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Abstract. In this paper, an initial-boundary value problem for a class of viscoelastic wave equations with
Balakrishnan-Taylor damping and strong dissipation is studied. The existence and uniqueness of solutions
for the proposed problem are obtained by using the linear approximation and the Faedo-Galerkin method.
Under several suitablely sufficient conditions on the initial data and the relaxation function, a general
decay estimate of the solution is established by the perturbed energy method.
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1 Introduction

In this paper, we consider the following viscoelastic wave equation with Balakrishnan-
Taylor damping and strong dissipation

utt − λuxxt − ∂
∂x

[
µ
(
x, t, u (x, t) , 〈ux (t) , uxt (t)〉, ‖u (t)‖2 , ‖ux (t)‖2

)
ux

]
+

∫ t

0
h (t− s)uxx (s) ds = f (x, t, u (x, t) , ux (x, t) , ut (x, t) , uxt (x, t)) ,

(1.1)
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where 0 < x < 1, 0 < t < T, associated with boundary conditions

u (0, t) = u (1, t) = 0, (1.2)

and initial conditions
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x), (1.3)

where λ > 0 is a given constant and ũ0, ũ1 µ, f, h are given functions satisfying some suit-
able conditions. In (1.1), the nonlinear quantity µ depends on the integrals 〈ux (t) , uxt (t)〉 =∫ 1

0
ux (x, t)uxt (x, t) dx, ‖u(t)‖2 =

∫ 1

0
u2 (x, t) dx and ‖ux(t)‖2 =

∫ 1

0
u2x (x, t) dx,

which are known as the Balakrishnan-Taylor damping, the Carrier term and the Kirchhoff
term respectively.

It is clear that the equation (1.1) includes a complex structure of mathematical model,
so there doesn’t seem to be any actual model that fits it. However, we shall introduce and
analyze below numerous related models that take a very important role in many fields of
science such as physics, mechanics and engineering. Indeed, one of the most important
mathematical models is of Kirchhoff [20] in order to describe the changes in length of the
string produced by transverse vibrations

ρhutt =

(
P0 +

Eh

2L

∫ L

0
|ux|2 dx

)
uxx, (1.4)

where u is the lateral deflection, L is the length of the string, h is the area of the cross-
section, E is the Young modulus of the material, ρ is the mass density, and P0 is the initial
tension. Apparently, in this case, the equation (1.4) can be consider as a special form of
the equation (1.1) with λ = 0, µ = µ

(
‖ux (t)‖2

)
, h = 0 and f = 0. Note that, the

equation (1.4) is a generalization for the well-known classical wave equation of D’Alembert
describing free vibrations of elastic strings; and later has been also studied by Carrier [5]
but with the model of vibrations of an elastic string when changes in tension are not small

ρhutt −
(

1 +
EA

LT0

∫ L

0
u2dx

)
uxx = 0, (1.5)

where u(x, t) is the x-derivative of the deformation, T0 is the tension in the rest position,
E is the Young modulus, A is the cross-section of a string, L is the length of a string, ρ
is the density of a material. In this case, it is clear that the equation (1.5) also is a special
form of the equation (1.1) with λ = 0, µ = µ

(
‖u (t)‖2

)
, h = 0 and f = 0. Thereafter,

the equations in the forms of (1.4) or (1.5) were commonly called as Kirchhoff-Carrier type
equations. Over a very long period of developments, there have been thousands of published
works of Kirchhoff-Carrier type equations. The early one in those should be mentioned
here was the studies of Medeiros [28] to the local existence of the mixed problem for the
perturbed Kirchhoff-Carrier operator; the next interesting results were that of Canvalcanti et
al. [6]-[8] to the existence, global existence, exponential or uniform decay rates, asymptotic
behaviour for the various models of Kirchhoff-Carrier type, and later were that of [21],
[26] and [36] to some more abstract models. Meanwhile, many authors concerned with
the steady-state Kirchhoff equations modeling several physical and biological systems and
also for describing the dynamics of an axially moving string Alves et al. [1] and [2], Ma
and Rivera [27]. Recently, several studies of Kirchhoff equations related to optimal control
problems have been considered, we refer to [12], [18] and the references therein.

It also notes that the equation (1.1) includes the nonlocal term
∫ 1

0
ux (x, t)uxt (x, t) dx,

so it can be considered as an abstract form generalizing for a class of problems with
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Balakrishnan-Taylor damping. For a physical interruption, the problems with Balakrishnan-
Taylor damping have been arisen from the studies relating to the panel flutter equation and
the spillover problem, and first introduced by Balakrishnan and Taylor [3], then also studied
by Bass and Zes [4] in which the proposed one-dimensional model was in the generalized
form as follow

utt+λuxxxx−2ς
√
λuxxt−γ

[
P0 +

Eh

2L

∫ L

0
|ux|2 dx+

(∫ L

0
uxuxtdx

)2(n+β)+1
]
uxx = f,

(1.6)
where 0 < x < L, t > 0, n ∈ N, 0 ≤ β < 1

2 and λ is the appropriate structure constant.
Since its appearance, the equation (1.6) has been received much attention of interest, but
mainly in multi-dimensional cases and given by the following model

utt + α∆2u− λ∆ut + µ∆2ut −

[
β + γ ‖∇u‖22 + σ

∣∣∣∣∫
Ω
∇u∇utdx

∣∣∣∣q−2 ∫
Ω
∇u∇utdx

]
∆u

+

∫ t

0
h(t− s)∆u(s)ds+ g(ut) = f(u),

(1.7)
where α > 0 is the elasticity coefficient, γ > 0 is the extensibility coefficient, λ ≥ 0 is
the viscous damping coefficient, σ > 0 is the Balakrishnan-Taylor damping coefficient.
There are so many results related to the equation (1.7) on the existence (local or global) and
stability of solutions, but mainly in the case q = 2. Indeed, in the absence of memory term
and f(u) = |u|p u, Zaraı̈ and Tatar [40] proved the global existence and polynomial decay
of energy in (1.7); and later they have considered (1.7) in the case α = 0, λ = 0, g = 0
and f(u) = |u|p u, see [33], and also established the exponential decay and the blow up
of solutions. At the same time, Emmrich and Thalhammer [13] considered (1.7) without
the memory effect (h = 0) and with the linear weak damping and the linear source, more
precisely when h = 0, g = κut and f = h(x, t)− ξu. The authors proved the existence of
a weak solution in either cases: in the presence of viscous and strong damping (λ, µ > 0)
and q ≥ 2 or else in the absence of dampings (λ = µ = 0) and q = 2; however they
were not able to prove the existence in the case λ = µ = 0 and q > 2. For other results
of the existence and the stability to the solutions in (1.7) as q = 2, we refer to [22], [31],
[34], [37] and [40]. When q > 2, one of initial studies on (1.6) was considered by You [39]
in which the existence of global solutions and the existence of absorbing sets were proved
by using the semigroup theory. Recently, Tavares et. al. [35] have proved the Hadamard
well-posedness and the long-time behavior of solutions in (1.7) when λ = µ = 0, h = 0
and g = κut.

It is well known that time delay are arisen in many sciences such as physical, chemical,
biological, thermal and economical phenomena. The presence of delay may be a source
of instability. Hence, the problems with the Balakrishnan-Taylor damping in the presence
of time delay effects have become one of very interesting topics in recent years, see for
instance [9], [10], [11], [15], [16], [17], [19], [22], [23], [24], [38] and the reference therein.
In most cases, the interest of this type was contained in studying the following equation

utt −
[
β + γ ‖∇u‖22 + σ

(∫
Ω
∇u∇utdx

) ]
∆u

+

∫ t

0
h(t− s)∆u(s)ds+ g1 (ut) + g2 (ut(t− τ(t))) = f(u).

(1.8)
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Actually, when f = 0, g1 and g2 are linear in (1.8), more precisely g1 = µ1ut and g2 =
µ2ut(t − τ(t)), Lee [23] studied the asymptotic stability of the problem and established
general energy decay result by suitable Lyapunov functionals. Extending the results given
in [23], Kang et. al [19] considered (1.8) when f = 0, g1 = µ1f1 (ut) and the nonlinear
time delay in the form µ2f2 (ut(t− τ(t))), then the authors proved a general stability result
for the equation without the condition µ2 > 0 by establishing some Lyapunov functionals
and using some properties of convex functions. Very recently, Li [24] has also studied (1.8)
when f = 0 and the strong time-dependent delay −µ2∆ut(t − τ(t); where a generalized
stability result has been established by suitable assumptions on the coefficients of the delay
term.

As mentioned above, many authors have tried to study some problems with Balakrishnan-
Taylor damping terms including more general forms, for example as in (1.6) with 2(n+β)+
1 > 2 or with q > 2 in (1.7). In these cases, the obtained models are much different from
the original model, however, such problems also take some certain mathematical donations
motivating us to take the solvability and solution properties of the problem (1.1)-(1.3) into
consideration. Therefore, in this paper, we first confirm a local existence of the problem
(1.1)-(1.3) by using the linear approximation and the Faedo-Galerkin method, in which the
proof are not presented in details and can be adapted from our previous works. Next, in
order to study the long-time behavior of the solution, we consider the equation (1.1) in a
special case given by

f = −λ1ut + g (u) + F (x, t) ,

µ = µ1 (t) + µ2

(
‖ux (t)‖2

)
+ µ3 (〈ux (t) , uxt (t)〉) .

Precisely, we consider the initial-boundary value problem as follows
utt − λuxxt −

[
µ1 (t) + µ2

(
‖ux (t)‖2

)
+ µ3 (〈ux (t) , uxt (t)〉)

]
uxx

+

∫ t

0
h (t− s)uxx (s) ds+ λ1ut = g (u) + F (x, t) , 0 < x < 1, t > 0,

u (0, t) = u (1, t) = 0,
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

(1.9)
where λ1 > 0 is a constant and µ1, µ2, µ3, g, F satisfy some given conditions. Then,
several suitablely sufficient conditions on the initial data and the relaxation function h,
we shall show that any global solution of (1.9) is generally decayed in time. Clearly, the
nonlinear quantities µ2

(
‖ux (t)‖2

)
and µ3 (〈ux (t) , uxt (t)〉) in (1.9) are generalizations

of the Kirchhoff term and the Balakrishnan-Taylor damping term in (1.6) or in (1.7) (in one-
dimensional case) respectively. In this case, we are difficult to establish sufficient conditions
on the nonlinear quantities µ2, µ3 and the relaxation function h in order to obtain a generally
decayed property. Moreover, in our previous paper [29], we only obtained an exponentially
decayed estimate for the proposed problem with the same nonlinear quantities in (1.9) but
without the viscoelastic term (h = 0). Therefore, it can be said with much confidence that
the obtained results in this paper can be considered as a generalization of [29] directly, and
of [4] and [39] relatively. Here, we futher analyze that, in this paper, we have supposed that
the problem (1.9) admits a global solution without a proof in details; then we show that the
global solution is generally decayed in time. In our previous articles, see for example as
in [30], we used some arguments of continuity to prove the global solution of the proposed
problem; unfortunately these techniques can not be applied to the present paper. In addition,
it seems that there are not many results of finite-time blow up of solutions for viscoelastic
problems with Balakrishnan-Taylor damping term, see for example as in [32] and [33].
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Thus, studies of global existence and finite-time blow up of solutions for problems, for
example such as (1.9), are still open problems.

Motivated by the above papers, we study the problem (1.1)–(1.3) according to the fol-
lowing structure. In Section 2, some required preliminaries are introduced, then we confirm
the local existence and uniqueness of solutions for the problem (1.1)-(1.3). In Section 3, we
consider a special case of (1.1)-(1.3) provided by (1.9). Then, by establishing some suffi-
cient conditions and using some energy estimates suitablely, we show that the solution of
the problem (1.9) is generally decayed in time.

2 Local existence and uniqueness

Put Ω = (0, 1). Throughout this paper, we denote the function spaces C0, L2 and
Hm by C0(Ω), L2(Ω) and Hm(Ω) (m is a natural number), and the norms ‖·‖C0 =

‖·‖C0(Ω) , ‖·‖ = ‖·‖L2(Ω) and ‖·‖Hm = ‖·‖Hm(Ω) respectively. Also, let 〈u, v〉 =

∫ 1

0
u(x)v(x)dx

be a scalar product in L2 or a dual pair of a linear continuous functional and an element of
a function space.

Denote u(t) = u(x, t), u′(t) = ut(t) = u̇ (t) = ∂u
∂t (x, t), u′′(t) = utt(t) = ü (t) =

∂2u
∂t2

(x, t), ux(t) = ∂u
∂x(x, t), uxx(t) = ∂2u

∂x2
(x, t).

With f ∈ Ck([0, 1]× [0, T ∗]×R4), f = f(x, t, y1, · · · , y4), we put D1f = ∂f
∂x , D2f =

∂f
∂t , Di+2f = ∂f

∂yi
, with i = 1, · · · , 4 and Dαf = Dα1

1 · · ·D
α8
8 f, α = (α1, · · · , α6) ∈ Z6

+,

|α| = α1 + · · ·+ α6 ≤ k, D(0,··· ,0)f = f.
Similarly, with µ ∈ Ck([0, 1] × [0, T ∗] × R2 × R2

+), µ = µ(x, t, y1, · · · , y4), we put
D1µ = ∂µ

∂x , D2f = ∂f
∂t , Di+2µ = ∂µ

∂yi
, with i = 1, · · · , 4 and Dβµ = Dβ1

1 · · ·D
β6
6 µ,

β = (β1, · · · , β6) ∈ Z6
+, |β| = β1 + · · ·+ β6 ≤ k, D(0,··· ,0)µ = µ.

On H1 ≡ H1 (Ω) , we shall use the following norm

‖v‖H1 =
(
‖v‖2 + ‖vx‖2

) 1
2
.

It is well known that the imbedding H1 ↪→ C0 is compact and

‖v‖C0 ≤
√

2 ‖v‖H1 , for all v ∈ H1,

Furthermore, on H1
0 = {v ∈ H1 : v(0) = v(1) = 0}, two norms v 7−→ ‖v‖H1 and

v 7−→ ‖vx‖ are equivalent and

‖v‖C0 ≤ ‖vx‖ for all v ∈ H1
0 .

In the next, we shall prove the existence and uniqueness of solutions for the problem
(1.1)-(1.3). For this purpose, we consider T ∗ > 0 fixed, and make the following assump-
tions:

(H1) : ũ0, ũ1 ∈ H1
0 ∩H2,

(H2) : µ ∈ C2
(
[0, 1]× [0, T ∗]× R2 × R2

+

)
, and there exists a constant µ∗ > 0 such

that
µ (z) ≥ µ∗ > 0, ∀z ∈ [0, 1]× [0, T ∗]× R2 × R2

+,

(H3) : h ∈ H1 (0, T ∗) ,

(H4) : f ∈ C1
(
[0, 1]× [0, T ∗]× R4

)
.
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Definition 2.1. For every T ∈ (0, T ∗] , u is a weak solution of the problem (1.1)-(1.3) if
u is consisted of the set below

ST =
{
w ∈ L∞(0, T ;H1

0 ∩H2) : w′ ∈ L∞(0, T ;H1
0 ∩H2), w′′ ∈ L2(0, T ;H1

0 ) ∩ L∞(0, T ;L2)
}
,

and satisfies the following variational equation

〈u′′ (t) , v〉+λ〈u′x (t) , vx〉+〈µ [u] (t)ux (t) , vx〉−
∫ t

0
h (t− s) 〈ux (s) , vx〉ds = 〈f [u] (t) , v〉,

(2.1)
for all v ∈ H1

0 and a.e. t ∈ (0, T ), together with the initial conditions

u (0) = ũ0, u
′ (0) = ũ1, (2.2)

where {
µ [u] (x, t) = µ

(
x, t, u (x, t) , 〈ux (t) , uxt (t)〉, ‖u (t)‖2 , ‖ux (t)‖2

)
,

f [u] (x, t) = f (x, t, u(x, t), ux(x, t), ut(x, t), uxt(x, t)) .
(2.3)

For each T ∈ (0, T ∗], let

VT =
{
z ∈ L∞

(
0, T ;H1

0 ∩H2
)

: z′ ∈ L∞(0, T ;H1
0 ∩H2), z′′ ∈ L2

(
0, T ;H1

0

)}
be a Banach space with respect to the norm

‖z‖VT = max
{
‖z‖L∞(0,T ;H1

0∩H2) ,
∥∥z′∥∥

L∞(0,T ;H1
0∩H2) ,

∥∥z′′∥∥
L2(0,T ;H1

0)

}
and

W1 (T ) =
{
z ∈ C0

(
[0, T ] ;H1

0

)
∩ C1

(
[0, T ] ;L2

)
: z′ ∈ L2

(
0, T ;H1

0

)}
,

be a Banach space with respect to the norm (see Lions [25])

‖z‖W1(T )
= ‖z‖C0([0,T ];H1

0) +
∥∥z′∥∥

C0([0,T ];L2)
+
∥∥z′∥∥

L2(0,T ;H1
0) .

For every M > 0, we put

BT (M) =
{
v ∈ VT : ‖v‖VT ≤M

}
,

W (M,T ) =
{
v ∈ BT (M) : v′′ ∈ L∞

(
0, T ;L2

)}
.

In what follows, we shall use the linear approximation method combined with the Faedo-
Galerkin method and the weak compact method to prove the existence and uniqueness of
weak solutions of the problem (1.1)-(1.3).

First, we establish the following recurrent sequence {um} satisfying u0 ≡ 0, and sup-
posed that

um−1 ∈ W (M,T ) . (2.4)

We associate the problem (1.1)-(1.3) with finding um ∈ W (M,T ) (m ≥ 1) to be satisfied
the linear variational problem

〈u′′m (t) , v〉+λ〈u′mx (t) , vx〉+〈µm (t)umx (t) , vx〉−
∫ t

0
h (t− s) 〈umx (s) , vx〉ds = 〈Fm (t) , v〉

(2.5)
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for all v ∈ H1
0 and a.e., t ∈ (0, T ), together with the initial conditions

um (0) = ũ0, u
′
m (0) = ũ1, (2.6)

where{
µm (x, t) = µ [um−1] = µ

(
x, t, um−1, 〈∇um−1 (t) ,∇u′m−1 (t)〉, ‖um−1 (t)‖2 , ‖∇um−1 (t)‖2

)
,

Fm (x, t) = f [um−1] = f
(
x, t, um−1 (x, t) ,∇um−1 (x, t) , u′m−1 (x, t) ,∇u′m−1 (x, t)

)
.

(2.7)
Then, the existence of {um} and the local solution for the problem (1.1)-(1.3) can be

similarly proved by the methods and the techniques given in [29] (see Theorem 1 and The-
orem 2), and presented in the following theorem.

Theorem 2.2. If (H1) − (H4) hold, then there exist positive constants M and T such
that

(i) For u0 ≡ 0, there exists a recurrent sequence {um} ⊂ W (M,T ) defined by (2.4) -
(2.7).

(ii) The sequence {um} converges strongly in W1 (T ) to a function u ∈ W (M,T ) to be
a unique weak solution of the problem (1.1)-(1.3).

Furthermore, the following estimate is valid

‖um − u‖W1(T )
≤ CTkmT , for all m ∈ N, (2.8)

where kT ∈ [0, 1) is a constant and CT is a positive constant independ of m.

3 General decay of solutions

This section investigates the decay of the solution for the problem (1.1)-(1.3) correspond-
ing to

f = −λ1ut + g (u) + F (x, t) ,

µ = µ1 (t) + µ2

(
‖ux (t)‖2

)
+ µ3 (〈ux (t) , uxt (t)〉) .

More precisely, we consider the following problem
utt − λuxxt −

[
µ1 (t) + µ2

(
‖ux (t)‖2

)
+ µ3 (〈ux (t) , uxt (t)〉)

]
uxx

+

∫ t

0
h (t− s)uxx (s) ds+ λ1ut = g (u) + F (x, t) , 0 < x < 1, t > 0,

u (0, t) = u (1, t) = 0,
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x).

(3.1)
where λ, λ1 > 0 are given constants and µi,

(
i = 1, 3

)
, g, F, h, ũ0, ũ1, are the given

functions.
In order to present the main results of this section, we need the following assumptions
(A1) : ũ0, ũ1 ∈ H1

0 ∩H2;
(A2) : µ1, µ2 ∈ C1 (R+) , µ3 ∈ C1 (R) and there exist the constants χ∗ > 0, µ∗i >

0,
(
i = 1, 3

)
, µ∗1 + µ∗2 > µ∗3 such that

(i) µ1 (t) ≥ µ∗1 > 0, for all t ≥ 0,
(ii) µ′1 (t) ≤ 0, for all t ≥ 0,
(iii) µ2(y) ≥ µ∗2 > 0, for all y ∈ R+,

(iv) yµ2(y) ≥ χ∗
∫ y

0
µ2(z)dz, for all y ∈ R+,

(iii) µ3(y) ≥ −µ∗3, for all y ∈ R,
(iv) yµ3(y) ≥ 0, for all y ∈ R;
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(A3) : h ∈ C1 (R+,R+) such that

(i) l = µ∗1 + µ∗2 −
∫ ∞
0

h (s) ds > 0, h (0) > 0,

(ii) there exists a function ξ ∈ C1 (R+) such that

ξ′ (t) ≤ 0 < ξ (t) , for all t ≥ 0,

∫ ∞
0

ξ (s) ds = +∞,

h′ (t) ≤ −ξ (t)h (t) < 0, for all t ≥ 0;

(A4) : g ∈ C1 (R) and there exist the constants α, β > 2; d, d̄ > 0, such that

(i) yg(y) ≤ d
∫ y

0
g(z)dz, for all y ∈ R,

(ii)
∫ y

0
g(z)dz ≤ d̄

(
|y|α + |y|β

)
, for all y ∈ R;

(A5) : F ∈ L∞
(
R+;L2

)
∩L1

(
R+;L2

)
, and there exist two positive constants C0, γ0

such that ‖F (t)‖2 ≤ C0 exp (−γ0t) , for all t ≥ 0;

(A6) : p > max

{
2, d,

d

χ∗

}
.

Remark. There are some examples of the nonlinear functions µ2, µ3 and g satisfying
(A2) and (A4). We refer to the example given in [29], in which the nonlinear functions
B, σ, f are substituted with µ2, µ3, g respectively.

By the same method used for the proof of Theorem 2.2, the problem (3.1) admits a weak
solution u(x, t) such that

u ∈ C([0, T ];H1
0 ∩H2) ∩ C1([0, T ];H1

0 ) ∩ L∞(0, T ;H1
0 ∩H2), (3.2)

u′ ∈ C([0, T ];H1
0 ) ∩ L∞(0, T ;H1

0 ∩H2),

u′′ ∈ L∞(0, T ;L2) ∩ L2
(
0, T ;H1

0

)
for T > 0 small enough.

In the following, we prove that if µ1 (0) ‖ũ0x‖2+
∫ ‖ũ0x‖2
0

µ2(z)dz−p
∫ 1

0
dx

∫ ũ0(x)

0
g (z) dz >

0 and if the initial energyE(0) and ‖F (t)‖2 are small enough, then the solution of the prob-
lem (3.1) is decayed generally as t→ +∞.

First, we construct the total energy functional by

L(t) = E(t) + δψ(t), (3.3)

where δ > 0 is chosen later and

E(t) =
1

2

∥∥u′(t)∥∥2 +

(
1

2
− 1

p

)
(h ∗ u) (t) (3.4)

+

(
1

2
− 1

p

)[(
µ1 (t)− h (t)

)
‖ux(t)‖2 +

∫ ‖ux(t)‖2
0

µ2(z)dz

]
+

1

p
I(t),

I(t) = (h ∗ u) (t)+
(
µ1 (t)− h (t)

)
‖ux(t)‖2+

∫ ‖ux(t)‖2
0

µ2(z)dz−p
∫ 1

0
dx

∫ u(x,t)

0
g (z) dz,

(3.5)
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ψ(t) = 〈u′(t), u(t) +
λ

2
‖ux(t)‖2 +

λ1
2
‖u(t)‖2, (3.6)

where (h ∗ u) (t) =
∫ t
0 h (t− s) ‖ux(s)− ux(t)‖2 ds and h (t) =

∫ t
0 h (s) ds.

Then, we have the following estimates of E′(t).
Lemma 3.1. Let u be a solution of (3.1). We have

(i) E′ (t) ≤ 1

2
‖F (t)‖+

1

2
‖F (t)‖ ‖u′ (t)‖2 ,

(ii) E′ (t) ≤ −λ ‖u′x (t)‖2 −
(
λ1 −

ε1
2

)
‖u′ (t)‖2 − 1

2
ξ (t) (h ∗ u) (t) +

1

2ε1
‖F (t)‖2

for all ε1 > 0.
Proof. Multiplying (3.1)1 by u′(x, t) and integrating over [0, 1], we get

E′ (t) = −λ
∥∥u′x (t)

∥∥2 − λ1 ∥∥u′ (t)∥∥2 − 〈ux(t), u′x(t)〉µ3
(
〈ux(t), u′x(t)〉

)
(3.7)

+
1

2
µ′1 (t) ‖ux(t)‖2 +

1

2

(
h′ ∗ u

)
(t)− 1

2
h (t) ‖ux(t)‖2 + 〈F (t), u′(t)〉,

where (h′ ∗ u) (t) =
∫ t
0 h
′ (t− s) ‖ux(s)− ux(t)‖2 ds.

By using Cauchy - Schwarz inequality, it is easy to prove that

〈F (t), u′(t)〉 ≤ 1

2
‖F (t)‖+

1

2
‖F (t)‖

∥∥u′ (t)∥∥2 , (3.8)

〈F (t), u′(t)〉 ≤ 1

2ε1
‖F (t)‖2 +

ε1
2

∥∥u′ (t)∥∥2 , ∀ ε1 > 0. (3.9)

By (A3), we also have(
h′ ∗ u

)
(t) ≤ −ξ (t) (h ∗ u) (t) ≤ 0,∀t ≥ 0. (3.10)

Since yµ3 (y) ≥ 0,∀y and g(t) > 0,∀t ≥ 0, so we deduce from (3.7) and (3.8) that (i)
hold.

Similarly, (ii) is inferred from (3.7), (3.9) and (3.10). �
Now, we shall use Lemma 3.1 (i) to prove the following lemma.
Lemma 3.2. Assume that (A1)− (A6) hold. Let ũ0 ∈ H1

0 ∩H2 such that I(0) > 0 and
the initial energy E(0) satisfy

η∗ = l − pd̄
(
Rα−2∗ +Rβ−2∗

)
> 0, (3.11)

where R∗ =

√
2pE∗

(p− 2)l
, E∗ = (E(0) + ρ) exp (2ρ) , ρ =

1

2

∫ +∞

0
‖F (t)‖ dt. Then

I(t) > 0, ∀t ≥ 0.

Proof. By the continuity of I(t) and I(0) > 0, there exists T̃ > 0 such that

I(t) = I(u(t)) > 0, ∀t ∈ [0, T̃ ],

this implies

E(t) ≥ 1

2

∥∥u′(t)∥∥2 +

(
1

2
− 1

p

)[(
µ1 (t)− h (t)

)
‖ux(t)‖2 +

∫ ‖ux(t)‖2
0

µ2(z)dz

]
(3.12)

≥ 1

2

∥∥u′(t)∥∥2 +
(p− 2)l

2p
‖ux(t)‖2 , ∀t ∈ [0, T̃ ].
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Using (3.12), Lemma 3.1 (i) and Gronwall’s inequality, we obtain

‖ux(t)‖2 ≤ 2p

(p− 2)l
E(t) ≤ 2pE∗

(p− 2)l
≡ R2

∗, ∀t ∈ [0, T̃ ], (3.13)∥∥u′(t)∥∥2 ≤ 2E (t) ≤ 2E∗, ∀t ∈ [0, T̃ ].

Moreover, it follows from (A5) and (3.13) that

p

∫ 1

0
dx

∫ u(x,t)

0
g (z) dx ≤ pd̄

(
‖u(t)‖αLα + ‖u(t)‖β

Lβ

)
≤ pd̄

(
‖ux(t)‖α + ‖vx(t)‖β

)
≤ pd̄

(
‖ux(t)‖α−2 + ‖ux(t)‖β−2

)
‖ux(t)‖2

≤ pd̄
(
Rα−2∗ +Rβ−2∗

)
‖ux(t)‖2 .

Thus,

I (t) = (h ∗ u) (t) +
(
µ1 (t)− h (t)

)
‖ux(t)‖2 +

∫ ‖ux(t)‖2
0

µ2(z)dz − p
∫ 1

0
dx

∫ u(x,t)

0
g (z) dz

(3.14)

≥ (h ∗ u) (t) + l ‖ux(t)‖2 − pd̄
(
Rα−2∗ +Rβ−2∗

)
‖ux(t)‖2

≥ η∗ ‖ux(t)‖2 + (h ∗ u) (t) ≥ 0, ∀t ∈ [0, T̃ ],

where η∗ > 0 as in (3.11).
Next, we prove that I (t) > 0, ∀t ≥ 0.We put T∗ = sup {T > 0 : I(t) > 0, ∀t ∈ [0, T ]} .

If T∗ < +∞ then, by the continuity of I(t), we have I(T∗) ≥ 0.
In case of I(T∗) > 0, by the same arguments as above, we can deduce that there exists

T̃∗ > T∗ such that I(t) > 0, ∀t ∈ [0, T̃∗].We obtain a contradiction to the definition of T∗.
In case of I(T∗) = 0, it implies from (3.14) that

0 = I(T∗) ≥ η∗ ‖ux(T∗)‖2 + (h ∗ u) (T∗) .

Therefore
u (T∗) = (h ∗ u) (T∗) = 0.

By the fact that the function s 7→ h (T∗ − s) ‖ux (s)− ux (T∗)‖2 is continuous on
[0, T∗], h (T∗ − s) > 0,∀s ∈ [0, T∗], and

(h ∗ u) (T∗) =

∫ T∗

0
h (T∗ − s) ‖ux (s)− ux (T∗)‖2 ds = 0,

it follows that ‖ux (s)− ux (T∗)‖ = 0,∀s ∈ [0, T∗] , it means that u (s) = u (T∗) = 0, ∀s ∈
[0, T∗] . Then, u (s) = 0. It leads to I (0) = 0. We get a contradiction with the fact that
I (0) > 0.

Hence, we conclude that T∗ = +∞, i.e. I(t) > 0, ∀t ≥ 0. Lemma 3.2 is proved
completely. �

Next, we put

E1(t) =
∥∥u′(t)∥∥2 + ‖ux(t)‖2 + (h ∗ u) (t) + I(t). (3.15)

In order to show our stability result, we need the following lemma.
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Lemma 3.3. Under the assumptions of Lemma 3.2, there exist the positive constants
β1, β̄1, β2, β̄2 such that

(i) β1E1(t) ≤ L(t) ≤ β2E1(t), ∀t ≥ 0, (3.16)

(ii) β̄1E1(t) ≤ E(t) ≤ β̄2E1(t), ∀t ≥ 0,

for δ is small enough.
Proof. The functional L(t) is rewritten as follows

L(t) =
1

2

∥∥u′(t)∥∥2 +

(
1

2
− 1

p

)
(h ∗ u) (t)

+

(
1

2
− 1

p

)[(
µ1 (t)− h (t)

)
‖ux(t)‖2 +

∫ ‖ux(t)‖2
0

µ2(z)dz

]

+
1

p
I(t) + δ〈u′(t), u(t)〉+

δλ

2
‖ux(t)‖2 +

δλ1
2
‖u(t)‖2 .

From the following inequalities∣∣〈u′(t), u(t)〉
∣∣ ≤ 1

2

∥∥u′(t)∥∥2 +
1

2
‖ux(t)‖2 ,

−µ∗2 ‖ux(t)‖2 ≥ −
∫ ‖ux(t)‖2
0

µ2(z)dz,

we deduce that

L(t) ≥ 1− δ
2

∥∥u′(t)∥∥2 +

(
1

2
− 1

p

)
(h ∗ u) (t)

+
1

2

[
(p− 2) l

p
− δ
]
‖ux(t)‖2 +

1

p
I(t)

≥ β1E1(t),

where we choose β1 = min
{

1−δ
2 , (p−2)l

2p − δ
2 ,
(
1
2 −

1
p

)
, 1
p

}
, with δ is small enough, 0 <

δ < min
{

1; (p−2)l
p

}
.

Similarly, we can prove that

L(t) ≤ 1

2

∥∥u′(t)∥∥2 +

(
1

2
− 1

p

)
(h ∗ u) (t)

+

(
1

2
− 1

p

)[
µ1 (t) ‖ux(t)‖2 +

∫ ‖ux(t)‖2
0

µ2(z)dz

]
+

1

p
I(t)

+
δ

2

(∥∥u′(t)∥∥2 + ‖ux(t)‖2
)

+
δλ

2
‖ux(t)‖2 +

δλ1
2
‖u(t)‖2 .

Put µ2max = max
0≤z≤R2

∗
µ2(z), we have

∫ ‖ux(t)‖2
0

µ2(z)dz ≤ µ2max ‖ux(t)‖2 , hence

L(t) ≤ 1 + δ

2

∥∥u′(t)∥∥2 +
p− 2

2p
(h ∗ u) (t) (3.17)

+
1

2

[
p− 2

p
(µ1 (0) + µ2max) + δ (1 + λ+ λ1)

]
‖ux(t)‖2 +

1

p
I(t)

≤ β2E1(t),
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where β2 = max

{
1 + δ

2
, p−2

2p (µ1 (0) + µ2max) + δ
2 (1 + λ+ λ1)

}
.

The proof of (ii) is similar. Hence, Lemma 3.3 is proved completely. �
Lemma 3.4. Under the assumptions of Lemma 3.2, the functional ψ(t) defined by (3.6)

satisfies

ψ′ (t) ≤
∥∥u′ (t)∥∥2 +

(
d

p
+

1

2ε3

)
(h ∗ u) (t)− dδ1

p
I(t) +

1

2ε2
‖F (t)‖2 , (3.18)

−
[
d(1− δ1)η∗

p
+

(
1− d

p

)
µ∗1 +

(
1− d

pχ∗

)
µ∗2 − µ∗3 −

ε2
2
−
(

1− d

p
+
ε3
2

)
h (∞)

]
‖ux(t)‖2

for all ε2 > 0, ε3 > 0, δ1 ∈ (0, 1).

Proof. Multiplying (3.1)1 by u(x, t) and integrating over [0, 1], we obtain

ψ′ (t) =
∥∥u′ (t)∥∥2 − [µ1 (t) + µ2

(
‖ux(t)‖2

)
+ µ3

(
〈ux(t), u′x(t)〉

)]
‖ux(t)‖2

+

∫ t

0
h (t− s) 〈ux (s) , ux (t)〉 ds+ 〈g(u(t)), u(t)〉+ 〈F (t), u(t)〉.

It is easy to obtain the following estimates

−µ1 (t) ‖ux(t)‖2 ≤ −µ∗1 ‖ux(t)‖2 ,

−‖ux(t)‖2 µ2
(
‖ux(t)‖2

)
≤ −µ∗2 ‖ux(t)‖2 ,

−µ3
(
〈ux(t), u′x(t)〉

)
‖ux(t)‖2 ≤ µ∗3 ‖ux(t)‖2 , (3.19)∫ ‖ux(t)‖2

0
µ2(z)dz ≤

1

χ∗
‖ux(t)‖2 µ2

(
‖ux(t)‖2

)
,

−I(t) ≤ −η∗ ‖ux(t)‖2 ,

〈F (t), u(t)〉 ≤ ε2
2
‖ux(t)‖2 +

1

2ε2
‖F (t)‖2 , ∀ε2 > 0,

〈g(u(t)), u(t)〉 ≤ d
∫ 1

0
dx

∫ u(x,t)

0
g (z) dz =

d

p
(h ∗ u) (t)

+
d

p

[(
µ1 (t)− h (t)

)
‖ux(t)‖2 +

∫ ‖ux(t)‖2
0

µ2(z)dz − I(t)

]
(3.20)

≤ d

p

[(
µ1 (t)− h (t)

)
‖ux(t)‖2 +

∫ ‖ux(t)‖2
0

µ2(z)dz

]

+
d

p
(h ∗ u) (t)− d (1− δ1)

p
I(t)− dδ1

p
I(t),

∫ t

0
h (t− s) 〈ux (s) , ux (t)〉 ds =

∫ t

0
h (t− s) 〈ux (s)− ux (t) , ux (t)〉 ds+ h (t) ‖ux (t)‖2

(3.21)

≤ 1

2ε3
(h ∗ u) (t) +

(
1 +

ε3
2

)
h (t) ‖ux (t)‖2
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for all ε3 > 0.
Then, it follows from (3.19)-(3.21) that the inequality (3.18) is valid. �
Using Lemmas 3.1- 3.4, we can state and prove our main result in this section as follows.
Theorem 3.5. Assume that (A1) − (A6) hold. Let ũ0 ∈ H1

0 ∩H2 such that I(0) > 0,
the initial energy E(0) satisfy (3.11) and

h (∞) + d̄d
(
Rα−2∗ +Rβ−2∗

)
< µ∗1 +

(
1 +

d

p
− d

pχ∗

)
µ∗2 − µ∗3. (3.22)

Then, there exist positive constants C, Λ such that∥∥u′(t)∥∥2 + ‖ux(t)‖2 ≤ C exp

(
−Λ

∫ t

0
ξ (s) ds

)
, for all t ≥ 0. (3.23)

Proof. From the definition of L(t), Lemma 3.1 (ii) and (3.21), we deduce that

L′(t) ≤ −
(
λ1 −

ε1
2
− δ
)∥∥u′ (t)∥∥2 − 1

2
ξ (t) (h ∗ u) (t) + δ

(
d

p
+

1

2ε3

)
(h ∗ u) (t)

(3.24)

− δθ1 ‖ux(t)‖2 − dδδ1
p
I(t) +

1

2

(
1

ε1
+

δ

ε2

)
‖F (t)‖2 ,

where

θ1 = θ1 (δ1, ε2, ε3)

=
d(1− δ1)η∗

p
+

(
1− d

p

)
µ∗1 +

(
1− d

pχ∗

)
µ∗2 − µ∗3 −

ε2
2
−
(

1− d

p
+
ε3
2

)
h (∞) ,

satisfying

lim
δ1→0+, ε2→0+,ε3→0+

θ1 (δ1, ε2, ε3)

=
dη∗

p
+

(
1− d

p

)
µ∗1 +

(
1− d

pχ∗

)
µ∗2 − µ∗3 −

(
1− d

p

)
h (∞)

≡ θ̂1.

Note that, the conditions (3.22) leads to θ̂1 > 0.Therefore, we can choose δ1 ∈ (0, 1)
and ε2 > 0, ε3 > 0 small enough such that

θ1 = θ1(δ1, ε2, ε3) > 0.

Moreover, by choosing ε1 > 0, δ > 0 small enough, we get that

θ̄1 = λ1 −
ε1
2
− δ > 0, 0 < δ < min

{
1;

(p− 2) l

p

}
. (3.25)

Put

θ̄2 = δθ1, θ̄3 =
dδδ1
p
, (3.26)

θ̄4 = δ

(
d

p
+

1

2ε3

)
, θ̄∗ = min

{
θ̄1, θ̄2, θ̄3

}
.
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It follows from (3.24)-(3.26) that

L′(t) ≤ −θ̄1
∥∥u′ (t)∥∥2 − θ̄2 ‖ux(t)‖2 − θ̄3I(t) + θ̄4 (h ∗ u) (t) +

1

2

(
1

ε1
+

δ

ε2

)
‖F (t)‖2

≤ −θ̄∗
[∥∥u′ (t)∥∥2 + ‖ux(t)‖2 + I(t) + (h ∗ u) (t)

]
+
(
θ̄∗ + θ̄4

)
(h ∗ u) (t) +

1

2

(
1

ε1
+

δ

ε2

)
‖F (t)‖2 (3.27)

≤ −θ̄∗E1 (t) +
(
θ̄∗ + θ̄4

)
(h ∗ u) (t) +

1

2

(
1

ε1
+

δ

ε2

)
‖F (t)‖2

≤ − θ̄∗
β̄2
E(t) +

(
θ̄∗ + θ̄4

)
(h ∗ u) (t) +

1

2

(
1

ε1
+

δ

ε2

)
‖F (t)‖2 .

Combiming Lemma 3.1 (ii) and (3.27), we obtain

ξ (t)L′(t) ≤ − θ̄∗
β̄2
ξ (t)E(t) +

(
θ̄∗ + θ̄4

)
ξ (t) (h ∗ u) (t) +

1

2

(
1

ε1
+

δ

ε2

)
ξ (0) ‖F (t)‖2

≤ − θ̄∗
β̄2
ξ (t)E(t)− 2

(
θ̄∗ + θ̄4

)
E′(t) +

θ̄∗ + θ̄4
ε1

‖F (t)‖2 +
1

2

(
1

ε1
+

δ

ε2

)
ξ (0) ‖F (t)‖2

≤ − θ̄∗
β̄2
ξ (t)E(t)− 2

(
θ̄∗ + θ̄4

)
E′(t) + C̃0e

−γ0t, (3.28)

where C̃0 =
1

2

[
2
(
θ̄∗ + θ̄4

)
ε1

+

(
1

ε1
+

δ

ε2

)
ξ (0)

]
C0.

We consider the functional

L(t) = ξ (t)L(t) + 2
(
θ̄∗ + θ̄4

)
E(t),

then

L(t) ≤ ξ (0)L(t) + 2
(
θ̄∗ + θ̄4

)
E(t)

≤ ξ (0)β2E1(t) + 2
(
θ̄∗ + θ̄4

)
E(t)

≤
[
β2
β̄1
ξ (0) + 2

(
θ̄∗ + θ̄4

)]
E(t) ≡ β̂2E(t),

and

L′(t) = ξ′ (t)L(t) + ξ (t)L′(t) + 2
(
θ̄∗ + θ̄4

)
E′(t)

≤ − θ̄∗
β̄2
ξ (t)E(t) + C̃0e

−γ0t (3.29)

≤ − θ̄∗

β̄2β̂2
ξ (t)L(t) + C̃0e

−γ0t.

Choose 0 < Λ < min

{
θ̄∗

β̄2β̂2
,
γ0
ξ (0)

}
, we get from (3.29) that

L′(t) + Λξ (t)L(t) ≤ C̃0e
−γ0t. (3.30)
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Integrating (3.30) with respect to time variable, we obtain

L(t) ≤

(
L(0) +

C̃0

γ0 − Λξ (0)

)
exp

(
−Λ

∫ t

0
ξ (s) ds

)
. (3.31)

On the other hand, we have

L(t) = ξ (t)L(t) + 2
(
θ̄∗ + θ̄4

)
E(t) ≥ 2

(
θ̄∗ + θ̄4

)
E(t) ≥ 2

(
θ̄∗ + θ̄4

)
β̄1E1(t),

(3.32)

E1 (t) ≥
∥∥u′(t)∥∥2 + ‖ux(t)‖2 .

Combining (3.31) and (3.31) we obtain (3.23). Theorem 3.5 is proved completely. �
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