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Abstract. In this study, we provide a conformable fractional calculus generalization of the density of var-
ious functional spaces, such as spaces of continuous functions, spaces of order α derivatives, fractional
spaces of Lebesgue integrals, and fractional Sobolev’s spaces.
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1 Introduction

For nondifferential solutions, fractal calculus and fractional calculus have recently gained
popularity in both mathematics and engineering (see [9]). In several disciplines of study,
the usage of the fractional derivative has therefore seen a considerable improvement and
increase in attention (see [16–19]).

It is well known that differentiation and integration of a random (noninteger) order are
included in the definition of fractional calculus. Mathematicians including Leibniz, Liou-
ville, Riemann, Letnikov, and Grunwald are responsible for the theory. Fractional calculus
is currently one of the areas of mathematical analysis that is most actively developing. There
are many definitions of fractional calculus, including Riemann-Liouville fractional calculus,
Caputo fractional calculus, Grunwald-Letnikov fractional calculus, Hadamard fractional
calculus, Riesz fractional calculus, Weyl fractional calculus, Kolwankar-Gangal fractional
calculus, and others. Particularly, in 2014, Khalil et al, developed a new kind of fractional
derivative called ”conformable fractional derivative” in their publication [13]. Establishing
a suitable space and variational functional for conformable fractional differential equations,
such as the space of a derivative of conformable fractional, the fractional spaces of the
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Lebesgue integral, and the fractional Sobolev’s spaces, is necessary for studying solutions
of boundary value problems for fractional differential equations.

The structure of this essay is as follows: We examine the functional subspace by report-
ing Lebesgue space in sense integrals conformable to fractional scales, such as fractional
Sobolev’s spaces, in Section 3.

2 Preliminaries

We define and describe the characteristics of the α-differentiable and -integral in the con-
formal sense in the first section of the preamble, pulse to see [13].

Definition 2.1 [13, Definition 2.1.] Let f : [0, a]→ R and α ∈ (0, 1], with a > 0, we define
f (α) (s) to be the number, provided it exists, such that

f (α) (s) := lim
ε→0

f
(
s+ εs1−α

)
− f (s)

ε
for all s ∈ [0, a] .

We frequently refer to f (α)as the conformable fractional derivative of order.
In addition, we simply state that f is α-differentiable if f (α) exists.
If f is α-differentiable in some s ∈ (0, a), a > 0, and lim

s→0+
f (α) (s) exists, then we define

f (α) (0) = lim
s→0+

f (α) (s) .

Definition 2.2 [13, Definition 3.1. ]Suppose f : [0, a]→ R and α ∈ (0, 1]. The con-
formable fractional integral of f of orderα from to s, denoted by the abbreviation Iαa (f) (s),
is defined as follows:

Iαa (f) (s) :=

∫ s

a

f (τ)

τ1−α
dτ =

∫ s

a
f (τ) dατ,

where the integral mentioned above is the typical improper Riemann integral.

Lemma 2.1 [13, Theorem 2.2.]Let α ∈ (0, 1] and assume f, g : [0, a]→ R to be α-
differentiable, for all λ, γ ∈ R, we have

(λf + γg)(α) = λ.f (α) + γ.g(α),

(fg)(α) = f.g(α) + g.f (α),(
f

g

)(α)

=
f (α)g − fg(α)

g2
.

If, in addition, f is differentiable at a point s > 0, then

f (α) (s) = s1−αf
′
(s) .

Lemma 2.2 [13, Theorem 3.1.]Let α ∈ (0, 1] and f : [0, a]→ R, such as f is a continuous
function in the domain of Iαa , then

[Iαa f ]
(α) (s) = f (s) , for all s ∈ [0, a] .

Definition 2.3 [10, Definition 22]Let p ∈ R be such that p ≥ 1 and let f : [0, a)→ R be a
measurable function, we say that f belongs to Lpα ([0, a] ,R) provided that either∫ a

0
|f (t)|p dαt =

∫ a

0
|f (t)|p tα−1dt <∞.
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Lemma 2.3 [10, Theorem 24.] Let p ∈ R be such that p ≥ 1. Then the set Lpα ([0, a] ,R) is
a Banach space together with the norm defined for f ∈ Lpα ([0, a] ,R) as

‖f‖pα,p =
∫ a

0
|f (t)|p dαt.

Lemma 2.4 [10, Theorem 45]Let p ∈ R be such that p ≥ 1 and f : [0, a) → R, one
says that f ∈ Wα,p ([0, a] ,R) if and only if f ∈ Lpα ([0, a] ,R) and f (α) ∈ Lpα ([0, a] ,R).
Then the set Wα,p ([0, a] ,R) is a Banach space together with the norm defined for f ∈
Wα,p ([0, a] ,R) as

‖f‖Wα,p = ‖f‖α,p +
∥∥∥f (α)∥∥∥

α,p
.

3 Main results

We need the following lemma to get to the key conclusions in this section:

Lemma 3.1 Let p ∈ R be such that p ≥ 1, α ∈ (0, 1) and a ∈ (0,∞), then Lpα ([0, a] ,R)
is dense in Lp ([0, a] ,R), where Lp ([0, a] ,R) is considered Lp1 ([0, a] ,R).

Proof. First, let’s show that Lpα ([0, a] ,R) inject Lp ([0, a] ,R), for all f ∈ Lpα ([0, a] ,R),
since a > 0 and 1− α > 0, we have∫ a

0
|f (t)|p dt =

∫ a

0
|f (t)|p tα−1t1−αdt ≤ a1−α

∫ a

0
|f (t)|p tα−1dt <∞,

which means f ∈ Lp ([0, a) ,R) and ‖f‖p ≤ a
1−α
p ‖f‖α,p, on the other hand, for everyone

f ∈ Lp ([0, a] ,R), we consider (fn)n be a sequence defined as follows:

fn (t) =

f (t) , if
a

n
≤ t ≤ a,

0, if 0 ≤ t < a

n
,

then, for all n ∈ N, we have

‖fn‖pα,p =
∫ a

a
n

|f (t)|p tα−1dt ≤
(a
n

)α−1 ∫ a

a
n

|f (t)|p dt ≤
(a
n

)α−1
‖f‖p <∞,

this means (fn)n ∈ L
p
α ([0, a] ,R) and we have

‖fn − f‖pp ≤
∫ a

n

0
|f (t)|p dt,

based on the above inequality, we conclude that (fn)n converges to f in Lp ([0, a] ,R).

Example 1 Let a ∈ (0,∞), 1
2 < α < 1, a > 0 and f : [0, a) → R, be defined by

f (t) = t−1, we have f ∈ L1
α ([0, a] ,R) and f /∈ L1 ([0, a] ,R).

Remark 3.1 Deduce from 1 that the spaceLpα ([0, a] ,R) contained strict in spaceLp ([0, a] ,R),
with p ≥ 1, a > 0 and α ∈ (0, 1).

Definition 3.1 Given α ∈ R and a ∈ (0,∞), such as α = n + β, n ∈ N and β ∈ [0, 1),

one may state that f ∈ Cα ([0, a] ,R) if and only if f [α] is α-differentiable and
(
f (n)

)(β) ∈
C ([0, a] ,R) .
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Remark 3.2 Let α ∈ R and a ∈ (0,∞), such as α = [α] + β and β ∈ β ∈ [0, 1), then
Cα ([0, a] ,R) is a Banach space together with the norm defined for f ∈ Cα ([0, a] ,R) as

‖f‖α,∞ =
∑j=[α]

j=0

∥∥∥f (j)∥∥∥
∞

+

∥∥∥∥(f (n))(β)∥∥∥∥
∞
,

with n = [α] .

Theorem 3.1 Let p ∈ R be such that p ≥ 1, α ∈ (0, 1) and a ∈ (0,∞), then Cα ([0, a] ,R)
is dense in Lpα ([0, a] ,R) .

Proof. Let f ∈ Lpα ([0, a] ,R), by Definition 2.3, we get t
α−1
p f ∈ Lp ([0, a] ,R), since

C1 ([0, a] ,R) is dense inLp ([0, a] ,R), then there exists a sequence (hn)n∈N ∈ C1 ([0, a] ,R)
that converges to f in Lp ([0, a] ,R) , we define (fn)n∈N be a sequence defined by:

fn (t) =

{
t
α−1
p hn (t) , if a

n ≤ t ≤ a,
Pn,a (t) if 0 ≤ t < a

n ,

we choose Pn,a : [0, a]→ R such that Pn,a ∈ Cα
([
0, an

]
,R
)
,

µn,a = Pn,a

(a
n

)
=
(a
n

)α−1
p
hn

(a
n

)
and lim

t→( an)
+
P (α)
n,a (t) = lim

t→( an)
+
(tvhn (t))

(α) = λn,a.

(3.1)
It is sufficient to take

Pn,a (t) = µn,a + λn,a

(
t− a

n

)
, for all t ∈

[
0,
a

n

]
.

By Lemma 3.2, we have

f (α)n (t) :=

{
γt

α−1
p
−α
hn (t) + t

1+α−1
p
−α
h
(1)
n (t) , if a

n ≤ t ≤ a,
λn,a, if 0 ≤ t < a

n .

By (3.1), we get to the conclusion that (fn)n∈N ∈ Cα ([0, a] ,R). Hence,

‖fn − f‖pα,p =
∫ a

n

0
|Pn,a (t)− f (t)|p t1−αdt+

∫ a

a
n

∣∣∣hn (t)− tα−1
p f (t)

∣∣∣p dt
≤
∫ a

n

0
|Pn,a (t)− f (t)| t1−αdt+

∥∥∥hn − tα−1
p f
∥∥∥
p
,

we conclude that (fn)n∈N converges to f in Lpα ([0, a] ,R).

Remark 3.3 Let E,F,G be three spaces such that E ⊂ F ⊂ G and (G, τ) is a topological
space, then

1) If F is dense in (G, τ) and E is dense in (F, τ), then E is dense in (G, τ).
2) If E is dense in G, then F is dense in G.

Theorem 3.1 has the following conclusions as a result.

Corollary 3.1 Let p ∈ R be such that p ≥ 1, α ∈ (0, 1) and a ∈ (0,∞), then Lpα ([0, a] ,R)
is dense in L1

α ([0, a] ,R) .
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Proof. Let f ∈ Lpα ([0, a] ,R) and q ∈ R be such that 1
p +

1
q = 1. By Hölder’s inequality,

we have
‖f‖1,α =

∫ a

0
|f (t)| t

α−1
p t

α−1
q dt ≤ a−

1
q ‖f‖α,p <∞,

this means f ∈ L1
α ([0, 1]), we get to the formula Cα ([0, a] ,R) ⊂ Lpα ([0, a] ,R) ⊂

L1
α ([0, a] ,R), by Theorem 3.1, we have Cα ([0, a] ,R) is dense in L1

α ([0, a] ,R). Therefore,
remark 3.3, implies that Lpα ([0, a] ,R) is dense in L1

α ([0, a] ,R). As C[α]+1 ([0, a] ,R) ⊂
Cα ([0, a] ,R) ⊂ Cn ([0, a] ,R), since C[α]+1 ([0, a] ,R) is dense in Cn ([0, a] ,R), As a re-
sult, the remark 3.3 suggests that Cα ([0, a] ,R) is dense in Cn ([0, a] ,R).

Lemma 3.2 Let α ≥ 0, n ∈ N and a ∈ (0,∞), such as α > n, then Cα ([0, a] ,R) is dense
in Cn ([0, a] ,R).

Proof. We have, C[α]+1 ([0, a] ,R) ⊂ Cα ([0, a] ,R) ⊂ Cn ([0, a] ,R), since C[α]+1 ([0, a] ,R)
is dense in Cn ([0, a] ,R), by remark 3.3, implies that Cα ([0, a] ,R) is dense in Cn ([0, a] ,R).

The next proposition is found in the same way.

Proposition 3.1 Let p ∈ R be such that p ≥ 1, β ∈ (1,∞),α ∈ (0, 1) and a ∈ (0,∞),
then Cβ ([0, a] ,R) is dense in Lp ([0, a] ,R).

Proof. By lemma 3.2, we have Cβ ([0, a] ,R) is dense in C[β]−1 ([0, a] ,R), as [0, a] is
bounded, then Cβ ([0, a] ,R) is dense in C[β]−1 ([0, a] ,R) provided with the induced topol-
ogy of Lp ([0, a] ,R), since C[β]−1 ([0, a] ,R) is dense in Lp ([0, a] ,R). Therefore, by re-
mark 3.3, implies that Cβ0 ([0, a] ,R) is dense in Lp ([0, a] ,R).

Corollary 3.2 Let p ∈ R be such that p ≥ 1,α ∈ (0, 1) and a ∈ (0,∞), thenWα,p ([0, a] ,R)
is dense in Lpα ([0, a] ,R) .

Proof. We have Cα ([0, 1]) ⊂W 1,p
α ([0, 1]) ⊂ LPα ([0, 1]), by Theorem 3.1, we have Cα ([0, a] ,R)

is dense inLpα ([0, a] ,R), by remark 3.3, we haveW 1,p
α ([0, a] ,R) is dense inLpα ([0, a] ,R) .

Corollary 3.3 Let p ∈ R be such that p ≥ 1,α ∈ (0, 1) and a ∈ (0,∞), thenWα,p ([0, a] ,R)
is dense in L1

α ([0, a] ,R) .

Proof. The proof is the same as Corollary 3.2.

Theorem 3.2 Let p ∈ R be such that p ≥ 1, α ∈ (0, 1) and γ ∈
(
1, 1

1−α

)
, then

L
pγ
γ−1 ([0, a] ,R) is dense in Lpα ([0, a] ,R) .

Proof. Let f ∈ L
pγ
γ−1 ([0, a] ,R), by Hölder’s inequality, we obtain

‖f‖pα,p =
∫ a

0
|f (t)|p tα−1dt ≤

(∫ a

0
|f (t)|

pγ
γ−1 dt

)1− 1
γ
(∫ a

0
tγ(α−1)dt

) 1
γ

≤ Ca,α,γ
(∫ α

0
|f (t)|

pγ
γ−1 dt

)1− 1
γ

= Ca,α,γ ‖f‖ppγ
γ−1

<∞,

with Ca,α,γ = a
1
γ
−(1−α)

(1− γ (1− α))
−1
γ > 0. Then L

pγ
γ−1 ([0, a] ,R) is injected dense

in Lpα ([0, a] ,R). Therefore, let f ∈ Lpα ([0, a] ,R), by Definition 2.3, we have t
α−1
p f ∈



110 Density problem some of the fractional functional spaces via conformable . . .

Lp ([0, a] ,R), since C ([0, 1]) is dense inLp ([0, a] ,R), then there exists a sequence (hn)n∈N ∈
C ([0, a] ,R) that converges to t

α−1
p f in Lp ([0, a] ,R), we pose

fn (t) := t
1−α
p hn (t) , for all t ∈ [0, a] .

Then

‖fn‖
pγ
γ−1

L
pγ
γ−1

=

∫ 1

0
t
(1−α)γ
(γ−1) |hn (t)|

pγ
γ−1 dt ≤ (2− α)−

1
γ

(∫ 1

0
|hn (t)|

p
γ−1 dt

)1− 1
γ

<∞,

Thus, (fn)n ∈ L
pγ
γ−1 ([0, a] ,R), on the other hand, we have

‖fn − f‖Lp =
∥∥∥fn − tα−1

p f
∥∥∥
Lpα
,

this means (fn)n∈N converges to f in Lpα ([0, a] ,R).

Example 2 Let p ∈ R be such that p ≥ 1, if α = 1
2 , for all γ ∈ (1, 2) , we have

L3p ([0, a] ,R) is dense in Lp1/2 ([0, a] ,R).

Lemma 2.2 yields the subsequent Corollary.

Corollary 3.4 Letα, β ∈ (0, 1], such thatα ≤ β, then Cβ ([0, a] ,R) is injected in Cα ([0, a] ,R) .

Proposition 3.2 Letα, β ∈ (0, 1], such thatα ≤ β, then Cβ ([0, a] ,R) is dense in Cα ([0, a] ,R).

Proof. Let f ∈ Cα ([0, a] ,R), then f (α) ∈ C ([0, a] ,R), since C1 ([0, a] ,R) is dense
in C ([0, a] ,R), then there exists a sequence (hn)n∈N ∈ C10 ([0, a] ,R) that converges to
f (α) in C ([0, a] ,R), by Lebesgue dominated convergence theorem and Lemma 2.2, we get
(Iα (hn))n converges to Iα

(
f (α)

)
= f , let (fn)b be a sequence defined by:

fn (t) := Iα (hn) (t) , for all t ∈ [0, a] .

From Lemma 2.2, we have

f (β)n (t) = t1−β (Iα (hn))
(1) (t) = tα−βhn (t) , for all t ∈ (0, a] .

Since (hn)n∈N ∈ C10 ([0, a] ,R), then there exists a neighborhood V ⊂ [0, a] of 0 and
ε : V → R, such as lim

t→0
ε (t) = 0 and

hn (t) = h(1)n (0) t+ ε (t) , for all t ∈ V,

by the last equality, there exists a neighborhood V1 ⊂ [0, a] of 0 and ε1 : V1 → R, such as
lim
t→0

ε1 (t) = 0 and

f (β)n (t) = h(1)n (0) tα+1−β + ε1 (t) , for all t ∈ V1,

Thus,
f (β)n (0) = lim

t→0
f (β)n (t) = 0.

Finall, we obtain (fn)n ∈ Cβ ([0, a] ,R) .
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4 Conclusion and Application

Utilization of density qualities: In order to demonstrate some findings pertaining to a given
function f , it is occasionally helpful to approach the issue from a distance by positioning
oneself in an appropriate functional space and utilizing the density properties of specific
function subclasses.

We are prompted to illustrate the required attribute for less complex functions as a result.
We provide an example of an application that may be attacked using this strategy (Lemma
4.1).

Lemma 4.1 If f ∈ L1
α ([0, a] ,R), such as∫ a

0
f (t)ϕ (t) dαt = 0, for ϕ ∈ C ([0, a] ,R) , (4.1)

with α ∈ (0, 1) and a > 0, then f (t) = 0 a.e in [0, a].

Proof. Let f ∈ C ([0, a] ,R), such as
∫ a
0 f (t)ϕ (t) dαt = 0, for ϕ ∈ C ([0, a] ,R). I can

take ϕ = f , we obtain ‖f‖2L2
α
=
∫ a
0 |f (t)|

2 dαt = 0, which implies f (t) = 0, a.e in [0, a],
such that the attribute (4.1) is validated, such as f ∈ C ([0, a] ,R). As C ([0, a] ,R) is dense
in L1

α ([0, a] ,R), then, if f ∈ L1
α ([0, a] ,R), for ε > 0, then there is fε ∈ C ([0, a] ,R),

such as lim
ε→0

fε = f in L1
α ([0, a] ,R) and

∫ a
0 fε (t)ϕ (t) dαt = 0, for ϕ ∈ C ([0, a] ,R), as ε

approaches zero, we get the outcome of this lemma.
The proof is finished.

In the graphic below, we show the density between some of the functional spaces based
on the findings from the article.

Cβ ([0, a] ,R) −→ L
pγ
γ−1
α ([0, a] ,R)

↓ ↘ ↓ ↘
Cα ([0, a] ,R) −→ Lpα ([0, a] ,R) −→ L1

α ([0, a] ,R)
↑ ↗ ↑ ↗

C ([0, a] ,R) −→ Wα,p ([0, a] ,R)

where p ∈ [1,∞), β, α ∈ (0, 1], γ ∈ (1, 1/ (1− α)) and α ≤ β.
Since C ([0, a] ,R) is dense in Lpα ([0, a] ,R), we may generalize aspects of the classical
ideas (density and injection) and contribute something new. It could be interesting to expand
on this topic of fractional Morrey spaces in the follow-up.

Final thought: Using the operators defined in [14,15], which include as a specific in-
stance the derivative and conformable integral of [13], the findings provided may be gener-
alized.

Definition 4.1 [14] Let f : [0,+∞)→ R, α ∈ (0, 1) and F (., α) be some function. Then,
the N -derivative of f of order α is defined by

Nα
F f(t) = lim

ε→0

f(t+ εF (t, α))− f(t)
ε

, for all t > 0.

Here we will use some cases of F defined in function of Ea,b(.), the classic definition of
Mittag–Leffler function with Re(a), Re(b) > 0. Also we consider Ea,b(t−α)k is the k-th
term of Ea,b(.).
If f is α-differentiable in some 0 < α ≤ 1, and lim

t→0+
Nα
F f(t) exists, then define

Nα
F f(0) = lim

t→0+
[Nα

F f(t)] .
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Definition 4.2 [15]Let I ⊆ R be an interval, a, t ∈ I and α ∈ R. The integral operator
J αF,a+, right and left, is defined for every locally integrable function f on I as

J αF,a+f(t) =
∫ t

a

f(s)

F (t− s, α)
ds, for all t > a,

and

J αF,b−f(t) =
∫ b

t

f(s)

F (s− t, α)
ds, for all b > t.

We will also use the ”central” integral operator defined by

J αF,af(b) =
∫ b

a

f(t)

F (t, α)
dt, b > a. (4.2)

For instance, Lemma 3.1 may be expressed as follows using these operators (its proof is
identical to the one previously provided and is left as an exercise for the reader).

Lemma 4.2 If F in (4.2) is an absolutely continuous and strictly increasing function with
respect to t, let p ∈ R be such that p ≥ 1 and a ∈ (0,∞), then LpF,α ([0, a] ,R) is dense
in Lp ([0, a] ,R), where Lp ([0, a] ,R) is considered Lp1 ([0, a] ,R). With LpF,α ([0, a] ,R) the
Banach space endowed with the norm

‖f‖pF,α =

∫ a

0
|f (t)|p dFα t =

∫ a

0
|f (t)|p dt

F (t, α)
.
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14. Nápoles, J. E., Guzmán, P. M., Lugo, L. M., Kashuri, A.: The local non-conformable
derivative and Mittag Leffler function, Sigma J Eng & Nat Sci. 38 (2020), no 2, 1007-
1017.
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