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Global attractors in a two-species chemotaxis system with two chemicals
and variable logistic sources
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Abstract. This paper deals with the higher dimension quasilinear parabolic-parabolic chemotaxis model
involving a source term of logistic type ut = ∆u − χ1∇ · (u∇υ) + η1u − µ1um(x), υt = ∆υ − υ + ω,
ωt = ∆ω − χ2∇ · (ω∇z) + η2ω − µ2ωm(x), 0 = ∆z − z + u, subject to the homogeneous Neumann
boundary conditions in a Ω ⊂ RN (N ≥ 1) with smooth boundary. It is shown that for the attraction-
repulsion case with χ2 ≤ 0, the global boundedness of solutions can be ensured by µ1, µ2 > 0 without
any other assumptions, due to the contribution of the logistic sources included in addition to the repulsion
mechanism. While for the attraction-attraction case with χ2 > 0, the global boundedness of solutions has
to require logistic coefficients µ1, µ2 > 0 such that µ2 properly large.
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1 Introduction and preliminaries

In this paper, we consider a quasilinear parabolic-parabolic chemotaxis model with a source
term of variable logistic type,

ut = ∆u− χ1∇ · (u∇υ) + η1u− µ1um(x), (x, t) ∈ Ω × (0, T ),
υt = ∆υ − υ + ω, (x, t) ∈ Ω × (0, T ),

ωt = ∆ω − χ2∇ · (ω∇z) + η2ω − µ2ωm(x), (x, t) ∈ Ω × (0, T ),
0 = ∆z − z + u, (x, t) ∈ Ω × (0, T ),
∂u
∂ν = ∂υ

∂ν = ∂ω
∂ν = ∂z

∂ν = 0, (x, t) ∈ ∂Ω × (0, T ),
u(x, 0) = u0 (x) , υ(x, 0) = υ0 (x) , ω(x, 0) = ω0 (x) , x ∈ Ω,

(1.1)

where Ω is a smooth bounded domain in RN (N ≥ 1) and ∂
∂ν denotes the derivative with

respect to the outer normal of ∂Ω, parameters χ1, µ1, µ2 > 0, η1, η2, χ2 ∈ R and variable
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exponent m : Ω → (2,∞) is a measurable function. We introduce m− and m+ such that

2 < m− := ess inf
x∈Ω

m(x) ≤ m(x) ≤ m+ := ess sup
x∈Ω

m(x) < +∞. (1.2)

The nonnegative initial data

u0, ω0 ∈ C
(
Ω
)

with u0, ω0 6= 0, and υ0 ∈W 1,∞ (Ω) . (1.3)

Next, we denote Lp(Ω) Lebesgue and W 1,p (Ω) , W 2,p (Ω) Sobolev spaces and the
norms of these spaces by ‖u‖Lp(Ω) = ‖u‖p, ‖u‖1,p = ‖u‖p + ‖∇u‖p, ‖u‖2,p = ‖u‖p +
‖∆u‖p (1 ≤ p ≤ ∞) respectively.

In the model (1.1), u and ω represent the densities of two species, υ and z denote the
concentrations of chemical substances secreted by ω and u respectively. The system (1.1)
means that the population u is attracted by the signals υ produced by the population ω,
whereas the population ω is attracted (with χ2 > 0) or repelled (with χ2 < 0) by the signals
z produced by the population u. The logistic source η1u − µ1um(x) and η2ω − µ2ωm(x)

included in (1.1) prevent the unlimited growth of cell densities. When m(x) ≡ 2, ∀x ∈ Ω,
in the single-species Keller-Segel chemotaxis system with logistic source

ut = ∆u− χ∇ · (u∇υ) + f(u), (x, t) ∈ Ω × (0, T ),
τυt = ∆υ − υ + ω, (x, t) ∈ Ω × (0, T ),
∂u
∂ν = ∂υ

∂ν = 0, (x, t) ∈ ∂Ω × (0, T ),
u(x, 0) = u0 (x) , τυ(x, 0) = τυ0 (x) , x ∈ Ω,

(1.4)

where f(u) = ηu − µu2 and χ, µ > 0, η ∈ R, τ ∈ {0, 1}, the population u is attracted
by the signals υ secreted by itself. Now rich dynamical properties of solutions to (1.4)
have been established [9,14,15,19,26,29,30]. For the parabolic-elliptic case with τ = 0,
it was proved by Tello and Winkler [21] that when µ = η > 0, if N ≤ 2 or µ > N−2

N χ,
then the solutions of the parabolic-elliptic chemotaxis system are globally bounded, and the
equilibrium (1, 1) is a global attractor if in addition µ > 2χ. For the parabolic-parabolic
case with τ = 1, Winkler [27] showed that if µ is sufficiently large, then there exist globally
bounded solutions for the system (1.4).

There are also many works about system (1.4) when f(u) = ηu−µuα (η ≥ 0, µ > 0,
α > 1) being a damping source term in order to improve the system’s consistency with
biological reality or adapt it to complex biological situations. The term f describes cell
proliferation and cell death in biological systems. Here, the parameter α characterizes the
dying growth of cells as a constant number. As can be seen, the constancy of α makes the
cell death kinetics independent of the variable x, and the growth of dying cells remains
”isotropic” in different directions. This situation gives incomplete results in practice. How-
ever, in the kinetics of cell growth, if the death of cells depends on the variable x, that
is, in models such as f (x, u) = ηu − µuα(x) with η ≥ 0, µ > 0 and α (x), ∀x ∈ Ω
is a measurable function, cell death growth in each x direction will have different values
(”anisotropic”). Such models are clearer and more perfect in practice than the previous one.
The mathematical study of such models has some difficulties with respect to ”classical”
models. We refer the interested reader to the recently published articles [3–5] with logistic
source involving the exponents depending on the spatial variables.

Recently, multi-species and multi-stimulus problems of Keller-Segel systems have been
more and more studied as well [12,17,18,22,23,25,31–33]. Among them, Tao and Winkler
[20] considered the two-species chemotaxis model with two chemicals

ut = ∆u− χ1∇ · (u∇υ) , (x, t) ∈ Ω × (0, T ),
0 = ∆υ − υ + ω, (x, t) ∈ Ω × (0, T ),
ωt = ∆ω − χ2∇ · (ω∇z) , (x, t) ∈ Ω × (0, T ),
0 = ∆z − z + u, (x, t) ∈ Ω × (0, T ).

(1.5)
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For the attraction-repulsion case (i.e. χ1 = 1, χ2 = −1), it was proved that if N ≤ 3,
Eq. (1.5) possesses global bounded solutions for any nonnegative u0(x), ω0(x) ∈ C(Ω).
For the attraction-attraction case (i.e. χ1 = χ2 = 1), if either N = 2 and

∫
Ω u0+

∫
Ω ω0

lies below some threshold, or N ≥ 3 and ‖u0‖∞, ‖ω0‖∞ small enough, then solutions are
globally bounded.

Concerning the two-species with two chemicals chemotaxis system with two chemicals
and variable logistic sources (1.1), the main result of this paper is the following theorem.

Theorem 1.1 . LetΩ ⊂ RN (N ≥ 1) be a bounded domain with smooth boundary, param-
eters χ1, µ1, µ2 > 0, η1, η2, χ2 ∈ R, variable exponent m satisfies (1.2) and nonnegative
initial data u0, υ0, ω0 satisfy (1.3). If χ2 ≤ 0 or χ2 > 0 and µ2 is large enough then the
solution of (1.1) is globally bounded.

Remark 1. When m(x) ≡ 2 for all x ∈ Ω given in (1.1), Tian et al. [24] showed that
for the attraction-repulsion case with χ2 ≤ 0, the global boundedness of solutions can be
ensured by µ1, µ2 > 0 without any other assumptions, due to the contribution of the logistic
sources included in addition to the repulsion mechanism. While for the attraction-attraction
case with χ2 > 0, the global boundedness of solutions has to require small sensitivity
coefficients χ1 > 0, χ2 > 0 or large logistic coefficients µ1, µ2 such that µ1µ2

χ1χ2
properly

large, rather than the simple condition µ1, µ2 > 0 for the attraction-repulsion case. Our
results are generalized and extended of those obtained by Tian et al..

Now, we introduce a well-known regularity property on the parabolic or elliptic equa-
tions under the Neumann boundary condition, and state the local existence result to the
system (1.1).

Lemma 1.1 . Let Ω ⊂ RN (N ≥ 1) be a bounded domain with smooth boundary. Then
for any nonnegative (u0(x), υ0(x), ω0(x)) ∈ C(Ω) ×W 1,δ (Ω) × C(Ω) (δ > N), there
exist nonnegative functions (u, υ, ω, z) ∈ C0(Ω × [0, Tmax)) ∩C2,1(Ω × (0, Tmax)) with
Tmax ∈ (0,∞] classically solving (1.1) in Ω ×(0, Tmax). Moreover, if Tmax <∞, then

lim
t→Tmax

(‖u (·, t)‖∞ + ‖ω (·, t)‖∞) =∞.

The local existence of solutions to (1.1) can be proved by the standard parabolic theory
in a suitable framework of fixed point theory, refer to [13,20], and the reference therein.

Lemma 1.2 (Lemma 2.4 in [28] or Lemma 2.3 in [16]). Let ρ0 ∈ W 1,∞ (Ω) and f ∈
C0(Ω × [0, T∗)) with T∗ ∈ (0,∞]. Suppose that ρ ∈ C0(Ω × [0, Tmax)) ∩C2,1(Ω ×
(0, Tmax)) solves 

τρt = ∆ρ− ρ+ f, (x, t) ∈ Ω × (0, T ),
∂ρ
∂ν = 0, (x, t) ∈ ∂Ω × (0, T ),
τρ(x, 0) = τρ0 (x) , x ∈ Ω

with τ = {0, 1}. Assume that 1
2 + N

2 (
1
p −

1
q ) < 1 and 1 ≤ p, q ≤ ∞, then

‖∇ρ(·, t)‖q ≤ C(1 + sup
s∈(0,t)

‖f(·, s)‖p) (1.6)

for each t ∈ (0, T∗) with C > 0.

When τ = 1, the estimate (2.1) was proved by smoothing estimates for the Neumann
heat semigroup in [28]. When τ = 0, (2.1) can be obtained by the Sobolev imbedding
theorem (see Chapter 4 in [1]) and elliptic equations regularity estimates (see Theorem 6.30
in [8]).

The following lemma as a variation of Maximal Sobolev Regularity [10] is crucial for
our proof.
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Lemma 1.3 ([6] or [7]). Let r ∈ (1,∞). Consider the following evolution equationυt = ∆υ − υ + ω, (x, t) ∈ Ω × (0, T ),
∂υ
∂ν = 0, (x, t) ∈ ∂Ω × (0, T ),
υ(x, 0) = υ0 (x) , x ∈ Ω.

For each
υ0 ∈W 2,r(Ω) (r > N), ω ∈ Lr((0, T );Lr(Ω)),

there exists a unique solution

υ ∈W 1,r((0, T );Lr(Ω)) ∩ Lr((0, T );W 2,r(Ω)), r > N.

Moreover, there exists a Cr > 0, such that if s0 ∈ [0, T )), υ(·, s0) ∈ W 2,r(Ω)(r > N)

with ∂υ(·,s0)
∂ν = 0, then∫ T

s0

∫
Ω
ers |∆υ|r ≤ Cr

∫ T

s0

∫
Ω
ersωr + Cre

rs0 (‖υ (·, s0)‖rr + ‖∆υ (·, s0)‖
r
r) .

Given s0 ∈ (0, Tmax) such that s0 ≤ 1, from the regularity principle asserted by Lemma
1.2, we know that u(·, s0), υ(·, s0), ω(·, s0) ∈ C2(Ω) with ∂υ(·,s0)

∂ν = 0 on ∂Ω. So, we can
pick M > 0 such that

sup
0≤s≤s0

‖u(·, s)‖∞ , sup
0≤s≤s0

‖υ(·, s)‖∞ , sup
0≤s≤s0

‖ω(·, s)‖∞ , ‖∆υ(·, s0)‖∞ ≤M. (1.7)

Lemma 1.4 (Lemma 2.2 in [11]). Let (u, υ, ω, z) be a solution to (1.1) ensured by 1.1.
Then for any l, h > 0, θ > 1, there is c0 = c0(h, θ, l) > 0 such that∫

Ω
zθ ≤ h

∫
Ω
ulθ + c0 (1.8)

for all t ∈ (0, Tmax).

2 Proof of Main Results

Proof. (Proof of Theorem 1.1) The key step of the proof is to show that for any γ > 1,
there exists C = C(γ,m−, µ1, µ2, η1, η2, χ1, |Ω|) > 0 such that

‖u (·, t)‖γ ≤ C, (2.1)

and
‖ω (·, t)‖γ ≤ C (2.2)

for all t ∈ (0, Tmax).
Multiply the first equation given in (1.1) by uγ−1 for arbitrary γ > 1, and then integrate

over Ω by parts we have

1

γ

d

dt

∫
Ω
uγ ≤ −4 (γ − 1)

γ2

∫
Ω

∣∣∣∇u γ2 ∣∣∣2 − (γ − 1)χ1

γ

∫
Ω
uγ∆υ

+ η1

∫
Ω
uγ − µ1

∫
Ω
um(·)+γ−1

≤ −m
− + γ − 1

γ

∫
Ω
uγ − (γ − 1)χ1

γ

∫
Ω
uγ∆υ

+

(
η1 +

m− + γ − 1

γ

)∫
Ω
uγ − µ1

∫
Ω
um(·)+γ−1 (2.3)
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for t ∈ (s0, Tmax) with s0 defined in Lemma 1.3.
By the conditions (1.2), we derive∫

Ω
um(·)+γ−1 ≥

∫
Ω∩{x:u≥1}

um
−+γ−1 =

∫
Ω
um

−+γ−1 −
∫
Ω∩{x:u<1}

um
−+γ−1

≥
∫
Ω
um

−+γ−1 −
∫
Ω
1 =

∫
Ω
um

−+γ−1 − |Ω| . (2.4)

By using Young’s inequality we can see that

−(γ − 1)χ1

γ

∫
Ω
uγ∆υ ≤ χ1

∫
Ω
uγ |∆υ|

≤ χ1

m− + γ − 1

∫
Ω
|∆υ|m

−+γ−1 +
χ1 (m

− + γ − 2)

m− + γ − 1

∫
Ω
u
γ(m−+γ−1)
m−+γ−2 (2.5)

for all t ∈ (s0, Tmax) with χ1 > 0.
From (2.4) , (2.5) and (2.3), we have

1

γ

d

dt

∫
Ω
uγ +

m− + γ − 1

γ

∫
Ω
uγ

≤ χ1

m− + γ − 1

∫
Ω
|∆υ|m

−+γ−1 +
χ1 (m

− + γ − 2)

m− + γ − 1

∫
Ω
u
γ(m−+γ−1)
m−+γ−2

+

(
η1 +

m− + γ − 1

γ

)∫
Ω
uγ − µ1

∫
Ω
um

−+γ−1 + µ1 |Ω| . (2.6)

On the other hand, by the elementary inequality we have

a0ξ
i − b0ξj ≤ a0

(
a0
b0

) i
j−i

, ∀ξ > 0, (2.7)

where a0 ≥ 0, b0 > 0 and 0 ≤ i < j. By using inequality (2.7) for the third and fourth
terms in (2.6), we obtain(

η1 +
m− + γ − 1

γ

)∫
Ω
uγ − µ1

3

∫
Ω
um

−+γ−1 ≤ C1, (2.8)

where C1 =
(
η1 +

m−+γ−1
γ

)3

(
η1+

m−+γ−1
γ

)
µ1


γ

m−−1

|Ω| > 0. Since m− > 2, we have

γ(m−+γ−1)
m−+γ−2 < m−+ γ− 1. Then by (2.7) for the two and fourth terms in (2.6), we see that

χ1 (m
− + γ − 2)

m− + γ − 1

∫
Ω
u
γ(m−+γ−1)
m−+γ−2 − µ1

3

∫
Ω
um

−+γ−1 ≤ C2, (2.9)

where C2 =
χ1(m−+γ−2)
m−+γ−1

(
3χ1(m−+γ−2)
(m−+γ−1)µ1

) γ

m−−2

|Ω| > 0.
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Combine (2.6) with (2.8) and (2.9) to get

1

γ

d

dt

∫
Ω
uγ +

m− + γ − 1

γ

∫
Ω
uγ

≤ χ1

m− + γ − 1

∫
Ω
|∆υ|m

−+γ−1 − µ1
3

∫
Ω
um

−+γ−1 + C3 (2.10)

with C3 = C1 +C2 +µ1 |Ω|. By applying the variation-of-constants formula to (2.10), we
have

1

γ

∫
Ω
uγ ≤ 1

γ
e−(m

−+γ−1)(t−s0)
∫
Ω
uγ (·, s0)−

µ1
3

∫ t

s0

e−(m
−+γ−1)(t−s)

∫
Ω
um

−+γ−1

+
χ1

m− + γ − 1

∫ t

s0

e−(m
−+γ−1)(t−s)

∫
Ω
|∆υ|m

−+γ−1 + C3

∫ t

s0

e−(m
−+γ−1)(t−s)

(2.11)

for all t ∈ (s0, Tmax) . Then from (2.11), we get

1

γ

∫
Ω
uγ ≤ χ1

m− + γ − 1

∫ t

s0

e−(m
−+γ−1)(t−s)

∫
Ω
|∆υ|m

−+γ−1

− µ1
3

∫ t

s0

e−(m
−+γ−1)(t−s)

∫
Ω
um

−+γ−1 + C4,

where C4 =
1
γ

∫
Ω u

γ (·, s0) + C3
m−+γ−1 .

By Lemma 1.3, we know that there exists a Cm−,γ > 0 such that∫ t

s0

e−(m
−+γ−1)(t−s)

∫
Ω
|∆υ|m

−+γ−1

= e−(m
−+γ−1)t

∫ t

s0

∫
Ω
e(m

−+γ−1)s |∆υ|m
−+γ−1

≤ Cm−,γe
−(m−+γ−1)t(

∫ t

s0

∫
Ω
e(m

−+γ−1)sωm
−+γ−1

+e(m
−+γ−1)s0 ‖υ (·, s0)‖m

−+γ−1
2,m−+γ−1),

and thus,

1

γ

∫
Ω
uγ ≤

χ1Cm−,γ

m− + γ − 1

∫ t

s0

∫
Ω
e−(m

−+γ−1)(t−s)ωm
−+γ−1

− µ1
3

∫ t

s0

∫
Ω
e−(m

−+γ−1)(t−s)um
−+γ−1 + C5 (2.12)

for all t ∈ (s0, Tmax) with C5 = C4 + Cm−,γ ‖υ (·, s0)‖
m−+γ−1
2,m−+γ−1.

Similarly, multiply ωγ−1 for arbitrary γ > 1 to the third equation of (1.1), and integrate
by parts over Ω to get

1

γ

d

dt

∫
Ω
ωγ ≤ −4 (γ − 1)

γ2

∫
Ω

∣∣∣∇ω γ
2

∣∣∣2 − (γ − 1)χ2

γ

∫
Ω
ωγ∆z

+ η2

∫
Ω
ωγ − µ2

∫
Ω
ωm

−+γ−1 + µ2 |Ω| (2.13)
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for all t ∈ (s0, Tmax). By substituting the fourth equation given in (1.1) into the inequality
(2.13), we have

1

γ

d

dt

∫
Ω
ωγ ≤ −4 (γ − 1)

γ2

∫
Ω

∣∣∣∇ω γ
2

∣∣∣2 − (γ − 1)χ2

γ

∫
Ω
ωγ (z − u)

+ η2

∫
Ω
ωγ − µ2

∫
Ω
ωm

−+γ−1 + µ2 |Ω| . (2.14)

We deal with the case of χ2 ≤ 0 at first. By (2.14), we know that

1

γ

d

dt

∫
Ω
ωγ ≤ −4 (γ − 1)

γ2

∫
Ω

∣∣∣∇ω γ
2

∣∣∣2 − (γ − 1)χ2

γ

∫
Ω
ωγz

+ η2

∫
Ω
ωγ − µ2

∫
Ω
ωm

−+γ−1 + µ2 |Ω| (2.15)

for all t ∈ (s0, Tmax). By Young’s inequality and (1.8) with l = m−+γ−1
γ+1 > 0, h = µ1

3C7
,

there exist C6, C7, C8 > 0 such that

−(γ − 1)χ2

γ

∫
Ω
ωγz ≤ C6

∫
Ω
ωγ+1 + C7

∫
Ω
zγ+1

≤ C6

∫
Ω
ωγ+1 +

µ1
3

∫
Ω
um

−+γ−1 + C8. (2.16)

Substitute (2.16) into (2.15), we obtain

1

γ

d

dt

∫
Ω
ωγ +

m− + γ − 1

γ

∫
Ω
ωγ

≤ C6

∫
Ω
ωγ+1 +

µ1
3

∫
Ω
um

−+γ−1 +

(
η2 +

m− + γ − 1

γ

)∫
Ω
ωγ

−
(
µ2 −

2χ1Cm−,γ

m− + γ − 1

)∫
Ω
ωm

−+γ−1

−
2χ1Cm−,γ

m− + γ − 1

∫
Ω
ωm

−+γ−1 + C9 (2.17)

with C9 = C8 + µ2 |Ω| > 0. Next by using (2.7) for µ2 large, we obtain

C6

∫
Ω
ωγ+1 −

(
µ2 −

2χ1Cm−,γ

m− + γ − 1

)∫
Ω
ωm

−+γ−1 ≤ C10 (2.18)

with C10 = C6

 C6(
µ2−

2χ1Cm−,γ
m−+γ−1

)


γ+1

m−−2

|Ω| > 0 and

(
η2 +

m− + γ − 1

γ

)∫
Ω
ωγ −

χ1Cm−,γ

m− + γ − 1

∫
Ω
ωm

−+γ−1 ≤ C11 (2.19)

with C11 =
(
η2 +

m−+γ−1
γ

)(
η2+

m−+γ−1
γ

)
(m−+γ−1)

Cm−,γχ1


γ

m−−1

|Ω| > 0.
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Combine (2.17) with ( 2.18) and (2.19), we have

1

γ

d

dt

∫
Ω
ωγ +

m− + γ − 1

γ

∫
Ω
ωγ

≤ µ1
3

∫
Ω
um

−+γ−1 −
χ1Cm−,γ

m− + γ − 1

∫
Ω
ωm

−+γ−1 + C12 (2.20)

for all t ∈ (s0, Tmax) with s0 defined in Lemma 1.3 and C12 = C9 +C10 +C11. Applying
the variation-of-constants formula to (2.20) , we obtain

1

γ

∫
Ω
ωγ ≤ µ1

3

∫ t

s0

∫
Ω
e−(m

−+γ−1)(t−s)um
−+γ−1

−
χ1Cm−,γ

m− + γ − 1

∫ t

s0

∫
Ω
e−(m

−+γ−1)(t−s)ωm
−+γ−1 + C13. (2.21)

Combine ( 2.21) with ( 2.12) to get∫
Ω
uγ +

∫
Ω
ωγ ≤ C14

for all t ∈ (s0, Tmax) with C14 = (C5 + C13) γ > 0. So
∫
Ω u

γ ,
∫
Ω ω

γ ≤ C14.
Next consider the case of χ2 > 0. We know from (2.14) that

1

γ

d

dt

∫
Ω
ωγ ≤ −4 (γ − 1)

γ2

∫
Ω

∣∣∣∇ω γ
2

∣∣∣2 + (γ − 1)χ2

γ

∫
Ω
ωγu

+ η2

∫
Ω
ωγ − µ2

∫
Ω
ωm

−+γ−1 + µ2 |Ω| . (2.22)

Then, it is from (2.22) with Young’s inequality that

(γ − 1)χ2

γ

∫
Ω
ωγu ≤ µ1

3

∫
Ω
um

−+γ−1 + C15

∫
Ω
ω
γ(m−+γ−1)
m−+γ−2 (2.23)

with C15 > 0. From (2.22) and (2.23), we get

1

γ

d

dt

∫
Ω
ωγ +

m− + γ − 1

γ

∫
Ω
ωγ

≤ µ1
3

∫
Ω
um

−+γ−1 + C15

∫
Ω
ω
γ(m−+γ−1)
m−+γ−2 +

(
η2 +

m− + γ − 1

γ

)∫
Ω
ωγ

−
(
µ2 −

2χ1Cm−,γ

m− + γ − 1

)∫
Ω
ωm

−+γ−1

−
2χ1Cm−,γ

m− + γ − 1

∫
Ω
ωm

−+γ−1 + µ2 |Ω| .

By using (2.7) for µ2 large and since m− > 2, we obtain

C15

∫
Ω
ω
γ(m−+γ−1)
m−+γ−2 −

2χ1Cm−,γ

m− + γ − 1

∫
Ω
ωm

−+γ−1 ≤ C16,
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where C16 = C15

(
(m−+γ−1)C15

2χ1Cm−,γ

) γ(m−+γ−1)
(m−+γ−1)(m−+γ−2)−γ(m−+γ−1)

|Ω| > 0 and

(
η2 +

m− + γ − 1

γ

)∫
Ω
ωγ −

χ1Cm−,γ

m− + γ − 1

∫
Ω
ωm

−+γ−1 ≤ C17,

where C17 =
(
η2 +

m−+γ−1
γ

)(
η2+

m−+γ−1
γ

)
(m−+γ−1)

χ1Cm−,γ


γ

m−−1

|Ω| > 0. Next applying

the variation-of-constants formula we obtain

1

γ

∫
Ω
ωγ ≤ µ1

3

∫ t

s0

∫
Ω
e−(m

−+γ−1)(t−s)um
−+γ−1

−
χ1Cm−,γ

m− + γ − 1

∫ t

s0

∫
Ω
e−(m

−+γ−1)(t−s)ωm
−+γ−1 + C18 (2.24)

for all t ∈ (s0, Tmax). Combine (2.24) with (2.12) to get∫
Ω
uγ ,

∫
Ω
ωγ ≤ C19

for all t ∈ (s0, Tmax) with C19 = (C5 + C18) γ > 0. Together with (1.7), this verifies (2.1)
and (2.2).

Finally, we can use the standard Alikakos-Moser iteration [2] to derive our main result.
Take γ = γ0 > N in (2.1) and (2.2). Applying Lemma 1.2 to the second and fourth
equations of (1.1), we obtain the L∞ boundedness of∇υ and∇z. Thus, all assumptions of
[19], Lemma A.1 are satisfied. This concludes

‖u‖∞ , ‖ω‖∞ ≤ C

with some C > 0 for all t ∈ (0, Tmax). By Lemma 1.1, we know that Tmax = +∞. The
proof of Theorem 1.1 is completed.
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