₃-convergence sequences spaces defined by modulus function and strong Cesáro sequence spaces

Carlos Granados *

Received: 30.12.2022 / Revised: 07.08.2023 / Accepted: 23.09.2023

Abstract. In this article, we use the notion of I_3 -convergence to introduce and study some triple sequences spaces by using modulus function and strong Cesáro sequences spaces. Those sequences spaces are namely $c_{3_0}^I$, c_3^I , $l_{3_\infty}^I$, $m_{3_0}^I$, $C_{s_3}^I$ and $C_{s_{3_0}}^I$.

Keywords. I_3 -convergence \cdot triple sequences spaces \cdot modulus function \cdot strong Cesáro sequences spaces.

Mathematics Subject Classification (2010): 40C05, 46A45, 46E30, 46E40, 46B20

1 Introduction

The notion of I-convergence was itnroduced by Kostyrko, Salat and Wilczynski [8] as a generalization of statical convergence. This notion has been studied by many mathematicians in different fields of the mathematics. Fast [2] in 1951 introduced the concept of statistical convergence, at the same time Steinhaus [15] in 1951 by his own way defined the notion of ordinary and asymptotic convergences. After that, Fridy [3,4] studied the statistical convergence and he created a relation which linked this notion with the notion of summability theory. Some years after, Salat et al. [13] studied some properties of I-convergence, and then this notion started to be studied in double and tripe sequences spaces. Addicionaly, triple sequences on I-convergence was studied by Sahiner and Tripathy [14] in which they showed some interesting results which were useful for Tripathy and Goswami [16, 17] who studied this notion by suing Orlicz function and multiple sequences in probabilistic normed spaces, respectively. On the other hand, the idea of modulus was introduced by Nakano [10]. Khan et al. [7] studied I-convergent sequences by using modulus function through Zeweir I-convergent.

Ruckle [12] took the idea of modulus function for constructing the sequence spaces $X(f) = \{x = (x_n) : \sum_{k=1}^{\infty} f(|x_n|) < \infty\}$. Otherwise, the notion of strong Cesáro convergence was initially defined by [5], this notion was defined as: A sequence (x_n) on a normed space $(X, \|\cdot\|)$ is called strongly Cesáro convergence to L if $\lim_{n\to\infty} 1/k \sum_{n=1}^{k} \|x_n - L\| = 0$. In [10, 11], the authors extended this notion in several fields. Recently, in 2020, Faisal [1] defined the concept of strongly Cesáso ideal convergent and proved some properties.

Carlos Granados

Universidad Nacional Abierta y a Distancia, Escuela de Educación, Barranquilla, Colombia E-mail: carlosgranadosortiz@outlook.es

^{*} Corresponding author

Throughout this paper, a triple sequence x is represented by (x_{nmj}) i.e. a triple infinite array of real numbers where $n, m, j \in \mathbb{N}$, \mathbb{N} denotes the set of natural number. In this paper, we took the notion of triple sequence for studding new results over the sequence spaces c_{30}^I , c_3^I , $l_{3\infty}^I$, m_3^I and m_{30}^I , they denote the *I*-null, *I*-convergent, *I*- bounded, bounded *I*-convergence and bounded *I*-null, respectively. Besides, we introduce the notion of C_{s30}^I which denotes the space of all Cesáro triple *I*-convergent sequences and the notion of C_{s30}^I which denotes the space of Cesáro triple ideal null sequences. Furthermore, ω denotes the class of all sequences.

2 Preliminaries

In this section, we show the definitions and notions which are useful for the developing of this paper.

Definition 2.1 An ideal I is a collection of subsets of X which satisfies the following conditions:

1 If $A \in I$ and $B \subset A$, then $B \in I$. 2 If $A, B \in I$, then $A \cup B \in I$.

Definition 2.2 A non-empty family of sets $F(I) \subset 2^X$ is said to be filter on X if and only if $\phi \notin F(I)$, for $A, B \in F(I)$, we have that $A \cap B \in F(I)$ and for each $A \in F(I)$ and $A \subset B$, implies that $B \subset F(I)$.

Definition 2.3 An ideal $I \subset 2^X$ is called non-trivial if $I \neq 2^X$. A non-trivial ideal $I \subset 2^X$ is called admissible if $\{\{x\} : x \in X\} \subset I$.

Definition 2.4 For each ideal I, there is a filter F(I) corresponding to I such that $F(I) = \{H \subseteq \mathbb{N} : H^c \in I\}$, where $H^c = \mathbb{N} - H$.

Lemma 2.1 Let $H \in F(I)$ and $J \subseteq \mathbb{N}$. If $J \notin I$, then $J \cap \mathbb{N} \notin I$ (see [6]).

Lemma 2.2 If $I \subset 2^{\mathbb{N}}$ and $J \subseteq \mathbb{N}$. If $J \notin I$, then $J \cap \mathbb{N} \notin I$ (see [6]).

Definition 2.5 $I_f = I$ denotes the class of all finite subsets of \mathbb{N} . Then, I_f is a non-trivial admissible ideal and I_f convergence coincides with the usual convergence with respect to the metric in X.

Definition 2.6 $I = I_{\delta}$ and $A \subset \mathbb{N}$ with $\delta(A) = 0$. I_{δ} is a non-trivial admissible ideal.

Definition 2.7 A function $f : [0, \infty) \to [0, \infty)$ is said to be modulus if

 $\begin{array}{l} 1 \ f(t) = 0 \ if \ and \ only \ if \ t = 0. \\ 2 \ f(t+u) \leq f(t) + f(u). \\ 3 \ f \ is \ non-decreasing. \\ 4 \ f \ is \ continuous \ from \ the \ right \ at \ zero. \end{array}$

Definition 2.8 A modulus function f is said to be Δ_2 -condition if for all values of u there exits a constant K > 0 such that $f(Lu) \leq KLf(u)$ for all values of L > 1.

Definition 2.9 A triple sequence (x_{nmj}) is said to be I_3 -convergence to a number L if for every $\epsilon > 0$, $\{(m, n, j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : |x_{nmj} - L| \ge \epsilon\} \in I$. In this case, we write I_3 -lim $x_{nmj} = L$

Definition 2.10 A triple sequence (x_{nmj}) is said to be I_3 -null if L = 0. In this case, we write I_3 -lim $x_{nmj} = 0$

Definition 2.11 A triple sequence (x_{nmj}) is said to be I_3 -Cauchy to a number L if for every $\epsilon > 0$ there exits, $h = h_0, l = l_0$ and $b = b_0$ such that $\{(m, n, j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : |x_{nmj} - x_{lbh}| \ge \epsilon\} \in I$.

Definition 2.12 A triple sequence (x_{nmj}) is said to be I_3 -bounded if there exits M > 0 such that $\{(m, n, j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : |x_{nmj}| > M\} \in I$.

Definition 2.13 A triple sequence space Q is said to be solid if $(\gamma_{nmj}x_{nmj}) \in Q$ whenever $(x_{nmj}) \in Q$ and for all sequences (γ_{nmj}) of scalars with $|\gamma_{nmj}| \leq 1$, for all $n, m, j \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$.

Definition 2.14 A triple sequence space Q is said to be monotone if it contains the canonical pre-images of all its step spaces.

Lemma 2.3 Let M be a sequence space. If M is solid, then M is monotone (see [6]).

Definition 2.15 A triple sequence space Q is said to be convergence free if $(y_{nmj}) \in Q$, whenever $(x_{nmj}) \in Q$ and $x_{nmj} = 0$ implies $y_{nmj} = 0$.

Definition 2.16 A triple sequence space Q is said to be sequence algebra if $(x_{nmj} \cdot y_{nmj}) \in Q$, whenever $(x_{nmj}) \in Q$ and $(y_{nmj}) \in Q$.

Definition 2.17 A map h defined on a domain $D \subset X$ i.e. $h : D \subset X \to \mathbb{R}$ is said to satisfy Lipschitz condition if $|h(x) - h(y)| \le K|x - y|$ where K is known as the Lipschitz constant.

Remark 2.1 A convergence field of *I*-convergence is a set $F(I) = \{x = (x_n) \in l_{\infty} : \text{there} \text{ exists } I - \lim x \in \mathbb{R}\}$. The convergence field F(I) is a closed linear sub-space of l_{∞} with respect to the supremum norm $F(I) = l_{\infty} \cap c^{I}$ (see [13]).

Otherwise, consider a function $\phi : F(I) \to \mathbb{N}$ such that $\phi(x) = I - \lim x$, for all $x \in F(I)$, then the function $\phi : F(I) \to \mathbb{R}$ is a Lipschitz function (see [9]).

3 I_3 -convergent by modulus function

We define and introduce the following classes of sequence spaces:

$$c_3^I(f) = \{ (x_{nmj}) \in \omega : I_3 - \lim f(|x_{nmj}) = L, \text{ for some } L \} \in I,$$
 (3.1)

$$c_{3_0}^I(f) = \{ (x_{nmj}) \in \omega : I_3 - \lim f(|x_{nmj}) = 0 \} \in I,$$
(3.2)

$$l_{3_{\infty}}^{I}(f) = \{(x_{nmj}) \in \omega : \sup_{nmj} f(|x_{nmj}) < \infty\} \in I.$$
(3.3)

Besides, $m_3^I(f)$ and $m_{3_0}^I(f)$ are denoted as:

$$\begin{split} m_3^I(f) &= c_3^I(f) \cap l_{3_{\infty}}^I, \\ m_{3_0}^I(f) &= c_{3_0}^I(f) \cap l_{3_{\infty}}^I. \end{split}$$

Theorem 3.1 For any modulus function f, the sequences c_3^I , $c_{3_0}^I(f)$, $m_3^I(f)$ and $m_{3_0}^I(f)$ are linear.

Proof. We just prove the case $c_{I}^{I}(f)$, the others are proved similarly. Let $(r, r) \in c_{I}^{I}(f)$ and let $c_{I} \wedge b$ a scalars. Then

Let $(x_{nmj}), (y_{nmj}) \in c_3^I(f)$ and let γ, δ be scalars. Then

$$I_3$$
-lim $f(|x_{nmj} - L_1|) = 0$, for some $L_1 \in c_2$

$$I_3$$
-lim $f(|y_{nmj} - L_1|) = 0$, for some $L_2 \in c$.

This is for a given $\epsilon > 0$, thus we have that

$$W_1 = \{(n, m, j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : f(|x_{nmj} - L_1|) > \frac{\epsilon}{2}\} \in I,$$
(3.4)

$$W_2 = \{(n, m, j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : f(|y_{nmj} - L_2|) > \frac{\epsilon}{2}\} \in I.$$
(3.5)

It is well know that f is a modulus function, for that reason we have that

$$f(|\gamma x_{nmj} + \delta y_{nmj}) - (\gamma L_1 + \delta L_2)|)$$

$$\leq f(|\gamma||x_{nmj} - L_1|) + f(|\delta||y_{nmj} - L_2|)$$

$$\leq f(|x_{nmj} - L_1|) + f(|y_{nmj} - L_2|).$$

Now, taking into account (4) and (5), we have that

 $\{(n,m,j)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:f(|(\gamma x_{nmj}+\delta y_{nmj})-(\gamma L_1+\delta L_2)|)>\epsilon\subset W_1\cup W_2.$

Therefore, this shows that $(\gamma x_{nmj} + \delta y_{nmj}) \in c_3^I(f)$, and hence $c_3^I(f)$ is a linear space.

Theorem 3.2 Any sequence $x = (x_{nmj}) \in m_3^I(f)$ is I_3 -convergent if and only if for every $\epsilon > 0$ there exits $N(\epsilon), M(\epsilon), J(\epsilon) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ such that

 $\{(n,m,j)\in \mathbb{N}\times\mathbb{N}\times\mathbb{N}: f(|x_{nmj}-x_{N(\epsilon)M(\epsilon)J(\epsilon)}|)<\epsilon\}\in m_3^I.$

Proof. Consider $L = I_3$ -lim x, then

$$\beta(\epsilon) = \{(n, m, j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : |x_{nmj} - L| < \frac{\epsilon}{2}\} \in m_2^I(f). \text{ For all } \epsilon > 0.$$

Now, fix $N(\epsilon), M(\epsilon), J(\epsilon) \in \beta(\epsilon)$. Then , we have that

$$|x_{N(\epsilon)M(\epsilon)J(\epsilon)} - x_{nmj}| \le |x_{N(\epsilon)M(\epsilon)J(\epsilon)} - L| + |L - x_{nmj}| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Which holds for all $n, m, j \in \beta(\epsilon)$. Hence,

$$\{(n,m,j)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:f(|x_{nmj}-x_{N(\epsilon)M(\epsilon)J(\epsilon)}|)<\epsilon\}\in m_3^I(f)$$

Conversely, consider

$$\{(n,m,j)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:f(|x_{nmj}-x_{N(\epsilon)M(\epsilon)J(\epsilon)}|)<\epsilon\}\in m_3^I(f).$$

This is that

$$\{(n,m,j)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:(|x_{nmj}-x_{N(\epsilon)M(\epsilon)J(\epsilon)}|)<\epsilon\}\in m_3^I(f),\text{ for all }\epsilon>0$$

Then, the set

$$W_{3}(\epsilon) = \{(n, m, j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : x_{nmj} \in [x_{N(\epsilon)M(\epsilon)J(\epsilon)} - \epsilon, x_{N(\epsilon)M(\epsilon)J(\epsilon)} + \epsilon]\} \in \mathcal{J}_{3}^{I}(f),$$
for all $\epsilon > 0$.

Now, let $A(\epsilon) = [x_{N(\epsilon)M(\epsilon)J(\epsilon)} - \epsilon, x_{N(\epsilon)M(\epsilon)J(\epsilon)} + \epsilon]$. If we fix $\epsilon > 0$, then we have $W_3(\epsilon) \in m_3^I(f)$, as well as, $W_3(\epsilon/2) \in m_3^I(f)$. Hence, $W_3(\epsilon) \cap W_3(\epsilon/2) \in m_3^I(f)$. This implies that $A(\epsilon) \cap A(\epsilon/2) \neq \emptyset$. This is that

$$\{(n,m,j)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:x_{nmj}\in A\}\in m_3^I(f).$$

Thus, $diam(A) \leq diam(A(\epsilon))$, where the diam of A denotes the length of interval A. In this way, by induction we obtain the sequence of closed intervals

$$A(\epsilon) = I_0 \supseteq I_1 \supseteq \dots \supseteq I_{nmj} \supseteq \dots$$

With the property that $diam(I_{nmj}) \leq \frac{1}{2}diam(I_{n-1)(m-1)(j-1)})$ for n, m, j = 2, 3, 4, ...and $\{(n, m, j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : x_{nmj} \in I_{nmj}\} \in m_3^I$ for n, m, j = 2, 3, 4, ... Then, there exits a $\sigma \in \bigcap I_{nmj}$ where $n, m, j \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ such that $\sigma = I_3$ -lim x. Therefore, $f(\sigma) = I - 3$ -lim f(x). Hence, $L = I_3$ -lim f(x).

Theorem 3.3 Let f and g be modulus functions that satisfy the Δ_2 -conditions. If X is any of the spaces c_3^I , $c_{3_0}^I$, m_3^I and $m_{3_0}^I$. Then, the following assertions hold:

 $\begin{array}{ll} 1 \ X(g) \subseteq X(f \cdot g). \\ 2 \ X(f) \cap X(g) \subseteq X(f+g). \end{array}$

Proof. 1 Let $(x_{nmj}) \in c_{3_0}^I(g)$. Then,

$$I_3 - \lim_{n \to j} g(|x_{n \to j}|) = 0.$$
(3.6)

Now, let $\epsilon > 0$ and choose δ with $0 < \delta < 1$ such that $f(r) < \epsilon$ for 0 < r < 1. Write $y_{nmj} = g(|x_{nmj}|)$ and consider $\lim_{nmj} f(y_{nmj} = \lim_{mj} f(y_{nmj})_{y_{nmj}^{<\delta}} + \lim_{mj} f(y_{mnj})_{y_{nmj}^{>\delta}}$. Then, we have that

$$\lim_{n \to j} f(y_{n \to j}) \le f(2) \lim_{n \to j} (y_{n \to j}).$$
(3.7)

For $y_{nmj} > \delta$, we have $y_{nmj} < \frac{y_{nmj}}{\delta} < 1 + \frac{y_{nmj}}{\delta}$. It is well known that f is non-decreasing, this implies that

$$f(y_{nmj}) < f(1 + \frac{y_{nmj}}{\delta}) < \frac{1}{2}f(2) + \frac{1}{2}f(\frac{2y_{nmj}}{\delta}).$$

Now, it is well known that f satisfies Δ_2 -condition, therefore

$$f(y_{nmj}) < \frac{1}{2}K\frac{y_{nmj}}{\delta}f(2) + \frac{1}{2}K\frac{y_{nmj}}{\delta}f(2) = K\frac{y_{nmj}}{\delta}f(2).$$

In consequence,

$$\lim_{n \to j} f(y_{n \to j}) \le \max(1, K) \delta^{-1} f(2) \lim_{n \to j} (y_{n \to j}).$$
(3.8)

By (6), (7) and (8), we have that $(x_{nmj}) \in c_{3_0}^I(f \cdot g)$. Therefore, $c_{3_0}^I(g) \subseteq c_{3_0}^I(f \cdot g)$. The others cases are proved similarly. 2 Let $(x_{nmj}) \in c_{3_0}^I(f) \cap c_{3_0}^I(g)$. Then,

$$I_3-\lim_{n \to j} f(|x_{n \to j}|) = 0$$
 and $I_3-\lim_{n \to j} g(|x_{n \to j}|) = 0$,

90 I₃-convergence sequences spaces defined by modulus function and strong Cesáro sequence

 $\lim_{n \to j} (f+g)(|x_{n \to j}|) = \lim_{n \to j} f(|x_{n \to j}|) + g(|x_{n \to j}|) = \lim_{n \to j} f(|x_{n \to j}|) + \lim_{n \to j} g(|x_{n \to j}|) = 0.$

Therefore, $\lim_{n \to j} (f+g)(|x_{n \to j}|) = 0$, which implies that $(x_{n \to j}) \in X(f+g)$, this is that $X(f) \cap x(G) \subseteq x(f+g)$.

Theorem 3.4 The spaces $c_{3_0}^I(f)$ and $m_{3_0}^I(f)$ are solid and monotone.

Proof. We just prove the case $c_3^I(f)$, the another is proved similarly.

Let $(x_{nmj}) \in c_{2_0}^I(f)$, then I_3 -lim_{nmj} $f(|x_{nmj}|) = 0$. Now, let (γ_{nmj}) be a sequence of scalars with $|\gamma_{nmj}| \leq 1$ for all $n, m, j \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$. Then, we have that

 I_3 -lim $f(|\gamma_{nmj}x_{nmj}|) \le I_3$ -lim_ $nmj f(|\gamma_{nmj}||x_{nmj}|)$

$$= |\gamma_{nmj}| I_3 \operatorname{-lim}_{nmj} f(|x_{nmj}|) = 0$$

Thus, $I_3-\lim_{n \to j} f(|\gamma_{nmj}x_{nmj}|) = 0$ for all $n, m, j \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ which implies that $\gamma_{nmj}x_{nmj} \in c_{3_0}^I(f)$. Therefore, the space $c_{3_0}^I(f)$ is solid and by the Lemma 2.3, $c_{3_0}^I$ is monotone.

Remark 3.1 The spaces c_3^I and m_3^I are neither solid nor monotone in general as can be seen in the following example:

Let $I = I_{\delta}$ and $f(x) = x^4$ for all $x \in [0, \infty)$. Consider the K-step space $X_K(f)$ of X defined by: Let $(x_{nmj}) \in X$ and let $(y_{nmj}) \in X_K$ be such that

$$(y_{nmj}) = \begin{cases} (x_{nmj}), \text{ if } n, m, j \text{ is even} \\ 0, & \text{otherwise} \end{cases}$$
(3.9)

Suppose that (x_{nmj}) is a sequence defined by $(x_{nmj}) = 1$ for all $n, m, j \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$. Then, $(x_{nmj}) \in c_3^I(f)$, but its K-stepspace preimage does not belong to $c_3^I(f)$. Therefore, $c_3^I(f)$ is not monotone and hence c_3^I i not solid.

Theorem 3.5 The spaces $c_3^I(f)$ and $c_{3_0}^I(f)$ are sequence algebra.

Proof. We just prove the case $c_{3_0}^I(f)$, the another is proved similarly.

Let $(x_{nmj}, (y_{nmj}) \in c_{3_0}^I(f)$. Then, I_3 -lim $f(|x_{nmj}|) = 0$ and I_3 -lim $f(|y_{nmj}|) = 0$. Then, we have that I_3 -lim $f(|x_{nmj} \cdot y_{nmj}|) = 0$. Therefore, $(x_{nmj} \cdot y_{nmj}) \in c_{3_0}^I(f)$ is a sequence algebra.

Remark 3.2 The spaces $c_3^I(f)$ and $c_{3_0}^I(f)$ are not convergence free in general as can be seen in the following example:

Let $I = I_f$ and $f(x) = x^5$ for all $x \in [0, \infty)$. Consider the sequences (x_{nmj}) and (y_{nmj}) defined by $x_{nmj} = 1/(n+m+j)$ and $y_{nmj} = n+m+j$ for all $n, m, j \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$. Then, $(x_{nmj}) \in c_{3_0}^I$ and C_3^I , but $(y_{nmj}) \notin c_{3_0}^I$ and $(y_{nmj}) \notin c_3^I$. Therefore, $c_3^I(f)$ and $c_{3_0}^I(f)$ are not convergence free.

Theorem 3.6 Let f be a modulus function. Then, $c_{3_0}(f) \subset c_3^I \subset l_{3_{\infty}}^I$ and the inclusions are proper.

Proof. The inclusion $c_{3_0}^I(f) \subset c_3^I(f)$ is followed by (1) y (2).

Let $x = x_{nmj} \in c_3^I$. Then, there exits $L \in C$ such that I_3 -lim $f(|x_{nmj} - L|) = 0$. Thus, we have that $f(|x_{nmj}|) \le 1/2f(|x_{nmj} - L|) + f1/2(|L|)$. Taking the supremum over n, m and j on both sides, we obtain $x_{nmj} \in l_{3\infty}^I$.

Now, we will show that the inclusion is proper.

1 $c_{3_0}(f) \subset c_3^I(f)$. Let $x = (x_{nmj}) \in c_3^I(f)$, then I_3 -lim $f(|x_{nmj}|) = L$ for some $L \in C$ and $L \neq 0$, which implies $x \notin c_{3_0}^I(f)$. Therefore, the inclusion is proper. 2 $c_3^I(f) \subset l_{3_\infty}(f)$. Let $x = (x_{nmj}) \in l_{3_0}^I(f)$, then

$$I_{3}-\lim f(|x_{nmj}|) < \infty,$$

$$I_{3}-\lim f(|x_{nmj} - L + L|) < \infty,$$

$$I_{3}-\lim f(|x_{nmj} - L|) + I_{3}-\lim f(|L|) < \infty,$$

$$I_{3}-\lim f(|x_{nmj}) - L|) < \infty,$$

$$I_{3}-\lim f(|x_{nmj}) - L|) \neq 0.$$

Therefore, $x \notin c_3^I(f)$ and then the inclusion is proper.

Theorem 3.7 The function $t : m_3^I(f) \to \mathbb{R}$ is the Lipschitz function, wehre $m_3^I(f) = c_3^I(f) \cap l_{3\infty}^I(f)$, and hence uniformly continuous.

Proof. Let $x, y \in m_3^I(f)$, where $x \neq y$. Then, the sets

$$W_x = \{(n, m, j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : |x_{nmj} - t(x)| \ge ||x - y||\} \in I,$$

$$W_y = \{(n, m, j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : |y_{nmj} - t(y)| \ge ||x - y||\} \in I.$$

Then, the sets

$$P_x = \{(n, m, j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : |x_{nmj} - t(x)| < ||x - y||\} \in M_3^I(f),$$
$$P_y = \{(n, m, j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : |y_{nmj} - t(y)| < ||x - y||\} \in M_3^I(f),$$

Therefore, we also have that $P_x \cap P_y \in m_3^I(f)$, thus $B \neq \emptyset$. Now, by taking $n, m, j \in B$,

$$|t(x) - t(y)| \le |t(x) - x_{nmj}| + |x_{nmj} - y_{nmj}| + |y_{nmj} - t(y)| \le 3||x - y||.$$

Consequently, t is a Lipschitz function.

Remark 3.3 The above result is satisfied for $m_{3_0}^I$ and it is proved similarly.

4 I₃-convergent by strong Cesáro sequence spaces

We define and introduce the following classes of sequence spaces:

Definition 4.1
$$C_{s3}^{I} = \{x = (x_{nmj}) \in \omega : \{(n, m, j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : I_3 \text{-} \lim_{iop \to \infty} \frac{1}{iop} \sum_{nmj=1}^{iop} ||x_{nmj} - L|| = 0\}$$

for some $L \in C\} \in I$.

Definition 4.2
$$C_{s3_0}^I = \{x = (x_{nmj}) \in \omega : \{(n, m, j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : I_3 \text{-} \lim_{iop \to \infty} \frac{1}{iop} \sum_{nmj=1}^{iop} ||x_{nmj}|| = 0\}\} \in I.$$

Theorem 4.1 The sequences spaces C_{s3}^{I} and $C_{s3_{0}}^{I}$ are linear.

Proof. Let $x = (x_{nmj})$ and $y = (y_{nmj})$, where $x, y \in C_{s3}^{I}$. Then , we have that

$$I_{3}-\lim_{iop\to\infty}\frac{1}{iop}\sum_{nmj=1}^{iop}\|x_{nmj}-L\|=0 \text{ for some } L\in C.$$
$$I_{3}-\lim_{iop\to\infty}\frac{1}{iop}\sum_{nmj=1}^{iop}\|y_{nmj}-L_{0}\|=0 \text{ for some } L_{0}\in C.$$

Now, let

$$\mathcal{V}_1 = \{ (n, m, j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \frac{1}{iop} \sum_{nmj=1}^{iop} \|x_{nmj} - L\| \},$$
(4.1)

$$\mathcal{V}_2 = \{(n,m,j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \frac{1}{iop} \sum_{nmj=1}^{iop} \|y_{nmj} - L_0\|\}.$$
(4.2)

Now, let γ and ϕ be two any scalars. Taking into account the properties of norm, we have that

$$\lim_{iop\to\infty} \frac{1}{iop} \sum_{nmj=1}^{iop} \|(\gamma x_{nmj} + \phi y_{nmj}) - (\gamma L + \phi L_0)\|$$

$$\leq \lim_{iop\to\infty} \frac{1}{iop} |\gamma| \|x_{nmj} - L\| + \lim_{iop\to\infty} \frac{1}{iop} |\phi| \|y_{nmj} - L_0\|.$$

Thus, from (10) and (11), we have that for every $\epsilon > 0$

$$\{(n,m,j)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:\lim_{iop\to\infty}\frac{1}{iop}\sum_{nmj=1}^{iop}\|(\gamma x_{nmj}+\phi y_{nmj})-(\gamma L+\phi L_0)\|\geq\epsilon\}\subset\mathcal{V}_1\cup\mathcal{V}_2.$$

Therefore, $(\gamma x_{nmj} + \phi y_{nmj}) \in C_{s3}^I$ for all scalars γ, ϕ and $(x_{nmj}), (y_{nmj}) \in C_{s3}^I$. In consequence, this implies that C_{s3}^I is a linear space.

The proof of $C_{s3_0}^I$ is a linear space is proved in the same manner of the C_{s3}^I .

Proposition 4.1 Let $x = (x_{nmj}) \in \omega$ be any triple sequence, then $C_{s3_0}^I \subset C_{s3}^I$.

Proof. The proof is followed by the Definitions 4.1 and 4.2.

Theorem 4.2 The space $C_{s3_0}^I$ is solid.

Proof. Let $(x_{nmj}) \in C^I_{s3_0}$ be any element. Then, we have that

$$\{(n,m,j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : I_3\text{-}\lim_{iop \to \infty} \frac{1}{iop} \sum_{nmj=1}^{iop} ||x_{nmj}|| = 0\}.$$

Now, let (γ_{nmj}) be a triple sequence of scalars such that $|\gamma_{nmj}| \leq 1$, for all $nmj \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$. So, we get that

$$\frac{1}{iop}\sum_{nmj=1}^{iop}|\gamma_{nmj}| \le 1$$

Then , from the above inequality, we have that

$$\frac{1}{iop} \sum_{nmj=1}^{iop} \|\gamma_{nmj} x_{nmj}\| = \frac{1}{iop} \sum_{nmj=1}^{iop} |\gamma_{nmj}| \|x_{nmj}\|$$
$$= \frac{1}{iop} \sum_{nmj=1}^{iop} |\gamma_{nmj}| \frac{1}{iop} \sum_{nmj=1}^{iop} \|x_{nmj}\| \le \frac{1}{iop} \sum_{nmj=1}^{iop} \|x_{nmj}\|$$

for all $(n,m,j)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}.$ Therefore, the space $C^I_{s3_0}$ is solid.

Theorem 4.3 A triple sequence $x = (x_{nmj}) \in C_{s3}^I$ is I_3 -convergent if and only if for every $\epsilon > 0$, there exits $t = t(\epsilon) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ such that

$$\{(n,m,j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \frac{1}{iop} \sum_{nmj}^{iop} ||x_{nmj} - x_t|| < \epsilon\} \in F(I).$$

Proof. We begin proof \Rightarrow :

Consider $x = (x_{nmj}) \in C_{s3}^{I}$. Then, I_3 - $\lim_{iop\to\infty} \frac{1}{iop} \sum_{nmj}^{iop} ||x_{nmj} - L|| = 0$. Thus, for all $\epsilon > 0$ the set

$$C_{s3}^{\epsilon} = \{(n,m,j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \frac{1}{iop} \sum_{nmj}^{iop} \|x_{nmj} - L\| < \frac{\epsilon}{2}\} \in F(I).$$

Fix a $t(\epsilon) \in C^{\epsilon}_{s3}$, then we obtain

$$\frac{1}{iop}\sum_{nmj}^{iop} \|x_{nmj} - x_t\| \le \frac{1}{iop}\sum_{nmj}^{ioj} \|x_{nmj} - L\| + \frac{1}{iop}\sum_{nmj}^{iop} \|x_t - L\| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Which holds for all $(n, m, j) \in C_{s3}^{\epsilon}$. Therefore,

$$\{(n,m,j)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:\frac{1}{iop}\sum_{nmj}^{iop}\|x_{nmj}-x_t\|<\epsilon\}\in F(I).$$

Now, we proof \Leftarrow :

Consider that for all $\epsilon > 0$, the set

$$\{(n,m,j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \frac{1}{iop} \sum_{nmj}^{iop} ||x_{nmj} - x_t|| < \epsilon\} \in F(I).$$

Then, for every $\epsilon > 0$, we have that

$$M_{nmj}^{\epsilon} = \{(n, m, j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \frac{1}{iop} \sum_{nmj}^{iop} \|x_{nmj}\|$$
$$\in \left[\frac{1}{iop} \sum_{nmj}^{iop} \|x_t\| - \epsilon, \frac{1}{iop} \sum_{nmj}^{iop} \|x_t\| + \epsilon\right] \in F(I).$$

We will denote
$$W_{nmj}^{\epsilon} = \left[\frac{1}{iop}\sum_{nmj}^{iop} \|x_t\| - \epsilon, \frac{1}{iop}\sum_{nmj}^{iop} \|x_t\| + \epsilon\right].$$

For fixed $\epsilon > 0$, we have that $M_{nmj}^{\epsilon} \in F(I)$, as well as, $M_{nmj}^{\epsilon/2} \in F(I)$. Therefore, $M_{nmj}^{\epsilon} \cap M_{nmj}^{\epsilon/2} \in F(I)$. This implies that $M_{nmj}^{\epsilon} \cap M_{nmj}^{\epsilon/2} \neq \emptyset$. Thus,

$$\{(n,m,j)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:\frac{1}{iop}\sum_{nmj}^{iop}\|x_{nmj}\|\in W_{nmj}\}\in F(I).$$

For this, we have $diam(W_{nmj}) \leq diam(W_{nmj}^{\epsilon})$, where the $diam(W_{nmj})$ denotes the length of the interval of W_{nmj} . In this way, by induction, we have the sequence of closed intervals $W_{nmj}^{\epsilon} = U_{nmj}^{0} \supseteq U_{nmj}^{1} \supseteq ... \supseteq U_{nmj}^{5} \supseteq ...$ With the property that $U_{nmj}^{i} \leq 1/2 diam(U_{nmj}^{i-1})$, for i = 1, 2, 3, ... and

$$\{(n,m,j)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:\frac{1}{iop}\sum_{nmj}^{iop}\|x_{nmj}\|\in U_{nmj}^i\}\in F(I),\$$

For i = 1, 2, 3, ... Then, there exists a $L \in \cap U_{nmj}^i$ such that $L = I_3 - \lim_{i \to \infty} 1/iop \sum_{nmj}^{kj} ||x_{nmj}||$. This proves that $x = (x_{nmj}) \in C_{nmj}^I$ is I_3 -convergent.

Theorem 4.4 Let $x = (x_{nmj})$ and $y = (y_{nmj})$ be any two double sequences such that $T(x \cdot y) = T(x)T(y)$. Then, the space C_{s3}^I and $C_{s3_0}^I$ are sequence algebra.

Proof. Let $x = (x_{nmj})$ and $y = (y_{nmj})$ be any two elements of C_{s3}^I with $T(x \cdot y) = T(x)T(y)$. Now, for every $\epsilon > 0$ choose $\lambda > 0$ such that $\epsilon < \lambda$. Then, we have that

$$\{(n,m,j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \frac{1}{iop} \sum_{nmj}^{iop} \|T(x_{nmj}) - L_q\| < \frac{\epsilon}{2\lambda}\} \in F(I)$$

and

$$\{(n,m,j) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} : \frac{1}{iop} \sum_{nmj}^{iop} ||T(y_{nm}) - L_z|| < \frac{\epsilon}{2L_q}\} \in F(I).$$

Taking into account the above and the properties of norm, we have that

$$\frac{1}{iop} \sum_{nmj}^{iop} \|T(x_{nmj}y_{nmj}) - L_q L_z\| \\ = \frac{1}{iop} \sum_{nmj}^{iop} \|T(x_{nmj})T(y_{nmj}) - L_q L_z\| \\ = \frac{1}{iop} \sum_{nmj}^{iop} \|T(x_{nmj})T(y_{nmj}) - L_q T(y_{nmj}) + L_q T(y_{nmj}) - L_q L_z\| \\ \le \frac{1}{iop} \sum_{nmj}^{iop} \|T(y_{nmj})\| \frac{1}{iop} \sum_{nmj}^{iop} \|T(x_{nmj}) - L_q\| + |L_q| \frac{1}{iop} \sum_{nmj}^{iop} \|T(y_{nmj}) - L_z\| \\ < \frac{\epsilon^2}{2\alpha} + |L_q| \frac{\epsilon}{2|L_q|} < \epsilon.$$

Hence, the set

$$\{(n,m,j)\in\mathbb{N}\times\mathbb{N}\times\mathbb{N}:\frac{1}{iop}\sum_{nmj}^{iop}\|T(x_{nmj}y_{nmj})-L_qL_z\|\geq\epsilon\}\in I.$$

In consequence, $(x_{nmj})(y_{nmj}) \in C_{s3}^I$. Therefore, C_{s3}^I is a sequence algebra.

The proof of $C_{s3_0}^I$ is a sequence algebra is proved in the same manner of the C_{s3}^I .

References

- Faisal, M.: Some results on strongly Cesáro ideal convergent sequence spaces, J. Math. Art. ID 8897155, 4 pp. (2020).
- 2. Fast, H.: Sur la convergence statistique, Colloq. Math. 2(3-4), 241-244 (1951).
- 3. Fridy, J.: On statistical convergence, Analysis 5, 301–313 (1985).
- 4. Fridy, J.: Statistical limit points, Proc. Amer. Math. Soc. 118(4), 1187-1192 (1993).
- Hardy, G., Littlewood, J.: Sur la série de fourier dúne fonction a carré sommable, C. R. Math. Acad. Sci. Soc. R. Can. 156, 1307–1309 (1913).
- 6. Khan, V., Khan, N.: On some I-convergent double sequence spaces defined by a modulus function, Engineering 5, 35–40 (2013).
- Khan, V., Ebadullah, K., Esi, A.: On some Zeweir I-convergent sequence spaces defined by a modulus function, Afrika Mat. 26, 115–125 (2015).
- Kostyrko, P., Wilczynski, T., Wilczynski, W.: *I-convergence*, Real Anal. Exchange 26(2), 669–686 (2000).
- 9. Maddox, I.: Some properties of paranormed sequence spaces, J. Lond. Math. Soc. 1, 316–322 (1969).
- 10. Nakano, H.: Concave modulars, J. Math. Soc. Japan 5(1), 19–49 (1953).
- Ruckle, W.: *FK spaces in which the sequence of coordinate vectors is bounded*, Canad. J. Math. 25(5), 973-978 (1973).
- 12. Ruckle, W.: On perfect symmetric BK spaces, Math. Ann. 25(5), 121-126 (1968).
- Salat, T., Tripathy, B., Ziman, M.: On some properties of I-convergence, Tatra Mt. Math. Publ. 669–686 (2000).
- 14. Sahiner, A., Tripathy, B.: Some I-related properties of Triple sequences, Selcuk. J. Appl. Math. 9(2), 9–18 (2008).
- Steinhaus, H.: Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2(1), 73–74 (1951).
- Tripathy, B. C., Goswami, R.: Vector valued multiple sequences defined by Orlicz functions, Bol. Soc. Paran. Mat. 33(1), 67–79 (2015).
- 17. Tripathy, B. C., Goswami, R.: *Multiple sequences in probabilistic normed spaces*, Afrika Mat. **26**(5-6), 753–760 (2015).