
Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci.
Mathematics, 43 (4), 114-127 (2023).
https://doi.org/10.30546/2617-7900.43.4.2023.114

On some structural properties in Banach function spaces

Eminaga M.Mamedov ? · Nazir A. Ismailov

Received: 12.01.2023 / Revised: 07.09.2023 / Accepted: 23.10.2023

Abstract. This article deals with some structural properties and subspaces of Banach function spaces on
which the additive shift operator (Tδf) (x) = f (x+ δ) is isometric. Naturally, constructive description
of these subspaces and necessary and sufficient conditions for the functions to belong to these subspaces
play an exceptional role here. Note that for grand Lebesgue spaces these conditions are well known.
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1 Introduction

The emergence of new function spaces such as Morrey space, grand Lebesgue space, etc.
naturally requires the development of corresponding theory. That’s why various problems
in such spaces and corresponding Sobolev spaces generated by such spaces began to be
intensively studied. A lot of works have been dedicated to these issues (see [1–7,9,10,
12–15,17–19,21,22,25]). Therefore, studying differential equations, in particular, solvabil-
ity problems of elliptic equations in rearrangement-invariant Sobolev spaces generated by
rearrangement-invariant Banach function spaces, takes one of the central places in such kind
of research. In general, the considered Banach function spaces are not separable. There-
fore, using classical methods in these spaces requires the essential modification of classical
methods and a lot of preparation, concerning correctness of substitution operator, problems
related to the extension operator in such spaces, etc. To this aim, based on the additive shift
operator (Tδf) (x) = f (x+ δ), corresponding separable subspaces Xs(Ω) of such spaces
are introduced, in which the set of compactly supported infinitely differentiable functions is
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dense (see [4–7,9,10,21,22]). In case of rearrangement-invariant space, where every char-
acteristic function is absolutely continuous, the considered subspace, the subspace of abso-
lutely continuous functions and the closure of the set of simple functions coincide.

Constructive description of these subspaces, sufficient and necessary conditions for the
functions to belong to these subspaces of course play an exceptional role here. Note that for
grand Lebesgue space these conditions have been given in [14].

In this article, we describe these subspaces of Marcinkiewicz spaces, weak Lebesgue
space Lwp , and Morrey spaces. In Banach function spaces with additive-invariant norm,
considered subspaces coincide with the set of absolutely continuous functions, which makes
a description of the above conditions a little simpler. Using this fact, we also give the proof
of the corresponding theorem for grand Lebesgue spaces.

2 Needful information

We will use the following standard notations: Z will be the set of integers, while Z+ will
denote the set of non-negative integers. R+ = [0, +∞). By m = mes (M) = |M | we
will denote the Lebesgue measure of the set M , |x| =

√
x21 + ....+ x2n will be the norm of

x = (x1, ..., xn) ∈ Rn, Br (x0) = {x ∈ Rn : |x− x0| < r} will denote the open ball in
Rn, ∂Ω will stand for the boundary of the domain Ω, and Ω = Ω

⋃
∂Ω will be the closure

of Ω. The diameter of the set Ω will be denoted by d(Ω) = dΩ = diamΩ, ρ (x, M) =
dist (x,M) will be the distance between x and the set M . By M1∆M2 we will denote the
symmetric difference of the sets M1 and M2. Let

Ωr (x0) = Ω
⋂
Br (x0) , Br = Br (0) ,

Ω − δ = {x : x+ δ ∈ Ω} (∀δ ∈ Rn) ,

Ωε = {x : dist (x, Ω) < ε} , Ω−ε = {x ∈ Ω : dist (x, ∂Ω ≥ ε)} , (∀ε > 0) .

=(Ω) will denote the set of measurable functions on Ω ⊂ Rn, and =0(Ω) the set of
finite-valued functions. [X,Y ] will be a Banach space of bounded operators acting from
X to Y , while ‖T‖[X,Y ] will stand for the norm of the operator T , which acts from X

to Y . Unit balls in Banach function space X and its associate space will be denoted by
BX and BX′ , respectively. By α = (α1, α2, ..., αn) we will denote a multi-index with the
coordinates αk ∈ Z+, ∀k = 1, n; ∂i =

∂
∂xi

will denote the differentiation operator, with
∂α = ∂α1

1 ∂α2
2 ...∂αnn . For every ξ = (ξ1, ξ2, ..., ξn), we assume ξα = (ξα1

1 , ξα2
2 , ..., ξαnn ).

We will assume the following: let K =
{
(x1, ..., xn) : |xi| < d

2

}
⊂ Rn be a cube,

X(K) be a Banach function space defined on K with Lebesgue measure and the function
norm ρ. For Ω ⊂ K : Ω ⊂ K, by X(Ω) we will mean the space of restrictions of all
functions from X(K) to Ω with corresponding norm, i.e.

X(Ω) =
{
f ∈ =(K): ‖f‖X(Ω) = ‖fχΩ‖X(K) < +∞

}
.

Depending on circumstances, we will assume that f ∈ X(Ω) is extended by zero to K, or
to all of Rn.

For arbitrary function f ∈ X(Ω) and for arbitrarily small δ ∈ Rn : |δ| <
dist (∂Ω, ∂K), by Tδ we denote the additive shift operator, defined as

(Tδf) (x) =

{
f (x+ δ) , x+ δ ∈ Ω,
0, x+ δ /∈ Ω .
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By Xs (Ω) we will denote the subspace of all functions from X (Ω) with the following
property:

‖Tδ (f)− f‖X(K) → 0, δ → 0,

where δ ∈ Rn is a shift vector.
Moreover, we assume that X(K) has the following property:
Property A).

∀Ω : Ω ⊂ K ∀f ∈ X(Ω), ∀ |δ| < dist (∂Ω, ∂K)⇒ ‖f‖X(K) = ‖Tδf‖X(K) . (2.1)

For example, rearrangement-invariant Banach function spaces, Morrey spaces have
Property A). In the sequel, such spaces will be called the spaces with additive-invariant
norm or additive-invariant Banach function spaces.

Let’s impose the following conditions:

β) ∀En → ∅ ⇒ ‖χEn‖X(K) → 0, (2.2)

β′) m (E) <∞⇒
∥∥χE∆(E−δ)

∥∥
X(K)

−→
δ→0

0. (2.3)

It should be noted that Property β′) introduced above is closely connected with the
relationship between Xb and Xs. Indeed, satisfaction of Property β′) guarantees that every
characteristic function, consequently, every simple function belongs to Xs(Ω).

Let’s introduce the following spaces of functions:

Wm
X (Ω) =

{
f ∈ X(Ω) : ∂pf ∈ X, ∀p ∈ Zn+, |p| ≤ m

}
,

Wm
Xs(Ω) =

{
f ∈Wm

X (Ω) : ‖Tδf − f‖Wm
X (Ω) → 0, δ → 0

}
,

0

Wm
Xs(Ω) = C∞0 (Ω) (closure is taken in the space Wm

X (Ω)),

with the corresponding norm

‖f‖Wm
X (Ω) =

∑
|p|≤m

‖∂pf‖X(Ω) . (2.4)

The shift operator is continuous on Wm
X (Ω), therefore Wm

Xs
(Ω) is a closed subspace of

Wm
X (Ω). It is evident that

Wm
Xs(Ω) =

{
f ∈Wm

Xs(Ω) : ∂pf ∈ Xs, ∀p ∈ Zn+, |p| ≤ m
}
.

It is also clear that every function from
0

Wm
Xs

(Ω) = C∞0 (Ω) can be extended by zero to all
of K.

Corollary 2.1 If β) holds, then β′) holds too.

Proof. Indeed, let E be an arbitrary measurable set. Then for arbitrary ε > 0 there is a
some finite disjoint set of open sets Uk, k = 1, ..., p, such that

U =
⋃
k

Uk ⇒ mes (U∆E) = mes ((E − δ)∆ (U − δ)) < ε.

The relation
E∆ (E − δ) = (E∆U)

⋃
((E − δ)∆U) =

= (E∆U)
⋃
((E − δ)∆ (U − δ))

⋃
(U∆ (U − δ)) (2.5)

implies that it suffices to prove this assertion for open set U , which is obvious.
The corollary is proved.
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Definition 2.1 Let f ∈ X . If for each sequence of measurable sets {En}∞1 with En →
∅ the relation µ − a.e. ⇒ ‖fχEn‖X → 0 holds, then it is said that f has an absolutely
continuous norm. The set of all functions in X with absolutely continuous norms is denoted
by Xa. If X = Xa, then the space X is said to have an absolute norm. Let X be a Banach
function space. The closure of the set of simple functions is denoted by Xb.

The following lemma describes the relationship between the above spaces.

Lemma 2.1 a) The following inclusions hold:

L∞(Ω) ⊂ X(Ω) ⊂ L1(Ω), Xa(Ω) ⊂ Xb(Ω) ⊂ X(Ω).

b) Subspaces Xa(Ω) and Xb(Ω) coincide if and only if for every set E ⊂ Ω of finite
measure χE has an absolutely continuous norm.

Lemma 2.2 below has been proved in [9,21].

Lemma 2.2 Let X be a rearrangement-invariant Banach function space. If β) holds, then
Xs(Ω) = Xa(Ω) = Xb(Ω) = C∞0 (Ω) (the closure is taken in topology of X(Ω)).

Remark 2.1 Note that in Lemma 2.2, instead of rearrangement-invariance of the space it
suffices to assume that the norm is additive-invariant, i.e. to assume that the equality (2.1)
holds.

This follows from the proof of Proposition 3.2 in [21].
In other words, Lemma 2.2 can be formulated in the following exact form.

Lemma 2.3 Let X(K) be an additive-invariant Banach function space with Property β)
and Ω : Ω ⊂ K be any domain. Then

Xs(Ω) = Xa(Ω) = Xb(Ω) = C∞0 (Ω).

It is clear that under conditions of Lemma 2.3 we have

f ∈ Xs(Ω)⇒ Tδf ∈ X (Ω − δ) .

3 Some general properties

In this section, we are going to formulate some general structural properties about the sub-
spaces Xs(Ω), Xa(Ω), Xb(Ω).

It is obvious that if X(K) has Property β), then every compactly supported continuous
function belongs to Xs(Ω), i.e. C∞0 (Ω) ⊂ Xs(Ω) and C

(
Ω
)
⊂ Xa(Ω).

Proposition 3.1 Let X(K) be an additive-invariant Banach function space with Property
β) and Ω : Ω ⊂ K be any domain. Then

a) Xs(Ω) is separable;
b) if X1(Ω) and X2(Ω) are Banach function spaces and the inclusion X1 ⊂ X2 is

true, then the inclusions (X1(Ω))s ⊂ (X2(Ω))s , (X1(Ω))a ⊂ (X2(Ω))a , (X1(Ω))b ⊂
(X2(Ω))b are also continuous.

c) Xa(Ω) ⊂ Xs(Ω).
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Proof. a) This is a consequence of Lemma 2.3.
b) This is obvious. Indeed,

f ∈ (X1)s ⇒ ‖Tδf − f‖X2
≤ c ‖Tδf − f‖X1

→ 0, δ → 0.

Other inclusions are proved similarly.
c) Let f ∈ Xa be any function. Using Lusin’s C-property, we have

∀δ > 0 ∃Ω (δ) ⊂ Ω : Ω (δ) = Ω (δ) , |Ω\Ω (δ)| < δ ⇒ f |Ω(δ) ∈ C (Ω (δ)) .

Hence,
‖f (x+ z)− f (x)‖X(Ω) ≤ ‖ϕ1 (x, z)‖X(K) + ‖ϕ2 (x)‖X(K) , (3.1)

where

ϕ1 (x, z) =

{
f (x+ z)− f (x) , if x+ z ∧ x ∈ Ω (δ) ,
0, if x+ z ∨ x /∈ Ω (δ) .

ϕ2 (x, z) = f (x+ z)− f (x)− ϕ1 (x, z) .

It is clear that f (x+ z) − f (x) = ϕ1 (x, z) + ϕ2 (x, z). From the compactness of Ω(δ)
and the continuity of f (x) on Ω(δ) it follows that the first term on the right-hand side of
(3.1) is sufficiently small due to uniform continuity of f |Ω(δ). Consider the second term. It
is obvious that

suppϕ2 (x, z) = {x ∈ K : x+ z ∈ Ω ∧ x+ z /∈ Ω (δ)}
⋃
{x ∈ Ω : x ∈ Ω\Ω (δ)}

= {x ∈ (Ω − z) \ (Ω (δ)− z)}
⋃
{x ∈ Ω : x ∈ Ω\Ω (δ)}

⇒ |suppϕ2 (x, z)| ≤ |{x ∈ (Ω − z) \ (Ω (δ)− z)}|
+ |{x ∈ Ω : x ∈ Ω\Ω (δ)}| ≤ 2δ.

From the absolute continuity of the function f it follows that the second term is also small
for small δ. Therefore, f ∈ Xs ⇒ Xa ⊂ Xs. The proposition is proved.

Now let Property β′) holds instead of Property β). In this case, for arbitrary E :
m (E) <∞ we have∥∥χE∆(E−δ)

∥∥
X
−→
δ→0

0⇒ ‖TδχE − χE‖X −→
δ→0

0⇒ χE ∈ Xs.

Consequently, Xb ⊂ Xs.
By Proposition 3.2 of [21], the relation Xs ⊂ C∞

(
Ω
)

also holds. On the other hand,
every function ∀f ∈ C∞0

(
Ω
)

is uniformly continuous. Therefore,

∀ε > 0 ∃δε > 0 ∀x1, x2 ∈ Ω : |x1 − x2| < δε ⇒ |f (x1)− f (x2)| < ε
⇒ ∀z : |z| < δε ⇒ ‖f (x+ z)− f (x)‖X(K) ≤ c ‖f (x+ z)− f (x)‖C(K) < c ε,

where c = const is independent of x and defined by the embedding L∞(K) ⊂ X(K).
Therefore, the inclusion C∞0 (Ω) ⊂ Xb also holds. Consequently, the inclusion Xs ⊂ Xb is
valid.

In other words, the following is true.

Proposition 3.2 Let X be an additive-invariant Banach function space with Property β′)
and Ω : Ω ⊂ K be any domain. Then

Xs(Ω) = Xb(Ω) = C∞0 (Ω).

The following proposition shows that Properties β) and β′) are equivalent in the
rearrangement-invariant space.
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Proposition 3.3 Let X be a rearrangement-invariant Banach function space. Then Prop-
erties β) and β′) are equivalent.

Proof. As we proved above, β) implies β′).
Now let β′) hold. We are going to prove that β) holds. Taking into account that the space

X(Ω) is rearrangement-invariant, we have

∀E, F ⊂ Ω : |E| = |F | ⇒ ‖χE‖X(Ω) = ‖χF ‖X(Ω) .

From this assertion it follows that it suffices to prove

∃En : |En| → 0⇒ ‖χEn‖X(Ω) → 0.

But it is obvious. Consider any cube E ⊂ Ω. It is evident that

∀δ > 0 : E − δ ⊂ Ω ⇒ |E∆ (E − δ)| > 0 and |E∆(E − δ)| → 0, δ → 0.

The proposition is proved.

Proposition 3.4 Let X(Ω) be a rearrangement-invariant Banach function space and
Xa(Ω) = {0}. Then X(Ω), furthermore, Xb(Ω) is non-separable.

Proof. Let’s prove that

Xa = {0} ⇒ ∃m > 0 ∀E ⊂ Ω : |E| > 0⇒ ‖χE‖X(Ω) ≥ m.

Indeed, otherwise Property β) would hold. Therefore, Xa(Ω) = Xb(Ω) 6= ∅, which con-
tradicts the condition of the proposition.

Consider any cube E ⊂ Ω. Then, for arbitrary pair of vectors z1 = t1z 6= z2 =
t2z, ∀t1, t2 ∈ R, E + z1 ⊂ Ω, E + z2 ⊂ Ω, we have

‖χE+z1 − χE+z2‖X(K) =
∥∥χ(E+z1)∆(E+z2)

∥∥
X(K)

≥ m > 0.

It is clear that the set of such pairs of vectors is uncountable.

The following lemma was proved in [9,21].

Lemma 3.1 Let X be a rearrangement-invariant Banach function space with Property β)
on the domain Ω ⊂ Rn. Then, ∀ϕ ∈ L∞(Ω), ϕ · f ∈ Xs(Ω) implies ϕf ∈ Xs.

From Remark 2.1 it follows that this lemma can be reformulated in the following exact
form.

Lemma 3.2 Let X(K) be an additive-invariant Banach function space with Property β)
and Ω : Ω ⊂ K be any domain. Then ϕf ∈ Xs, ∀ϕ ∈ L∞(Ω), ∀f ∈ Xs(Ω).

Proof. Indeed, in this case, by Lemma 2.3 we haveXs(Ω) = Xa(Ω) = Xb(Ω) = C∞0 (Ω).
It is clear that ∀ϕ ∈ L∞(Ω)⇒ ϕXs(Ω) = ϕXa(Ω) ⊂ Xa(Ω).

The lemma is proved.

The following proposition shows that the converse of the above assertion is also true.

Proposition 3.5 Let X(K) be an additive-invariant Banach function space with Property
β) and Ω : Ω ⊂ K be any domain. Then f ∈ Xs if and only if

∃ϕ ∈ L∞(Ω) : ess inf
Ω
|ϕ| = m > 0, ϕf ∈ Xs(Ω).
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Proof. Let ess sup
Ω
|ϕ| = M . Then, m |f | ≤ |ϕf | ≤ M |f | , or 1

M |ϕf | ≤ |f | ≤
1
m |ϕf |.

Consequently, f and ϕf are both absolutely continuous.

Consider Lebesgue measure case again. LetX(K) be an additive-invariant Banach func-
tion space. Let’s prove the following proposition.

Proposition 3.6 Let X(K) be an additive-invariant Banach function space with Property
β). Let the mapping ϕ : K → K be one-to-one, the composition operator φ defined as

(φf) (.) = f (ϕ (.)) , ∀f ∈ =0(Ω) (3.2)

and its inverse be bounded operators from X(K) to X(K), and Xs(Ω) = Xa(Ω) =
Xb(Ω) for every domain Ω : Ω ⊂ K. Then

φ (Xa(Ω)) = φ (Xb(Ω)) = φ (Xs(Ω)) = Xa(D) = Xb (D) = Xs (D) ,

where D = ϕ(Ω) ⊂⊂ K.

Proof. Indeed, the transformation (3.2) preserves the set of characteristic functions.
Consequently, it also preserves the set of simple functions. Let f ∈ Xb(Ω) be any function,
and f = lim

n→∞
fn, where {fn} ⊂ X(Ω) is a sequence of simple functions and

g = φ (f) ∈ X (D) , gn = φ (fn) , ∀n.

From the boundedness of the composition operator (3.2) it follows that lim
n→∞

gn = g ∈
Xb(Ω). Consequently, we have φ (Xb(Ω)) ⊂ Xb (D). And, similarly, from the bounded-
ness of the inverse operator φ−1 we have φ−1 (Xb (D)) ⊂ Xb(Ω). Thus, φ(Xb(Ω)) =
Xb (D).

The proposition is proved.

4 Description of subspacesXs(Ω) of some Banach function spaces

We are going to use Lemmas 2.1-2.3 for description of the subspaces Xs(Ω) of grand
Lebesgue spaces, Marcinkiewicz spaces, weak Lebesgue spaces Lwp and Morrey spaces. In
the sequel, we assume that the function from X(Ω) is extended by zero on all Rn.

4.1. The grand Lebesgue space X = Lp)(Ω), 1 < p < +∞

This is a Banach function space of measurable (in Lebesgue sense) functions f : Ω → C
with the norm

‖f‖p) = sup
0<ε<p−1

(
ε

∫
Ω
|f |p−ε dx

) 1
p−ε

, f ∈ Lp)(Ω).

It is well known that the space Lp)(Ω) is a non-separable rearrangement-invariant Banach
function space, and Property β) holds. Indeed,

E ↓ 0⇒ ‖χE‖p) = sup
0<ε<p−1

(ε |E|)
1
p−ε ≤ ((p− 1) |E|)

1
p → 0.

Therefore, in this case the relation Xs = Xa = Xb = C∞0 (Ω) holds (the closure is taken
in topology of Lp)(Ω)).

The following theorem is well known (see, for example, [14]). Here we give the proof
of this theorem based on Lemmas 2.1-2.3.
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Theorem 4.1 The closure C∞0 (Ω) in Lp)(Ω) consists of the functions f which satisfy

lim
ε→0

ε

∫
Ω
|f |p−ε dx = 0. (4.1)

Proof. ⇒. It is clear that the relation (4.1) is satisfied for any function f ∈ C∞0 (Ω). Indeed,

f ∈ C∞0 (Ω)⇒ ε

∫
Ω
|f |p−ε dx = ε (max |f |)p−ε ≤ εmax

{
1, max

Ω
|f |p

}
−→
ε→0

0.

Let g ∈ Xs be arbitrary function, δ > 0 be some positive number and f ∈ C∞0 (Ω), ε > 0 :

‖g − f‖Lp)(Ω) < δ, δ > 0,
(
ε
∫
Ω |f |

p−ε dx
) 1
p−ε < δ.

Then, by Minkowski inequality, we obtain

ε

∫
Ω
|g|p−ε dx ≤

(
(ε

∫
Ω
|f |p−ε dx)

1
p−ε + (ε

∫
Ω
|f − g|p−ε dx)

1
p−ε

)p−ε
<

< (2δ)p−ε < 2δ → 0, δ → 0.

”⇐ ”. Let f /∈ Xa = Xb = Xs, but lim
ε→0

ε
∫
Ω |f |

p−ε dx = 0.

So we have
∃m > 0 ∃En ↓ 0⇒ ‖fχEn‖p) ≥ m⇔

⇔ ∃εn :
(
εn
∫
En
|f |p−εn dx

) 1
p−εn ≥ m.

Without loss of generality, it can be assumed that lim εn = ε0 6= 0. Taking into account that

for every fixed set E the function
(
z
∫
E

∣∣f (x)p−z∣∣ dx) 1
p−z is continuous with respect to z,

we can take sufficiently large positive integer n0 such that

∀n > n0 ⇒
(
εn0

∫
En0
|f |p−εn0 dx

)p−ε0
≥ const

(
εn
∫
En0
|f |p−εn dx

)p−εn
≥

≥
(
εn
∫
En
|f |p−εn

)p−εn
≥ constm .

Therefore, for example, we can assume

ε0

∫
En

|f |p−ε0 dx > m

2
⇒
∫
En

|f |p−ε0 dx ≥ constm > 0, ∀n > n0.

On the other hand, the function fp−ε0 is an absolutely continuous function in the classical
sense. Therefore,

∫
En
|f |p−ε0 dx→ 0. But this contradicts our assumption.

The theorem is proved.

4.2. Marcinkiewicz space X =Mp,λ(Ω), 1 ≤ p < +∞, 0 < λ < n

This is a Banach function space of measurable (in Lebesgue sense) functions on Ω with the
norm

‖f‖p,λ = sup
I

(
1

|I|
λ
n

∫
I
|f |p dt

) 1
p

,
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where I ⊂ Rn is an arbitrary measurable subset. In particular, if I = Ω, then we have(
1

|Ω|λ

∫
Ω
|f |p dt

) 1
p

≤ ‖f‖p,λ ⇔ ‖f‖p ≤ const ‖f‖p,λ,

i.e. the continuous inclusion Mp,λ(Ω) ⊂ Lp(Ω) holds.
Recall that in the classical Morrey space Lp,λ(Ω) sup is got on I = B

⋂
Ω, where B ⊂

Rn is an arbitrary ball. Unlike Lp,λ(Ω), Marcinkiewicz space is rearrangement-invariant. It
is clear that the inclusion Mp,λ(Ω) ⊂ Lp,λ(Ω) holds. Let’s prove that Property β) holds in
Mp,λ(Ω). Let E : |E| → 0 and fix any measurable subset I ⊂ Ω. We have(

1

|I|
λ
n

∫
I χ

p
Edt

) 1
p

=
(
|I

⋂
E|

|I|λ/n

) 1
p ≤

(
|I

⋂
E|

|I
⋂
E|λ/n

) 1
p
=
(
|I
⋂
E|1−

λ
n

) 1
p ≤ |E|

n−λ
np ⇒

⇒ ‖χE‖Mp,λ(Ω) ≤ |E|
n−λ
np → 0, E → 0 .

This space is a rearrangement-invariant Banach function space. Consequently, the rela-
tion Xs(Ω) = Xa(Ω) = Xb(Ω) = C∞0 (Ω) holds.

Theorem 4.2 The set C∞0 (Ω) of finite and infinitely differentiable functions in Ω is not
dense in Mp,λ(Ω). The closure C∞0 (Ω) in Mp,λ(Ω) consists only of the functions f which
satisfy the relation

1

|E|λ/n

∫
E
|f |p dx→ 0, E → 0. (4.2)

Proof. It should be noted that if the function has the property (4.2), then it belongs to
Mp,λ(Ω). Indeed, from (4.2) it follows that

∀ε > 0 ∃δ > 0 ∀E : |E| < ε⇒ 1

|E|λ

∫
E
|f |p dx < ε.

Now let’s consider the case where |E| > δ. The following is evident:

1

|E|λ

∫
E
|f |p dx ≤ 1

δλ

∫
E
|f |p dx ≤ 1

δλ

∫
Ω
|f |p dx =

1

δλ
‖f‖pp.

It follows that ‖f‖p,λ ≤ max{ε
1
p , 1

δ
λ
p
‖f‖p}.

Now let’s prove the assertion.
”⇒ ” Let f ∈ C∞0 (Ω). In this case we have

1

|E|λ/n

∫
E
|f |p dx→ 0 ≤ max |f |p |E|1−

λ
n → 0, E → 0.

Let g ∈ Xs(Ω) be an arbitrary function, δ > 0 be some positive number, E ⊂ Ω be an
arbitrary measurable subset and

f ∈ C∞0 (Ω), ε > 0 : ‖g − f‖Mp,λ(Ω) < δ,

(
1

|E|λ/n

∫
E
|f |p dx

) 1
p

< δ.
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By Minkowski inequality, we obtain

1

|E|λ/n

∫
E
|g|p dx ≤

(
(

1

|E|λ/n

∫
E
|f |p dx)

1
p + (

1

|E|λ/n

∫
E
|f − g|p dx)

1
p

)p
< 2δ → 0, δ → 0.

′′ ⇐ ”Assume the contrary. Let the relation (4.2) hold for the function f /∈ Xa(Ω) =
Xs(Ω) = Xb(Ω), i.e.

1

|E|1−λ

∫
E
|f |p dx→ 0, E → 0.

But
∃m > 0 ∃In : |In| −→

n→∞
0& ‖fχIn‖Xs > m.

This means that

∃En ⇒
1

|En|λ/n

∫
En

|f |p χIndx =
1

|En|λ/n

∫
En

⋂
In

|f |p dx ≥ m > 0.

It should be noted that the last inequality allows us to say that |En
⋂
In| =

mes (En
⋂
In) > 0. On the other hand, by (4.2) we have

m ≤ 1

|En|λ/n

∫
En

⋂
In

|f |p χIndx ≤
1

|In
⋂
En|λ/n

∫
In

⋂
En

|f |p dx→ 0,

which shows that our assumption is impossible.
The theorem is proved.

Corollary 4.1 f ∈
(
Mp,λ(Ω)

)
s
⇔ lim

ε→0
ε−λ/n

∫
{E:|E|=ε} |f |

p dx = 0.

4.3. Weak Lebesgue spaces Lwp (Ω)

Weak Lebesgue space Lwp (Ω) (1 ≤ p <∞, 0 < λ < n) is a space of all functions

Lwp (Ω) =

{
f ∈ =(Ω) : sup

0<λ<+∞
λpmf (λ) < +∞

}
,

where =(Ω) is a set of measurable functions on Ω, and mf (λ) is a distribution function,
i.e.

mf (λ) = m {x ∈M : |f (x)| > λ} .
In [23], the space Mr(Ω) (r > 1) of measurable functions with the following norm has
been considered:

‖f‖Mr = sup
E⊂Ω

1

|E|1−
1
r

∫
E
|f | dx, (4.3)

where sup is taken over all measurable subsets E ⊂ Ω. The lemma below was proved in
[11,20].

Lemma 4.1 For arbitrary r > 1, the spaces Lwr (Ω) and Mr(Ω) coincide with each other:
Lwr (Ω) =Mr(Ω) .

In line with our notations, we obtain M1,λ(Ω) =M n
n−λ

(Ω), 0 < λ < n. Consequently,

we have Lwr (Ω) =M1,λ(Ω), where r = n
n−λ .

Taking into account all these facts, we can formulate the following corollaries.



124 On some structural properties in Banach function spaces

Corollary 4.2 (
Lwn
n−λ

(Ω)
)
s
=

{
f :

1

|I|λ/n

∫
I
|f | dx, I → 0

}
. (4.4)

Corollary 4.3

f ∈
(
Lwn
n−λ

(Ω)
)
s
⇔ 1

ελ/n

∫
E:|E|=ε

|f | dx→ 0, ε→ 0. (4.5)

4.4. Morrey space Lp,λ(Ω), (1 ≤ p <∞, 0 < λ < n)

The norm in this space is defined as

‖f‖p,λ = sup
Br⊂Rn

(
1

rλ

∫
Br

|f |p dx
) 1
p

, (4.6)

where sup is taken from all balls from Rn. Recall that we consider the function that is
continued by zero to all of Rn. It is easy to see that this space has Property β). Indeed,

‖χE‖p,λ = sup
B

(
1

rλ

∫
B

⋂
E
dx

) 1
p

≤ const sup
B

∣∣∣B⋂E
∣∣∣n−λp ≤ const |E|n−λp → 0, E → 0.

Consequently, Xa(Ω) = Xb(Ω). But it is well known that this space is non-separable and
non- rearrangement-invariant. By Remark 2.1, every function from Xs(Ω) can be approx-
imated by the functions from C∞0 (Ω). Consequently, the relation Xa(Ω) = Xb(Ω) =

Xs(Ω) = C∞0 (Ω) holds.

Theorem 4.3(
Lp,λ(Ω)

)
s
=

{
f :

1

rλ

∫
Br

|f |p dx→ 0, r → 0

}
, (0 < λ < n) , (4.7)

where Br ⊂ Rn is an arbitrary ball.

Proof. It is clear that the relation (4.7) holds for every function from C∞0 (Ω). Indeed,

f ∈ C∞0 (Ω)⇒ 1

rλ

∫
B
|f |p dx ≤ constmax

B
|f |p rn−λ−→

r→0
0.

Similar to the proof of Theorem 4.1, we can show that this relation holds for every function
from

(
Lp,λ(Ω)

)
s
.

Let’s prove that if the condition (4.7) holds for the function f , then f ∈ Xa. Assume
the contrary. Let the relation (4.7) hold for some function f /∈ Xa(Ω) = Xs(Ω) = Xb(Ω).
From f /∈ Xa(Ω) it follows that

∃m > 0 ∃En : |En| → 0⇒ ‖fχEn‖p,λ > m.

In view of (4.6), we have

∃Bn = Brn ⊂ Rn ⇒ 1

rnλ

∫
Brn

|f |p χEndx ≥ m > 0.
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Without loss of generality, it suffices to consider two cases:
Case 1. |Bn| → 0. In this case, we have

m ≤ 1

rnλ

∫
Bn

|f |p χEndx =
1

rnλ

∫
Bn

⋂
En

|f |p dx ≤ 1

rnλ

∫
Bn

|f |p dx(by (4.7))→ 0, n→ 0.

Case 2. ∃δ > 0∀n⇒ |Bn| > δ. In this case, we have

m ≤ 1

rnλ

∫
Bn

|f |p χEndx =
1

rnλ

∫
Bn

⋂
En

|f |p dx ≤ 1

δ1−λ

∫
Bn

⋂
En

|f |p dx, ∀n. (4.8)

On the other hand, taking into account that ∀f ∈ Lp(Ω) has an absolutely continuous norm
and |Bn

⋂
En| → 0, n→∞, it follows that the right-hand side of (4.8) converges to zero.

Thus, we arrive at a contradiction again.
The theorem is proved.

Remark 4.1 i) It should be noted that the space Lp,λ(Ω) can be defined for ∀λ ≥ 0. But it
is well known that Lp,λ(Ω) is trivial when λ > n, i.e. Lp,λ(Ω) = {0}, Lp,0(Ω) = Lp(Ω),
and Lp,n(Ω)=̃L∞(Ω) (see, for example, [24]).
ii) Also note that Mp,λ

s (Ω) 6= Lp,λs (Ω). Consider the case Ω = (0; 1) and the subsets

En =
⋃
k=1,n

(ank; bnk) , an1 = 0, bnn =

= 1, bnk = ank + xn, an(k+1) = bnk + yn, n (xn + yn) = 1.

Let’s calculate the norms of characteristic functions χEnof these subsets. Taking into ac-
count that Mp,λ is rearrangement-invariant, we have

‖χEn‖Mp,λ(0;1) =
∥∥χ(0;nxn)

∥∥
Mp,λ(0;1)

=

(
1

(nxn)
λ

∫ nxn

0
dx

) 1
p

= (nxn)
1−λ
p ,

where we used the relation

1

aλ

∫ a

0
dx = a1−λ < b1−λ =

1

bλ

∫ b

0
dx, a < b .

In Morrey space case, we have the following estimates:

0 < z ≤ xn ⇒ 1
zλ

∫ z
0 dx = z1−λ ≤ xn1−λ = 1

xnλ

∫ xn
0 dx,

1
(ak+1+z)

λ

∫ ak+1+z
0 χ(0;ak+z)

⋂
Endx = kxn+z

(k(xn+yn)+z)
λ = (kxn + z)1−λ

(
kxn+z

kxn+kyn+z

)λ
=

= (kxn + z)1−λ
(
1− kyn

kxn+kyn+z

)λ
≤ ((k + 1)xn)

1−λ
(

(k+1)xn
(k+1)xn+kyn

)λ
= (k+1)xn

((k+1)xn+kyn)
λ .

Let yn ≥ tnxn : n1−λ < tn
λ, or (ntn)

λ > n, tn > 2. Then we have

(k + 1)xn

((k + 1)xn + kyn)
λ
≤ (k + 1)xn

(tn (k + 1)xn)
λ
≤ n1−λ

tnλ
xn

1−λ < xn
1−λ,

from which it follows that ‖χEn‖Lp,λ(0;1) = xn
1−λ. Finally, as a result, we have

‖χEn‖Mp,λ(0;1)

‖χEn‖Lp,λ(0;1)
= n

1−λ
p →∞, n→∞,

i.e. the embedding Lp,λ ⊂Mp,λ is impossible.
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