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Abstract. The goal of this paper is to investigate the local Guliyev estimates of Marcinkiewicz integral
with rough kernel. By giving the local Guliyev estimates, the boundedness of the Marcinkiewicz integral
with rough kernel on the local Morrey-type spaces (≡ local Morrey-Guliyev spaces) is obtained.
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1 Introduction and notation

Let Sn−1 be the unit sphere in Rn, n ≥ 2 equipped with normalized Lebesgue measure
dσ. Suppose Ω ∈ Lq(Sn−1) with 1 < q ≤ ∞ is homogeneous of degree zero and satisfies
the cancelation condition ∫

Sn−1

Ω(x′)dσ(x′) = 0,

where x′ = x/|x| for any x 6= 0. The singular integral operator TΩ is defined by

TΩf(x) = lim
ε→0

∫
|x−y|>ε

Ω(x− y)
|x− y|n

f(y)dy.

Furthermore, Marcinkiewicz integral operator µΩ is defined by

µΩf(x) =

(∫ ∞
0
|FΩ,t(x)|2

dt

t3

) 1
2

,
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where

FΩ,t(x) =

∫
|x−y|<t

Ω(x− y)
|x− y|n−1

f(y)dy.

It is well known that singular integral operator and Marcinkiewicz operator play an impor-
tant role in harmonic analysis. When Ω ∈ L logL(Sn−1), Calderón- Zygmund [11] proved
that TΩ is bounded on Lp(Rn) for 1 < p < ∞. In 2002, Al-Salman and Pan [2] showed
that if Ω ∈ H1(Sn−1), then TΩ is bounded on Lp(Rn) for 1 < p < ∞. On the other
hand, Benedek et al. [3] proved that if Ω ∈ C1(Sn−1), then µΩ is bounded on Lp(Rn) for
1 < p < ∞. In 2002, Ding et al. [22] showed that if Ω ∈ Lq(Sn−1), q > 1, then µΩ is
bounded on Lp(Rn) for 1 < p <∞.

The classical Morrey spaces Lp,λ were introduced by Morrey [26] to study the local
behavior of solutions to second-order elliptic partial differential equations. Moreover, var-
ious Morrey spaces are defined in the process of study. Guliyev, Mizuhara and Nakai [15,
25,27] introduced generalized Morrey spaces Mp,ϕ(Rn) (see, also [16,19,32]). Komori
and Shirai [23] defined weighted Morrey spaces Lp,κw (Rn). Guliyev [21] gave a concept of
the generalized weighted Morrey spaces Mp,ϕ

w (Rn) which could be viewed as extension of
both Mp,ϕ(Rn) and Lp,κw (Rn). In [21], the boundedness of the classical operators and their
commutators in spaces Mp,ϕ

w (Rn) was also studied.
Suppose 0 < p, θ ≤ ∞ and w be a non-negative measurable function on (0,∞), for

any function f ∈ Lploc(R
n), we denote by LMpθ,w, GMpθ,w, the local Morrey-type space,

the global Morrey-type space respectively with finite quasinorms

‖f‖LMpθ,w
= ‖w(r)‖f‖Lp(B(0,r))‖Lθ(0,∞), ‖f‖GMpθ,w

= sup
x∈Rn

‖f(x+ ·)‖LMpθ,w
.

Forw(r) = r
−λ
p , 0 < λ < nwe get the variant of Morrey-type spaceGMpθ,r−λ introduced

by D.R. Adams [1], which were used by G. Lu [24] for studying the embedding theorems
for vector fields of Hörmander type. For θ =∞, LMp∞,w ≡ GMp∞,w are the generalized
Morrey space Lp,w(Rn). When θ =∞, w = r−λ/p, it is the classical Morrey space.

Recall that in 1994 the doctoral thesis [15] by Guliyev (see also [16]-[18]) introduced
the local Morrey-type space LMpθ,w. In [15] intensively studied the classical operators in
the local Morrey-type space LMpθ,w, see also [16], where these results were presented for
the case when the underlying space is the Heisenberg group or a homogeneous group, re-
spectively. The main purpose of [15] (also in [16]-[18]) is to give some sufficient conditions
for the boundedness of fractional integral operators and singular integral operators defined
on homogeneous Lie groups in local Morrey-type space LMpθ,w. In a series of papers by
V. Burenkov, H. Guliyev and V. Guliyev (see [4]-[10]) be given some necessary and suf-
ficient conditions for the boundedness of fractional maximal operators, fractional integral
operators and singular integral operators in local Morrey-type space LMpθ,w.

The spaces LMpθ,w and GMpθ,w are denoted, respectively, as local Morrey-type spaces
and global Morrey-type spaces, though from the point of view of the role in the devel-
opment of these spaces they may be also called local and global Morrey-Guliyev spaces,
respectively, see for example, [29]. For Morrey-type spaces we also refer to the survey [28].
Also the spaces LMpθ,λ ≡ LMpθ,r−λ and GMpθ,λ ≡ GMpθ,r−λ may be called local and
global Morrey-Adams spaces, respectively, see for example, [29–31].

In [33] the boundedness of Marcinkiewicz integral with rough kernel was proven on
Morrey-Adams spaces. In this paper, we will study the boundedness of Marcinkiewicz in-
tegral with rough kernel on local and global Morrey-Guliyev spaces.

In what follows, we denote by C positive constants which are independent of the main
parameters, but it may vary from line to line.
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2 Integral operators with rough kernels in local Morrey-type spaces

In this section, we study the boundedness of integral operators in local Morrey-type spaces
(≡ local Morrey-Guliyev spaces) and global Morrey-type spaces (≡ global Morrey-Guliyev
spaces). To state the main results, we first introduce some notations.

Definition 2.1 Let 0 < p, θ ≤ ∞, we denote by Ωθ the set of all functions w which are
non-negative, measurable on (0,∞), not equivalent to 0 and such that for some t > 0,

‖w(r)‖Lθ(t,∞) <∞.

Moreover, we denote by Ωp,θ the set of all functions w which are non-negative, measurable
on (0,∞), not equivalent to 0 and such that for some t1, t2 > 0,

‖w(r)‖Lθ(t1,∞) <∞, ‖w(r)rn/p‖Lθ(0,t2) <∞.

In [7], the following result was shown

Lemma 2.1 Let 0 < p, θ ≤ ∞ and w be a non-negative measurable function on (0,∞),
then the following is true

1. If for all t > 0, ‖w(r)‖Lθ(t,∞) =∞, then LMpθ,w = GMpθ,w = Θ, where Θ is the set
of all functions equivalent to 0 on Rn.

2. If for all t > 0, ‖w(r)rn/p‖Lθ(0,t) =∞, then any functions f ∈ LMpθ,w, continuous at
0, f(0) = 0, and for 0 < p <∞, GMpθ,w = Θ.

Consequently, in the sequel, we always assume that either w ∈ Ωθ or w ∈ Ωp,θ.
Let H denote the Hardy operator

Hg(r) =

∫ r

0
g(t)dt, 0 < r <∞

andLpv(0,∞) be the weighted Lebesgue space of function g on (0,∞) for which ‖g‖Lpv(0,∞) =(∫∞
0 |g(t)|

pv(t)dt
)1/p

<∞. Therefore, we have the following theorem

Theorem 2.1 Let Ω ∈ Lq(Sn−1), 1 < q < ∞, be a homogeneous of degree zero and
satisfy the cancellation condition. If for any q′ < p < ∞, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 an
w2 ∈ Ωθ2 , suppose that

v(r) = wθ11

(
r−

p
n

)
r−

p
n
−1, u(r) = wθ22

(
r−

p
n

)
r−

p
n
−θ2−1.

Assume the operator H is bounded from Lθv(0,∞) to Lθu(0,∞) on the cone of all non-
negative non-increasing functions φ on (0,∞) satisfying the condition lim

t→∞
φ(t) = 0,

then the singular integral operator TΩ is bounded from LMpθ1,w1 to LMpθ2,w2 and from
GMpθ1,w1 to GMpθ2,w2 ( in the latter case, it is assume that w1 ∈ Ωp,θ1 and w2 ∈ Ωp,θ2).

Proof. For any ball B = B(x0, r), function f(x) can be divided into two parts: f =
fχ4B + fχRn\4B := f1 + f2, thus we have

‖TΩf‖Lp(B) ≤ ‖TΩf1‖Lp(B) + ‖TΩf2‖Lp(B) ≡ I1 + I2. (2.1)

For I1, by Lp(Rn) boundedness of TΩ in [11,14], we have

I1 ≤ C‖f‖Lp(4B) ≤ Cr
n
p

∫ ∞
r
‖f‖Lp(B(x,t))

dt

t
n
p
+1
. (2.2)
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For I2, we first estimate Tf2(x) for any x ∈ B, since y ∈ Rn \ 4B, it has the following
inequality: |x− y| > |y − x0| − |x− x0| > 1

2 |y − x0| > 3r, therefore we obtain

|TΩf2(x)| =
∣∣∣ ∫

Rn\4B

Ω(x− y)
|x− y|n

f(y)dy
∣∣∣

≤
∫
Rn\B(0,3r)

|Ω(z)|
|z|n

|f(x− z)|dz

= C

∫
Rn\B(0,3r)

|Ω(z)f(x− z)|
∫ ∞
|z|

dt

tn+1
dz

≤ C
∫ ∞
3r

∫
B(0,t)

|Ω(z)f(x− z)|dz dt

tn+1

≤ C‖Ω‖Lq(Sn−1)

∫ ∞
3r

(∫
B(0,t)

|f(x− z)|q′dz

) 1
q′ dt

t
n
p
+1
,

since q′ < p < ∞, for any |x− x0| < r, |z| < t, it has the following inequality: |x− z −
x0| ≤ |z|+ |x− x0| < 2t, hence we have

|TΩf2(x)| ≤ C‖Ω‖Lq(Sn−1)

∫ ∞
3r

(∫
B(x0,2t)

|f(y)|pdy
) 1
p dt

t
n
p
+1

≤ C‖Ω‖Lq(Sn−1)

∫ ∞
r
‖f‖Lp(B(x0,t))

dt

t
n
p
+1
.

Thus for I2, we have

I2 ≤ C‖Ω‖Lq(Sn−1)r
n
p

∫ ∞
r
‖f‖Lp(B(x0,t))

dt

t
n
p
+1
. (2.3)

Finally, by the definition of local Morrey-type space (≡ local Morrey-Guliyev spaces) and
inequalities of (2.1)− (2.3), we show

‖TΩf‖LMpθ2w2
= ‖w2(r)‖TΩf‖Lp(B(0,r))‖Lθ2 (0,∞)

≤ C‖w2(r)r
n
p

∫ ∞
r

t−n/p−1‖f‖Lp(B(0,t))dt‖Lθ2 (0,∞)

= C‖w2(r
− p
n )

1

r

∫ r

0
‖f‖

Lp(B(0,t−
p
n ))
dtr
− p
nθ2
− 1
θ2 ‖Lθ2 (0,∞).

Let g(t) = ‖f‖
Lp(B(0,t−

p
n ))

, u(r) = wθ22

(
r−

p
n

)
r−

p
n
−θ2−1, then

‖TΩf‖LMpθ2w2
≤ C‖Hg(r)‖

L
θ2
u (0,∞)

. (2.4)

Let v(r) = wθ11 (r−n)r−n, by the weighted Lp boundedness of Hardy operator H and
inequality (2.4), we have

‖TΩf‖LMpθ2w2
. ‖g(r)‖

L
θ1
v (0,∞)

=

(∫ ∞
0
‖f‖θ1

Lp(B(0,r−
p
n ))
wθ11

(
r−

p
n

)
r−

p
n
−1dr

) 1
θ1

=

(∫ ∞
0
‖f‖θ1Lp(B(0,r))w

θ1
1 (r)dr

) 1
θ1

= ‖‖f‖Lp(B(0,r))w1(r)‖Lθ1 (0,∞) = ‖f‖LMpθ1w1
.
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On the other hand, by the definition of global Morrey-type spaces, it only need to g(t) =
‖f‖

Lp(B(x0,t
− pn ))

, just like local Morrey-type spaces, we also obtain the boundedness in
global Morrey-type spaces (≡ global Morrey-Guliyev spaces).

Theorem 2.2 Let Ω ∈ Lq(Sn−1), 1 < q < ∞, be a homogeneous of degree zero and
satisfy the cancellation condition. If for any q′ < p <∞, 0 < θ1, θ2 ≤∞, w1 ∈ Ωθ1 and
w2 ∈ Ωθ2 , suppose that

v(r) = wθ11

(
r−

p
n

)
r−

p
n
−1, u(r) = wθ22 (r−

p
n )r−

p
n
−θ2−1.

Assume the operator H is bounded from Lθv(0,∞) to Lθu(0,∞) on the cone of all n non-
negative nonincreasing functions φ on (0,∞) satisfying the condition limt→∞ φ(t) = 0,
then the Marcinkiewicz integral operator µΩ is bounded from LMpθ1,w1 to LMpθ2,w2 and
from GMpθ1,w1 to GMpθ2,w2 ( in the latter case, it is assume that w1 ∈ Ωp,θ1 and w2 ∈
Ωp,θ2).

Proof. As before, we can write

‖µΩf‖Lp(B) ≤ ‖µΩf1‖Lp(B) + ‖µΩf2‖Lp(B) := I3 + I4.

The first part, by the Lp boundedness of µΩ in [3], we yield

I3 . ‖f‖Lp(4B) . r
n
p

∫ ∞
r
‖f‖Lp(B(x0,t))

dt

t
n
p
+1
.

On the other hand, let us deal with the term I4, for any fixed x ∈ B, by the Minkowski
inequality, we have

|µΩf2(x)| ≤
∫
Rn

|Ω(x− y)|
|x− y|n−1

|f2(y)|

(∫ ∞
|x−y|

dt

t3

) 1
2

dy

= C

∫
Rn\4B

|Ω(x− y)|
|x− y|n−1

|f(y)|dy.

Now, the same as theorem 2.1, we also obtain

I4 . ‖Ω‖Lq(Sn−1)r
n
p

∫ ∞
r
‖f‖Lp(B(x0,t))

dt

t
n
p
+1
.

By the definition of local Morrey-type spaces (≡ local Morrey-Guliyev spaces) and global
Morrey-type spaces (≡ global Morrey-Guliyev spaces) , and the Hardy operator H , the
same as theorem 2.1, we complete the proof.

In order to obtain sufficient conditions of the singular integral operator and Marcinkiewicz
integral operator, we shall apply the known necessary and sufficient conditions ensuring
boundedness of the Hardy operator H from one weighted Lebesgue space to another one
for any non-negative nonincreasing function g (see, for example [12,13]).

Lemma 2.2 Let g be a non-negative nonincreasing function and u, v weight functions on
(0,∞).
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(a) If 1 < θ1 ≤ θ2 <∞, then the inequality(∫ ∞
0

(Hg)θ2(t)u(t)dt

)1/θ2

≤ C
(∫ ∞

0
(g)θ1(t)v(t)dt

)1/θ1

(2.5)

holds if any only if

B11 := sup
t>0

(∫ t

0
u(r)rθ2dr

)− 1
θ2
(∫ t

0
v(r)dr

) 1
θ1

<∞,

and

B12 := sup
t>0

(∫ ∞
t

u(r)dr

) 1
θ2

(∫ t

0

v(r)rθ
′
1(∫ r

0 v(ρ)dρ
)θ′1 dr

) 1
θ′1
<∞.

(b) If 0 < θ1 ≤ 1, 0 < θ1 ≤ θ2 <∞, then the inequality (2.5) holds if any only if B11 <∞
and

B22 := sup
t>0

(∫ ∞
t

u(r)dr

) 1
θ2

(∫ t

0
v(r)dr

)− 1
θ′1
<∞.

(c) If 1 < θ1 ≤ ∞, 0 < θ2 < θ1 <∞, θ2 6= 1, then the inequality (2.5) holds if any only if

B31 :=

∫ ∞
0

(∫ t
0 u(r)r

θ2dr∫ t
0 v(r)dr

) θ2
θ1−θ2

u(t)tθ2dt


θ1−θ2
θ1θ2

<∞,

and

B32 :=

∫ ∞
0

(∫ ∞
t

u(r)dr

) 1
θ2

(∫ t

0

v(r)rθ
′
1(∫ r

0 v(ρ)dρ
)θ′1 dr

) θ2−1
θ2


θ1θ2
θ1−θ2

× v(t)tθ
′
1(∫ t

0 v(ρ)dρ
)θ′1 dt


θ1−θ2
θ1θ2

<∞.

(d) If 1 = θ2 < θ1 <∞, then the inequality (2.5) holds if any only if

B41 :=

∫ ∞
0

(∫ t
0 u(r)rdr∫ t
0 v(r)dr

) 1
θ1−1

u(t)tdt


θ1−1
θ1

<∞,

and B42 := supt>0

[(∫ t
0 u(r)rdr+t

∫∞
t u(r)dr∫ t

0 v(r)dr

)θ′1−1
×
(∫∞
t u(r)dr

)
dt

]θ′1
<∞.

(e) If 0 < θ2 < θ1 = 1, then the inequality (2.5) holds if any only if

B51 :=

∫ ∞
0

(∫ t
0 u(r)r

θ2dr∫ t
0 v(r)dr

) θ2
1−θ2

u(t)tθ2dt


1−θ2
θ2

<∞,
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and

B52 :=

∫ ∞
0

(∫ ∞
t

u(r)dr

) θ2
1−θ1

(
inf

0<s<t

1

s

∫ s

0
v(ρ)dρ

) θ2
θ2−1

× u(t)dt


1−θ2
θ2

<∞.

(f) If 0 < θ2 < θ1 < 1, then the in equality (2.5) holds if any only if B31 <∞ and

B62 :=

∫ ∞
0

sup
0<s≤t

s
θ1θ2
θ1−θ2(∫ s

0 v(ρ)dρ
) θ2
θ1−θ2

(∫ ∞
t

u(r)dr

) θ1θ2
θ1−θ2

× u(t)dt


θ1−θ2
θ1θ2

<∞.

(g) If 0 < θ1 ≤ 1, θ2 =∞, then the inequality (2.5) holds if any only if

B7 := ess sup
0<s≤t

su(t)(∫ s
0 v(r)dr

) 1
θ1

<∞.

(h) If 1 < θ1 <∞, θ2 =∞, then the inequality (2.5) holds if any only if

B8 := ess sup
t>0

u(t)

(∫ t

0

rθ
′
1−1∫ r

0 v(s)
dr

) 1
θ1
′

<∞.

(i) If θ1 =∞, 0 < θ2 <∞, then the inequality (2.5) holds if any only if

B9 :=

∫ ∞
0

∫ t

0

dr

ess sup
0<y<r

v(y)


θ2

u(t)dt


1
θ2

<∞.

(j) If θ1 = θ2 =∞, then the inequality (2.5) holds if any only if

B10 := ess sup
t>0

u(t)

∫ t

0

dr

ess sup
0<y<r

v(y)
<∞.

From Theorems 2.1, 2.2 and Lemma 2.2, we obtain the following results

Corollary 2.1 Let Ω ∈ Lq(Sn−1), for any q′ < p <∞, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 and
w2 ∈ Ωθ2 , suppose that any of condition (a) − (j) is satisfied, then the singular integral
operator TΩ is bounded from LMpθ1,w1 to LMpθ2,w2 and from GMpθ1,w1 to GMpθ2,w2 ( in
the latter case, it assumes that w1 ∈ Ωp,θ1 and w2 ∈ Ωp,θ2).

Corollary 2.2 Let Ω ∈ Lq(Sn−1), for any q′ < p <∞, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 and
w2 ∈ Ωθ2 , suppose that any of condition (a) − (j) is satisfied, then the singular integral
operator µΩ is bounded from LMpθ1,w1 to LMpθ2,w2 and from GMpθ1,w1 to GMpθ2,w2 (in
the latter case, it assumes that w1 ∈ Ωp,θ1 and w2 ∈ Ωp,θ2).

Note that if θ1 = θ2 = ∞, that is, condition (j) is satisfied, then TΩ and µΩ are bounded
from generalized Morrey spaceMp,ω1 to generalized Morrey spaceMp,ω2 , which extend to
the result of Guliyev et al. in [20].
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