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Abstract. Let £ = —A + V be a Schrodinger operator, where the non-negative potential V' belongs to
the reverse Holder class RH,, /5, let b belong to a new BM Oy (p) space which is larger than the classical

BMO space, and let M g,v be the fractional maximal operator associated with £. In this paper, we study
the boundedness of the operator M, g,v and its commutators [b, M g,v] with b € BMOy(p) on generalized
Morrey spaces M;?,;Y associated with Schrodinger operator and vanishing generalized Morrey spaces

V My ZX associated with Schrodinger operator. We find the sufficient conditions on the pair (¢1, 2)
which ensures the boundedness of the operators M, g,v from one vanishing generalized Morrey space
VMY, to another VMY, 1/p—1/q = B/n.

Keywords Schrodinger operator; fractional maximal operator; commutator; BMO; generalized Mor-
rey space.

MR(2010) Subject Classification 42B35, 35J10

1 Introduction and results

In this paper, we consider the Schrodinger differential operator
L=-A+V(x) on R", n>3,

where V() is a nonnegative potential belonging to the reverse Holder class RH, for ¢ >
n/2.
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A nonnegative locally L, integrable function V' (x) on R™ is said to belong to RH,,
1 < ¢ < oo if there exists C' > 0 such that the reverse Holder inequality

1 1/q o
|B(x,7)| Vily)d < / V(y)d 1.1
(rBu,r)r sy W) y) (\B<x,r>| ey Y y) (.0

holds for every x € R" and 0 < r < oo, where B(z,r) denotes the ball centered at z
with radius 7. In particular, if V' is a nonnegative polynomial, then V' € RH,. Obviously,
RH,, C RH,, if ¢1 < go. It is worth pointing out that the RH, class is such that, if
V € RH, for some ¢ > 1, then there exists an ¢ > 0, which depends only n and the
constant C' in (1.1), such that V' € RH .. Throughout this paper, we always assume that
0#V € RH, .

For z € R", the function p(z) is defined by

1 1
T) = =supir: Viydy <1 ;.
/0( ) mV($) 7’>18 { 2 /B(z,r) (y) = }

Obviously, 0 < my(z) < oo if V' # 0. In particular, my (z) = 1 with V' = 1 and
my (z) ~ 14 |z| with V(z) = |z|%

According to [3], the new BMO space BM Oy(p) with 6 > 0 is defined as a set of all
locally integrable functions b such that

1 r \?
B /BW) b(y) — bpldy < C(l + p(x))

for all x € R™ and r > 0, where bp = ﬁ S5 b(y)dy. A norm for b € BMOy(p),

denoted by [b]y, is given by the infimum of the constants in the inequalities above. Clearly,
BMO C BMOy(p).

The classical Morrey spaces were originally introduced by Morrey in [16] to study the
local behavior of solutions to second order elliptic partial differential equations. For the
properties and applications of classical Morrey spaces, we refer the readers to [7,8,11,16].
The classical version of Morrey spaces is equipped with the norm

A
‘= sup supr »
1 fllas,, 5 sup sup £l 2, (B(.r))s

where 0 < A < mand 1 < p < oco. The generalized Morrey spaces are defined with
replaced by a general non-negative function ¢(z, ) satisfying some assumptions (see, for
example, [2,9-11,15,17,18] and etc).

The vanishing Morrey space V' M), ) inits classical version was introduced in [24], where
applications to PDE were considered. We also refer to [5] and [19] for some properties of
such spaces. This is a subspace of functions in M), y(R"™), which satisfy the condition

A
lim sup ¢t ?|fllL.(B = 0.
=0 zeRn 0<t<r | HLP( (1))

Moreover, various Morrey spaces are defined in the process of study. Guliyev, Mizuhara
and Nakai [9,17,18] introduced generalized Morrey spaces M, , (R™) (see, also [2,11,20]).

We now present the definition of generalized Morrey spaces (including weak version)
associated with Schrédinger operator, which introduced by Guliyev in [12].
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Definition 1.1 Let p(x, ) be a positive measurable function on R™ x (0,00), 1 < p < o0,

a>0,andV € RHy q > 1. We denote by Mgfzpv = Mﬁsz(R”) the generalized Morrey
space associated with Schrédinger operator, the space of all functions f € L} (R™) with
finite quasinorm

- T —-1,.-n/p
gy = _sup_ (1 5) elar) ™ P e

Also WM, ZX = WM, va (R™) we denote the weak generalized Morrey space associated
with Schridinger operator;the space of all functions f € WLf (R™) with

ro\¢ 1 —
I hwrsgy = swp (1) o) Pl ey < o0

Remark 1.1 (i) When a = 0, and ¢(z, ) = rA=)/P, M;f;X(R”) is the classical Morrey
space L, x(R™) introduced by Morrey in [16];

(i1) When @ (x,r) = rA=m/P M sz (R™) is the Morrey space associated with Schrodinger
operator Lz’/‘\/ (R™) studied by Tang and Dong in [22];

(iii) When v = 0, MY (R™) is the generalized Morrey space M, ,(R™) introduced
by Guliyev, Mizuhara and Nakai in [9,17,18].

(w) The generalized Morrey space associated with Schrodinger operator My, ;;/ (R™)
was introduced by Guliyev in [12].

For brevity, in the sequel we use the notations

a,Vig, o r @ -n -1
A (Fiwr) = (1 o) ol ) ey ey

and

Q, r ® _
g (fra,r) = (1 + m) r P o, ) M| Fllwr (Bl -

Definition 1.2 The vanishing generalized Morrey space associated with Schrodinger oper-
ator VM, ;;/ (R™) is defined as the spaces of functions f € My, ;;/ (R™) such that

1 OA,V . —
}gr(l)wseuﬂgl Ay, (fix,7)=0. (1.2)

The vanishing weak generalized Morrey space associated with Schrodinger operator
VW M, iDV (R™) is defined as the spaces of functions f € W M, ZX (R™) such that

lim sup ngvg;,a’v(f;x,r) =0.
r—0 TER™ ’

The vanishing spaces VM,?sz (R™) and VWM,?#,V (R™) are Banach spaces with respect
to the norm

HfHVM;;y = Hf”M;LX = %Bp Omg;;/(f;wﬂﬂ)a
’ ’ T >

— 7V .
Hf”VWM;XLX = Hf”WMz?ZX = m€§3€>0m%’p’w(f’$’r)’

respectively.
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1

Given a function f € L;

by

(R™), the Hardy-Littlewood maximal operator M is defined

1
Mfw) = sup e [ 1wl

and the fractional operator function Mg is defined by

1
Myf(e)=swp s [ |y, 0<p<n.
>0 ‘B(.r’r)’ “n JB(x,r)
Definition 1.3 Let L = —A+V withV € RH,, /5. A variant of Hardy-Littlewood maximal
operator M‘e/ (see [3]) is defined by

1
MY f(z) := sup
Vi) = B e B )] Vs

and a variant of fractional maximal operator Mg v (see [23]) is defined by

4 ) = su 1
Maw S(2) =22 (@o(B(x,r))| B, r)|) =

The fractional integral associated with L is defined by

£ (y)ldy,

/ |f(y)ldy, 0<pB<n.
B(z,r)

Lof(a) = £ @) = [ e pe) s

0
for0 < B < n.Letb e BMOgy(p). The commutator of g is defined by

[0, Zp]f(2) = b(x)Zs f(x) = Lp(bf)(x)-

We now present the definition of generalized Morrey spaces related to certain nonnega-
tive potentials.
In this paper, we consider the boundedness of the fractional integral operator Mg v on

the generalized Morrey spaces M, ;;/ (R™) and the vanishing generalized Morrey spaces
VMfosz(R"). When b belongs to the new BMO space BMOy(p), we also show that
[b, Mg,v} is bounded on Mﬁf@/ (R™) to Mgf;;V(R"). Our main results are as follows.

Theorem 1.1 Let V € RH, 5, a > 0,1 < p <n/B, 1/qg=1/p— B/nand o1 € 25",
P2 € Qf; v satisfies the condition

n
ess inf o1 (x, 8)sP
t<s<oo(p( ’ )

sup

n
r<t<oo ta

< copa(z, 1), (1.3)

where cq does not depend on x and r. Then the operator Mg v is bounded on My, ;;/1 to

ng;OVQ forp > 1 and from Mﬁz to WM% . Moreover, forp > 1
b TL*B,

0
1M Flagg, < Ol
and forp =1

0
HMB,Vf”WM“;Y < C||f||fo,v,
n—p%2 »P1

where C' does not depend on f.
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Theorem 1.2 LetV € RHy, 0, a > 0,1 <p <n/B,1/qg=1/p— 3/nand p1 € Q,(,)"V,
o € 027 v satisfies the condition

n

£ ¢ss inf o1 (z, s)s?
sup (141n- )= < copalz, ), (1.4)
r

r<t<oo ta

where cq does not depend on x and r. If b € BMOgy(p), then the operator [b, Mg,v] is
bounded from Mgy, to MS'y, and

0
106 M1 ey, < COlol Ly
where C' does not depend on f.

Theorem 1.3 Ler V € RH, 5, @ > 0,1 < p < oo and ¢; € _Q;‘lv o € Q;’lv satisfies
the conditions

o dt
cs = sup p1(x,t)— < o0
§ xzeRn t

for every § > 0, and
o dt
/ v1(x, t)t < Copa(z, 1), (1.5)

where Cy does not depend on © € R™ and r > 0. Then the operator Mg v is bounded from
VMY, 10 VMSY, for p > 1 and from VMY 10 VWM

1 ;@1 n— ﬁ"p
Theorem 1.4 Let V € RH,, /5, b € BMOy(p), 1 < p < 00, and 1 € 'Qpl , P2 € (ZZ’lv
satisfies the conditions
sup (1 +1In-— )(pl(x P < copa(z, ), (1.6)
r<t<oo
where cq does not depend on x and r,
li o, —0 (1.7)
7‘1—>I% mfxeRn ©2 (J} 7’) N '
and
& dt
cs = (1 + |lnt|) sup ¢1(z,t) 75— 5 < (1.8)
0 zeR™ t

for every § > 0. Then the operator [b, ng] is bounded from VMZ?fszl to VM;fzp‘;.

In this paper, we shall use the symbol A < B to indicate that there exists a universal
positive constant C', independent of all important parameters, such that A < CB. A ~ B
means that A < Band B < A.
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2 Some Preliminaries

We would like to recall the important properties concerning the critical function.

Lemma 2.1 [2]] Let V' € RH,, 5. For the associated function p there exist C'and ko > 1
such that

_ = y|\ ko @ — |\ 7%
Clp(a)(1+ e ) <ol < Cpla) (14 e ) @1

forall x,y € R™.

Lemma 2.2 Suppose x € B(xo,r). Then for k € N we have

1 < 1
N ~ N/(ko+1) *
2k 2k
(1+25) (1+25)
Proof. By (2.1) we have
1 _ < 1 _
2k 2k
(1 n p(;)> (1 + - )
ptan) (1455281 )
kN
‘x7$0| ko+1
~ N o~ N/(ko+1)
2k 2k
(1 + p(zo>> (1 + p(x§>)

We give some inequalities about the new BMO space BM Oy (p).
Lemma 2.3 [3] Let 1 < s < oo. If b € BMOgy(p), then

(g1 [ 1o o)™ < pla1+ - 75)"

forall B = B(z,r), withx € R" and r > 0, where ' = (ko + 1)0 and ky is the constant
appearing in (2.1).

Lemma 24 [3]Let1 < s < oo, b€ BMOy(p), and B = B(x,r). Then

2k )9’

(g [ o0 = balodn) " < a1+ 2%

12B] Jorp
forall k € N, with 0" as in Lemma 2.3.

Let K 3 be the kernel of Z. The following result give the estimate on the kernel Kg(x, ).
Lemma 2.5 [4] IfV € RH,, 5, then for every N, there exists a constant C' such that

c 1
|Kg(z,y)| < T Al (2.2)
( +7<x>>

Finally, we recall a relationship between essential supremum and essential infimum.
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Lemma 2.6 [25] Let f be a real-valued nonnegative function and measurable on E. Then

. -1 1
(ezseglf f(x)) = esxsesglp )

Lemma 2.7 Let p(x,r) be a positive measurable function on R"™ x (0,00), 1 < p < o0,
a>0,andV € RHy, g > 1.

(i) If
N n
sup (1 + —) ——— =00 forsomet >0 and forall x € R", (2.3)
t<r<oo p(z) o(z,7)
then M) (R™) = 6.
(ii) If
sup (1 + L)a oz, 7yt =00 forsomeT >0 andforallz € R", (2.4)
o<r<r p(.%‘)
then Mﬁfzpv (R™) = 6.
Proof. (i) Let (2.3) be satisfied and f be not equivalent to zero. Then sup || fl| gz >
zeR? ’

0, hence

T & -1 _n
£l = sup sup (1) o)™ F 1L, ey

sup (1 + L>a o(x r)*lrfg
t<r<oo p(:E) ’ '

> sup || f
sup 1N, (B2t
Therefore || f|;o.v = 0.
p,¥
(i) Let f € M, ;;/ (R™) and (2.4) be satisfied. Then there are two possibilities:

«
Case 1: supg.,«; (1 + p&)) o(z,r)"t = oo forall t > 0.

(0%
Case 2: sUpg<, ¢ (1 + ﬁ) o(z, 7)1 < oo for some t € (0, 7).

For Case 1, by Lebesgue differentiation theorem, for almost all x € R",

el
r—0+ ”XB($,7”) ||Lp

= |f(z)]. 2.5)

We claim that f(z) = 0 for all those z. Indeed, fix x and assume |f(z)| > 0. Then by (2.5)
there exists tg > 0 such that
n 1
r 1l By = 27 vk 1f(2))]

forall 0 < r < ¢p. Consequently,

r a -1 -z
@ > N
HfHMp,ZX > 02;13:0 (1 + p(w)) o(z,r)""r > HfHLp(B(ac,r))

> 2710 @) swp (14 —)" plw.r) .
0<r<to P(l‘)

Hence || f|] Mgy = 00, 50 f ¢ M, ,(R"™) and we have arrived at a contradiction.
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«
Note that Case 2 implies that iu1<) (1 + ﬁ) @(z,r)~! = oo, hence
Sr<T

r e 1 = T a 1 =
sup (1 + —) o(x,r)""r > sup (1 + 7> o(x,r)"r e
5<r<oo p(x) s<r<r p(x)

_n ro\@ 1
>7T P sup (1—1—7( )> o(x,7)"" = o0,
plx

s<r<T

which is the case in (i).

Remark 2.1 We denote by (2 V" the sets of all positive measurable functions ¢ on R™ x
(0, 00) such that for all ¢ > 0,

(14—[)(74@)& oz, )7t

respectively. In what follows, keeping in mind Lemma 2.7, we always assume that ¢ €
25V

sup
reR™

(1 roye d
—i-i) H < oo, and sup
p(x)/ (@, 1)l Lo (t,0) 2ER™

| < o0,

Remark 2.2 We denote by (2;“’ ,1V the sets of all positive measurable functions ¢ on R™ X
(0, 00) such that

migann igg (1 + p(;)>_ag0(x, r) > 0, for some § > 0, (2.6)

and

a pn/p
T T
li 1+ — =0
tg ( +p<m>) o)

For the non-triviality of the space V M, va (R™) we always assume that
a,V
p e Qp,l .

3 Proof of Theorem 1.1

We first prove the following conclusions

Theorem 3.1 LetV € RH,, 5. If 1 <p <n/B, 1/q=1/p — B/n then the inequality

n 11| 2, (B0t
”Mg7VfHLq(B(£EO,T)) S ra w
2r<t<oo ta

holds for any f € LY (R™). Moreover, for p = 1 the inequality

loc

_ Nl 2y (B ot
IME v FIlWE n (Browy ST"77 sup —Lf,éxo )
n—p_ 2r<t<oo t

holds for any f € L} (R™).

loc
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Proof. For arbitrary xg € R", set B = B(xg,r) and AB = B(xg, Ar) for any A > 0.
We write f as f = f1 + fo, where fi(y) = f(Y)Xpg2m W) and xp, ., denotes the
characteristic function of B(xg, 2r). Then

1M v Fll Ly Baory) < 1My (F) Ly (Bor)) + MGy ()l Ly (Bzor))-
Since f1 € L,(R™) and from the boundedness of Z3 from L, (R") to L,(R") it follows that

IME v (F)ll 2y (Bor)) S N2y (Blzo2r))

n > dt
Sra ||f||Lp(B(€B0,2T)) /2 tﬂﬁ
< T;/ Hf”Lp(B(xo,t)) dt a1
2r tq t

To estimate HMg,v(f2)HLp(B(xo,r))’ obverse that z € B, y € (2B)° implies |z — y| ~

|xo — y|. Then by (2.2) we have

sup [ MYy (f2)()] < / K s(z,9)f ()| dy
zeB (2B)c

5/ |f(y)|_6dy
@2B)e [0 —y|"

[e.9]

S [ ).
k=1
By Holder’s inequality we get
2k+1p
sup M5y (£2)(x)]| £ S 1y ety (21 [ a
k=1 2k
2 1 fllz,B dt
< p—a:o,))i
> t
dt
N/ ”f”Lp—mO’ (32)
2r tq t
Then
9 o [ fllL, (B dt
HM,B,V(fZ)HLq(B(xo,r)) Sra ) t—ET 3.3)
T q

holds for 1 < p < n/f. Therefore, by (3.1) and (3.3) we get

z [ wo.1)) dt
||Mgvf||L (B(wo,r)) < ra / Hﬂhﬂwi
, ’ , 2r ta t

holds for 1 < p < n/p.
When p = 1, by the boundedness of Mg v from L1 (R™) to WL%[; (R™), we get

o [ W liaanny ¢t
e

34
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By (3.3) we have

HfHL o, dt
MGy Do bt < 1M ()l o (piaoamy S 177 [~ S AEEEE

Then

1/ 1|21 (B(o.t)) di
e < 1121 (B(@o.) 9
I 5,Vf”WLnigB(B(fvoﬂ“)) /2T tn—8 t’

Proof of Theorem 1.1 From Lemma 2.6, we have

1 1

- = €ess sup —— .
ess inf 1 (x, s)sP  t<s<oo pq(x,s)s?
t<s<oo

Note the fact that || f|| 1, (B(xo,t)) IS @ nondecresing function of ¢, and f € M, ;X , then

(14 25) 1Ly (3o

ess inf ¢ (z, s)sp

t<s<oo
(14 25) 111, (3o

< ess sup
t<s<00 o1 (z, S)SP
(14 5655) 1Ly Bz
< sup
0<s<oo (pl(x s)sp
< V.
< fllygmy

Since a > 0, and (1, p2) satisfies the condition (1.3), then

/‘X’ /112, (Bot) dt
2

r tq L
_ / <1 + P(Z’o ) HfHLP B(xo,t)) ?Ességg P, S)Sp dt
- e \5E b
2r ggssinf p1(, 3)3" (1 + p(rm)) b

S

o ess inf 1 (z, s)sp di
J

t<s<o0o

a n t
T (1 + ta
Sl (1 25)

S Iy (1+

PPl

. t

_t
p(xo
- t<s<oo
t
—Q

)
a/oo essinfgol(x,s).s% dt
14

(mo)) 2(20, 7). (3.5)

)
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Then by Theorem 3.1 we get

0
MG fll gy

ro\a 1
< esRup>0 <1+P(xo)) p2(z0,7) ' n/qHIBfHLp(B(Io,T))
xo€ER™ 1
r a f Lp( ) dt
S, (U ) e [T
xgER™ r>0 2r q
< « .
<y

Letq = B’ similar to the estimates of (3.5) we have

£ 21 (B(zo,t)) dt o\«
0:) & < a1+ .
/27" tn=>~ t 171 V( - P(Sco)) e2(z0.7)

Thus by Theorem 3.1 we get

HM,B,VfHWMC“ v
n—p"’ P2
< sup (1+ . ) pa(x0,7) " r” "1 Zaflwr_u_(BGo.r)
20 €R™ >0 P(wo) -
N 1 £11 L (B(zo.t)) dt
< sup (l—l— >902(x0,r) / AT AL (Blzo,t) 4F
zoER™ r>0 p(l’o) 2r tniﬁ 13
< V.
< Wl

4 Proof of Theorem 1.2

As the proof of Theorem 1.1, it suffices to prove the following result.

Theorem 4.1 Let V € RH,, 5, b € BMOg(p). If 1 <p <n/B, 1/q = 1/p— B/n then
the inequality

9 o e 1)y Bany dt
M8 oy < Blor [~ (141 1) B @)

holds for any f € LY (R™).

loc

Proof. We write f as f = f1 + fa, where f1(y) = f(y)XB(zo,Qr)(y)' Then

110, ME VI F 1|2y (B o)) < M0 MBI |2y (Baor)) + 10, ME VI (F2) |, (Bwo.r))-

By the boundedness of [b, Mg v]on L,(R™) to Ly(R™) and (3.1) we get

110 ME VIS | 2y (Bl S [0 ]0HfHLp B(xo,2r))
2r tq t

no [ 1 f11 2, (B(zo,t)) dt
g[b]grq/Q (1+1 )—t (4.2)

T ta
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We now turn to deal with the term ||[b, Mg,v] (f2)|l Ly (B(zo,r))- For any given z € B(xo, 1)
we have

16, MGy f2(2)] < [b(2) = bap| [Zs(f2) (@)] + [Z5((b — b2p) f2) ()]

By (2.2), Lemma 2.2 and (3.2) we have

1 Iy
sup (M3 ()@ S | Ly
z€B (2B)¢ (1 4 \i(—ggI) ro—Y
S e 2 [y
<1 + p(x)) k=1

| fll L, (B(won)) dt

(1 4o )N/(’“U“) /2r ta t

N

Then by Lemma 2.3, and taking N > (ko + 1)6 we get

1(b(x) = b2p) M§ v (f2)l Ly (B(wo.r))

n op \O-N/(ko+1) [ ot
S[b]erq(up(;o)) ° /”f”L(BU»

2r t% 3

[ zo.) di
< [blor / (1+m 5) M0y Ban. 4 4.3)
2r r te t

Finally, let us estimate |]Mg7v((b —b28) f2)ll L, (B(x0,r)- By (2.2), Lemma 2.2 and (3.2)
we have

sup |Mg,v((b — bap) f2)(z)]

zeP
< / ll — |M3|/i— sz’lU}y”d
2 c r—y 0=
B (14 24l)
s 1
<3 / 1b(y) — bap[f(y)|dy
~ N
=1 (ks (1 + 3&3) s
> 1
<y / 1b(y) — bas|| f(v)|dy.
S N/(ko+1)
k=1 (2ky)n—> (1 + ,,%iﬁ)) O »e

Note that

N 1/
_ < _ p
Lo 1) =gl < ([ o) =bosl”) 1 ey oy

AN n
S Wl (1+ 527) 407 Wl oy
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Then
S
Slelg |MB V((b —bap)f2)(x 6’ Z ) N/(ko+1)—0' HfHLp B(z0,2k*17))
k=1 (1 + p(z 0))

lo Z k(25r) "\ f 12, (Bro.2t+1m)

(Pl (B dt

N
— Jokr ta t
Since 2Fr <t < 281y then k ~ In L. Thus

<l 0 de
sup M8 (b — ba) f2) ()| < b Zk [T

k
zeB ke 2k ta

28t tIIfIILp Blaot)) dt

1
2k tq t
> 111 L, (B(xo.t)) di
b In —p ot
[ b/; < * T) ta t

T

N

Then

o0

<1+1 )|f||Lp (w0.t)) 4t 44
"

1M 4 (b = bas) f2) 1y (Blaory) S Blore / (ot !

2r

Combining (4.2), (4.3) and (4.4), the proof of Theorem 4.1 is completed.

Proof of Theorem 1.2. Since f € Mﬁfgx and (1, p2) satisfies the condition (1.4), by
(3.5) we have

/oo (1 ol ) HfHLp B(sco7 ) ﬂ
2 r tq t

T
n

ess inf 1 (z,5)s?

e (1+ 555) 1 e, Bans D (1)
2r

T e\ st
g nf 1 (.9)5F (14 i) 78

1—|—ln7) o
r t n
<1+p(x0)) ta

Y[ () EEACI
T

< = e pr(9)s? gy
S I ey

1+1n7> —

< «, 1 n
Sl (1+ - = :

S lyey (14 (w0, 7). (4.5)

2 0 o)
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Then from Theorem 4.1 we get
116, Zo) o

r [
S su 1+ o, T 71T7nﬂ1 bﬂz To,T
s (14 s ) el ) 10, Z6) 112, (3w )

a (zo,t)) dt
[blo  sup (1 +—— ) @2(900,7“)1/ (1 + In )’f‘LP o0
zo€ER” r>0 p($0) 2r r tq t

< Bloll gy

N

5 Proof of Theorem 1.3

The statement is derived from the estimate (3.4). The estimation of the norm of the operator,
that is, the boundedness in the non-vanishing space, immediately follows from by Theorem
1.1. So we only have to prove that

;% s;llézlﬂlpwl(f,m ,r)=0 = hr% sgé) Q[qsoz(Mﬁ viiz,r)=0 (5.1

and

W,a,V 0 r. _
hn(l)xseuﬂgl A7 SDl(f,SU r)=0 = hH(l);EuIRgLQl /(n_ﬂ)7<p2(M57Vf,:L‘,r) = 0. (5.2)

To show that ;611]15 (1 + p($)> pa(z, r)—17~—n/p||Mg,VfHLq(B($’T)) < ¢ for small r, we

split the right-hand side of (3.4):
T\ 1 —-n
(1 ) el ) P IME Sl ey < Cll 1) + T (o)), 53)

where dp > 0 (we may take §p > 1), and

(1+ ) ooa
Isy(z,7) := () HfHLp B(z,t))dt

and

(14 )
p(z) ol
JIso (x,7) := e /50 £l 2, (B d

and it is supposed that r < Jp. We use the fact that f € V My, val (R™) and choose any fixed
do > 0 such that

3

t @ —1,—n
sup (1 + m) 1(z,t)t /p||f||Lp(B(x,t)) < 20C,

reR”™

where C and Cy are constants from (1.5) and (5.3). This allows to estimate the first term
uniformly in r € (0, dp) :

sup Cls,(z,7) <

3
-, 0<r<dy
z€eR™ 2
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The estimation of the second term now my be made already by the choice of r sufficiently
small. Indeed, thanks to the condition (2.6) we have

«
(o5
p(z)
J(So(x?T) S CO’o QOl(x,T) ”fHVMg’leu

where ¢, is the constant from (1.2). Then, by (2.6) it suffices to choose  small enough

such that
(1+ )
=
sup p(z) < €

rER™ SDQ('%?T) a 2CUOH'fHVM£i’¢V1

i

which completes the proof of (5.1).
The proof of (5.2) is similar to the proof of (5.1).

6 Proof of Theorem 1.4

The norm inequality having already been provided by Theorem 1.2, we only have to prove
the implication

o 1,—n/p
ti sup (1 55) (o071 oty =0

—1;,—n 6
= tim swp (14 25) (o) MGy e = O

To check that

t o\ s
sup (l—i- 7) @o(, )L TVP|| b, Mg,vf]HLq(B(:at)) < e forsmall r,
TER™ p(l’)

we use the estimate (4.1):

HfHLp(B (@0,t)) dt
ta t

e o [
1,—n/p 0 < [ 0 / -
oo, 1)1t |Hb7MB,Vf]HLq(B(m¢))Nsoz(a;’r) g (Hl 7~>

We take r < dp where dy will be chosen small enough and split the integration:

t\o L
(1 ) o2l 7P ME ey < Clli (1) + o), (6.1)

where
1+ =) o
Isy (1) = (p(x))/ ( +ln )”fHLp%dt
T ta t
and
1+ )Y o
Jso (T, 7) IZ(M))/ <1+1 >”f”Lp(B(vat))dt
p2(2,1)  Js r ta '
We choose a fixed dp > 0 such that

t « _1_/ 9
1+ ——= t)y" TP — t <4
s (14— ) e 07 Ly e < gag S %
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where C' and Cj are constants from (6.1) and (1.6), which yields the estimate of the first
term uniform in » € (0,6p) : sup Cls (z,7) <5, 0 <7 < do.
z€R™
For the second term, writing 1 +In £ <1+ |In ¢/ +In 2, we obtain
BRI
oz, T) My,
where c¢s, is the constant from (1.8) with 6 = g and c¢;, is a similar constant with omit-

ted logarithmic factor in the integrand. Then, by (1.7) we can choose small r such that
SUP,egrn J5,(,7) < §, which completes the proof.

Jso(x,1) <
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