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On the basicity of one trigonometric system in Orlicz spaces
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Abstract. In this article it is considered the trigonometric system, which is the collection of eigenfunction
of the ordinary differential operator second order with nonlocal boundary condition. It is considered the
Orlicz space on the segment (0, 2π). It is established that if the Boyd indexes of this space belong to the
interval (0, 1) then the considered system forms a basis in this space. This system was used by several
mathematics in the study of solvability and construction of solution of one second order degenerate elliptic
equation with nonlocal boundary condition.
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1 Introduction

The classical theory of solvability (in classical, strong or weak sense) of linear elliptic
equations is well developed (see e.g. the monographs [1], [11]). Moreover there are some
problems of mechanics and mathematical physics which do not fit to this theory. One of
such problem is the following degenerate elliptic equation
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ymuxx + uyy = 0 , (x, y) ∈ (0, 2π)× (0,+∞),

u (x, 0) = f (x) , x ∈ (0, 2π),

u (0, y) = u (2π, y) , y ∈ (0,+∞),

ux (0, y) = 0 , y ∈ (0,+∞),

(1.1)

with m ≥ −2, studied by Moiseev in [14]. When solving this problem in classical sense
he applied the spectral method by using the fact that the corresponding to this problem
trigonometric system

{1; cosnx; x sinnx}n∈N , (1.2)

forms a Riesz basis in L2(0, 2π). Then the authors of the works [2]-[8], [10], [12], estab-
lished the basisness of the system (1.2) in weighted Lebesgue and weighted grand Lebesgue
spaces and using these facts to solve the problem (1.1) (in strong and weak sense) in corre-
sponding Sobolev spaces generated by norm of these spaces.

Therefore in order to solve the problem (1.1) in other Sobolev spaces it needs to estab-
lish the basisness of system (1.2) in corresponding Banach function spaces. By this reason
investigation of basicity properties (completeness, minimality, basisness) of the systems
regarding various Banach function spaces has very science interest in view of theory of dif-
ferential equation, spectral theory of differential operators and approximation theory (see
e.g. works [8]-[17]).

2 Auxiliary Facts

First, let us take some standard notations. N will be the set of natural numbers, R will be the
set of real numbers, Z+ = {0} ∪ N and δij is the Kronecker delta symbol. C∞0 (0, 2π) is
the set of all infinitely differentiable functions on (0, 2π) with compact support in (0, 2π).
L[M ] denotes the linear span of the set M and c denotes constant (maybe difference in
various places).

Moreover, we will use the following notions of basis theory.

Definition 2.1 Let X be a Banach space on field K and X∗ be the dual space of X . For
the {xn}n∈N ⊂ X system to be a basis in the X space, there is only one {an}n∈N ⊂ K
sequence that

x =
∞∑
n=1

anxn,

for ∀x ∈ X . The {an}n∈N sequence is the sequence of biorthogonal coefficients of the x
element with respect to the {xn}n∈N system.

Definition 2.2 {xn}n∈N ⊂ X and {x∗n}n∈N ⊂ X∗ systems are called to be biorthogonal,
if the condition

x∗n(xk) = δnk, ∀n; k ∈ N,
is satisfied. Here δnk is the Kronecker delta symbol.

Definition 2.3 (Completeness) Let X be a Banach space. If

L[{xn}n∈N] = X,

then the system {xn}n∈N ⊂ X is called to be complete in X .
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The completeness criterion for a system in Banach spaces is as follows.
Statement.[Completeness Criterion] Let X be a Banach space. The system {xn}n∈N ⊂

X is complete in X ⇔ f ∈ X∗: f(xn) = 0, ∀n ∈ N⇒ f = 0.

Definition 2.4 (Minimality) If

xk /∈ L[{xn}n∈Nk
], ∀k ∈ N,

then the system {xn}n∈N ⊂ X is called to be minimal in X (here Nk = N \ {k}).

The minimality criterion for a system in Banach spaces is as follows.
Statement.[Minimality Criterion] The necessary and sufficient condition for a system

to be minimal in Banach space is that the system has a biorthogonal system.
Statement.[Basicity Criterion] The system {xn}n∈N forms a basis in the X Banach

space if and only if, if the following assertions hold:

1 The {xn}n∈N system is complete in X;
2 The {xn}n∈N system is minimal in X;
3 Pm(x) =

∑m
k=1 x

∗
k(x)xk projectors are uniformly bounded (∀m ∈ N), i.e., there exists

C > 0 such that
‖Pm(x)‖X ≤ C‖x‖X , ∀x ∈ X.

Here the systems {x∗n}n∈N and {xn}n∈N are biorthogonal.

Let us give necessary concepts and facts related to Orlicz space.

Definition 2.5 Continuous convex function M : R → R is called N-function if it is even
and satisfies the condition

lim
x→0

M(u)

u
= 0; lim

x→∞

M(u)

u
=∞ .

Definition 2.6 LetM be aN -function. So the following function is calledN -function com-
plement to M :

M∗(v) = max
u≥0

[u(v)−M(u)]

Function M∗ can be described as follows. Let p : R+ → R+ = [0;+∞) be right con-
tinuous for t ≥ 0, non-decreasing function that satisfies the condition p(0) = 0, p(∞) =
limt→0 p(t) =∞. Let us define

q(s) = sup
p(t)≤s

t , s ≥ 0.

The function q has the same properties as the function p, in fact for s > 0 it is positive, for
s ≥ 0 it is right continuous, non-decreasing and satisfies the conditions

p(0) = 0, p(∞) = lim
t→0

p(t) =∞.

M and M∗ can be represented as follows

M(u) =

∫ |u|
0

p(t)dt, M∗(v) =

∫ |v|
0

q(s)ds.

These N -functions are complement to each other.

Definition 2.7 N -functionM satisfies∆2-condition for large values of u, if ∃k > 0 and ∃u0 ≥
0 :

M(2u) ≤ kM(u), ∀u ≥ u0.
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∆2-condition is equivalent to that, for ∀l > 1, ∃k(l) > 0 and ∃u0 ≥ 0:

M(lu) ≤ k(l)M(u), ∀u ≥ u0.

Now let us define the Orlicz space. Let M be some N -function, G ⊂ R be a (Lebesgue)
measurable set with finite measure. Denote by L0(G) the set of all functions measurable in
G. Let

ρM (u) =

∫
G
M [u(x)] dx,

and
LM (G) = {u ∈ L0(G) : ρM (u) < +∞}.

LM (G) is called an Orlicz class.
Let M and M∗ be complement for each other N -functions. Assume

L∗M (G) = {u ∈ L0(G) : |(u; v)| < +∞, ∀v ∈ LM∗(G)},

here
(u; v) =

∫
G
u(x)v(x) dx.

L∗M (G) is called Orlicz space. According to the norm ‖.‖M :

‖u‖M = sup
ρ∗M (v)≤1

|(u; v)|,

L∗M (G) is a Banach space. It should be noted that in L∗M (G) we can define equivalent norm
to ‖.‖M :

‖u‖(M) = inf
{
λ > 0 : ρM

(u
λ

)
≤ 1
}
.

‖u‖(M) is called the Luxembourg norm.
Statement. If N -function M satisfies the ∆2-condition, then L∗M (G) = LM (G) and

the closure of the set of bounded (including continuous) functions coincides with L∗M (G).
More information about these and other facts we can refer to monographs [18], [19].

Definition 2.8 We will say that the function M satisfies the∇2-condition, if

lim
u→∞

inf
M(2u)

M(u)
> 2, i.e. ∃λ > 2 and ∃u0 > 0 : M(2u) ≥ λM(u), ∀u ≥ u0.

Denote by ∆2(∞) (∇2(∞)) the set of all N-functions, satisfying the ∆2-condition (the
∇2-condition).

We will need the concepts of Boyd indices of Orlicz spaces. By M−1(.) we denote the
inverse of N-function M(.).

Assume

h(t) = lim
x→∞

sup
M−1(x)

M−1(tx)
, t > 0.

Define the following numbers

αM = − lim
t→∞

log h(t)

log t
; βM = − lim

t→0+

log h(t)

log t
.
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The numbers αM and βM are called upper and lower Boyd indices for the Orlicz space
LM (0, 2π), correspondingly. These numbers satisfy the following relations

0 ≤ αM ≤ βM ≤ 1 ; αM + βM∗ = 1 ; αM∗ + βM = 1,

where M, M∗ ∈ N complementary each to other N-functions.

The Orlicz space LM (0, 2π) is reflexive if and only if holds the relation 0 < αM ≤
βM < 1. Moreover, if for numbers p, q ∈ [1,+∞], hold the inequality

1 ≤ q < 1

βM
≤ 1

αM
< p ≤ +∞, (2.1)

then it is valid the following continuous embeddings

Lp(0, 2π) ⊂ LM (0, 2π) ⊂ Lq(0, 2π). (2.2)

More information about these and other facts can be found in works [13]-[19].

The conjugate function f̃ of function f from the Orlicz Space LM (0, 2π).

Definition 2.9 For any f ∈ LM (0, 2π) ⊂ L1(0, 2π), the conjugate f̃ of f is given by

f̃(x) = − 1

π

∫ π

0

f(x+ t)− f(x− t)
2 tan t

2

dt.

By Sn[f ], n = 0, 1, ...; we denote the partial sum of Fourier series of function f ∈
LM (0, 2π):

Sn[f ](x) =
∑
|k|≤n

ck e
ikx =

1

π

∫ 2π

0
f(t) Dn(x− t) dt,

where

ck = ck(f) =
1

2π

∫ 2π

0
f(x) e−ikx dx, k ∈ Z,

are Fourier coefficients of f(.) and

Dn(x) =
1

2

∑
|k|≤n

eikx =
sin
[(
n+ 1

2

)
x
]

2 sin x
2

, n = 0, 1, ...;

is a Dirichlet kernel of order n.

We need the following Ryan’s theorem from the monograph [19, p.196].

Theorem 2.1 (Ryan) Let M be an N-function. Then the following are equivalent:

(i) LM (0, 2π) is reflexive;
(ii) There is a constant C > 0 such that for all f ∈ LM (0, 2π):

‖f̃‖LM (0,2π) ≤ C ‖f‖LM (0,2π);

(iii) There is a constant A > 0 such that for all n ≥ 1 and f ∈ LM (0, 2π):

‖Sn[f ]‖LM (0,2π) ≤ C ‖f‖LM (0,2π).
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From these facts direct follows the following

Corollary 2.1 For N-function M :

lim
n→∞

‖Sn[f ]− f‖LM (0,2π) = 0,

for all f ∈ LM (0, 2π) if and only if M ∈ ∆2(∞) ∩∇2(∞).

Also valid the following Ryan’s theorem.

Theorem 2.2 (Ryan) [19] Let M be N-function. If holds the part (iii) of Theorem 2.1
(Ryan), then M ∈ ∆2(∞) ∩∇2(∞); so LM (0, 2π) is reflexive.

Taking into account the Theorems 2.1, 2.2 and Corollary 2.1, we arrive to the following
conclusion.

Corollary 2.2 Let M be N-function. Then the Boyd indices of Orlicz space LM (0, 2π):
αM ; βM ∈ (0, 1) if and only if M ∈ ∆2(∞) ∩∇2(∞).

3 Main Results

Consider the following trigonometric system

yc0 = 1; ycn (x) = cosnx; ysn (x) = x sinnx, n ∈ N, (3.1)

ϑc0(x) =
2π − x
2π2

; ϑcn(x) =
2π − x
π2

cosnx; ϑsn(x) =
1

π2
sinnx, n ∈ N. (3.2)

Let us prove the following

Lemma 3.1 Let LM (0, 2π) be Orlicz space with Boyd indices αM , βM ∈ (0, 1). Then the
system (3.1) is minimal in LM (0, 2π).

Proof. Consider the following functionals

ec0(f) =
1

2π2

∫ 2π

0
f(x)(2π − x) dx;

ecn(f) =
1

π2

∫ 2π

0
f(x)(2π − x) cosnx dx;

esn(f) =
1

π

∫ 2π

0
f(x) sinnx dx.

In the work [14] it is established the following relations:

ecn(y
c
m) = δnm; ∀n,m ∈ N;

ecn(y
s
m) = 0, ∀n ∈ Z+; ∀m ∈ N;

esn(y
c
m) = 0, ∀n ∈ N; ∀m ∈ Z+;

esn(y
s
m) = δnm; ∀n,m ∈ Z+.

(3.3)

Let us show that the functionals {ecn; esn} belong to the space (LM (0, 2π))∗. It is evident
that ∃p, q ∈ (1,+∞), for which it is valid the inequality

1 ≤ q < 1

βM
≤ 1

αM
< p ≤ +∞. (3.4)
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Then from the embeddings (2.2) follows the following estimates

‖f‖Lq(0,2π) ≤ c ‖f‖LM (0,2π); ∀f ∈ LM (0, 2π),

where c > 0 some constant.

Using these relations and applying the Hlder inequality we have

|ecn(f)| ≤ c
∫ 2π

0
|f(x)| |2π − x| | cosnx| dx

≤ c
(∫ 2π

0
|f |q dx

) 1
q

≤ c ‖f‖LM (0,2π), ∀n ∈ Z+.

Also

|esn(f)| ≤ c

∫ 2π

0
|f | dx ≤ c

(∫ 2π

0
|f |q dx

) 1
q

≤ c ‖f‖LM (0,2π), ∀n ∈ N,

where c denote constants. From here immediately follows that

{ecn; esn} ⊂ (LM (0, 2π))∗ .

Then based on minimality criterion from relations (3.3) we have the minimality of sys-
tem (3.1) in LM (0, 2π).

The lemma is proved.

Then let us prove the completeness of system in LM (0, 2π). It is valid the following

Lemma 3.2 Let the Boyd indices of Orlicz space LM (0, 2π) belong to interval (0, 1), i.e.
αM , βM ∈ (0, 1). Then the system (3.1) is complete in LM (0, 2π).

Proof. From Corollary 2.2 follows that M ∈ ∆2(∞) ∩ ∇2(∞) and in result from known
facts (see e.g. the monographs [18,19]) follows that the classC∞0 (0, 2π) is dense inLM (0, 2π).
Let f ∈ LM (0, 2π) is an arbitrary function. Take ∀ε > 0. Then ∃ g ∈ C∞0 (0, 2π), such that
‖f − g‖LM (0,2π) < ε. Let us consider the biorthogonal series of g on the system (3.1):

S̃n[g](x) =

n∑
k=0

eck(g) y
c
k(x) +

n∑
k=0

esk(g) y
s
k(x), n ∈ N.

Consider the biorthogonal coefficients {ecn; esn}:

eck(g) = c

∫ 2π

0
g(x)(2π − x) cos kx dx

=

∫ 2π

0
g̃(x) cos kx dx, k ∈ Z+,

where g̃(x) = c g(x)(2π− x) and c some constant. It is evident that g̃ ∈ C∞0 (0, 2π) and in
result g̃(n)(0) = g̃(n)(2π) = 0, ∀n ∈ Z+. Integrating by parts two times and taking into
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account these relations we have

eck(g) =
1

k

∫ 2π

0
g̃(x) d sin kx

= −1

k

∫ 2π

0
g̃(1)(x) sin kx dx

= − 1

k2

∫ 2π

0
g̃(2)(x) cos kx dx,

and from here follows
|eck(g)| ≤

c

k2
, ∀k ∈ N.

Completely analogously we have the following estimate

|esk(g)| ≤
c

k2
, ∀k ∈ N.

From these estimates follows that the partial sums {S̃n[g]}n∈N converges uniformly on
[0, 2π]. From the results of the work [14] follows that the system (3.1) forms a basis in
L2(0, 2π) and in result it is evident that the limit of sums {S̃n[g]}n∈N is g(.). It is obvious
that ∃c > 0:

‖f‖LM (0,2π) ≤ c ‖f‖L∞(0,2π); ∀f ∈ C[0, 2π].
Then ∃nε ∈ N, such that for ∀n ≥ nε it holds

‖S̃n[g]− g‖LM (0,2π) ≤ c ‖S̃n[g]− g‖L∞(0,2π) < ε.

We have

‖f − S̃n[g]‖LM (0,2π) ≤ ‖f − g‖LM (0,2π) + ‖S̃n[g]− g‖LM (0,2π) < 2ε, ∀n ≥ nε.

From arbitrariness of ε > 0 follows completeness of system (3.1) in LM (0, 2π).

Lemma is proved.

So let us prove the main theorem of this work.

Theorem 3.1 Let M be N-function and the Boyd indices of Orlicz space LM (0, 2π) :
αM , βM ∈ (0, 1). Then the system (3.1) forms a basis in LM (0, 2π).

Proof. Taking into account the Lemmas 3.1 and 3.2 it is sufficient to prove that the
projectors

Pn(f) =

n∑
k=0

eck(f) y
c
k +

n∑
k=1

esk(f) y
s
k, ∀n ∈ N.

uniformly bounded in LM (0, 2π). We have

‖Pn(f)‖LM (0,2π) ≤

∥∥∥∥∥
n∑
k=0

eck(f) y
c
k

∥∥∥∥∥
LM (0,2π)

+

∥∥∥∥∥
n∑
k=1

esk(f) y
s
k

∥∥∥∥∥
LM (0,2π)

= I(1)n + I(2)n , n ∈ N.

Let us estimate {I(1)n }. We have

eck(f) = c+k (f̃), ∀k ∈ Z+,
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where c+k (f̃) is Fourier coefficient

c+k (f̃) =
1√
2π

∫ 2π

0
f̃(x) cos kx dx,

of function f̃(.):
f̃(x) = c (2π − x)f(x).

Since the classical trigonometric system {1; cosnx; sinnx}n∈N forms a basis inLM (0, 2π)
(it follows from Corollary 2.1), then from basicity criterion follows

I(1)n =

∥∥∥∥∥
n∑
k=0

c+k (f̃) cos kx

∥∥∥∥∥
LM (0,2π)

≤ c ‖f̃‖LM (0,2π) ≤ c ‖f‖LM (0,2π),

where the constant c > 0 does depend on n and f . Completely analogously we can establish

I(2)n ≤ c ‖f‖LM (0,2π), ∀n ∈ N.

In result from the basicity criterion follows that the system (3.1) forms a basis inLM (0, 2π).

The theorem is proved.
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