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Abstract. Dirac-type operator is considered on the finite interval G = (a, b). It is assumed that its coef-
ficient (potential) is a complex-valued matrix function summable on G = (a, b). Riesz property criterion
for a system of root vector functions is established and theorem on equivalent basis property in L2

p(G),

1 < p <∞, is proved.
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1 Main concepts and statement of results

Riesz and basis properties of the systems of root vector functions of Dirac-type oper-
ator are studied in this work. Root vector functions are considered in generalized sense,
i.e. regardless of boundary conditions (see [1]). With such a generalization, V.A. Il’in [1]
found the necessary and sufficient conditions for unconditional basis property (Riesz basis
property) of the systems of root vector functions of the operator L = −d2/dx2 + q(x) for
L2. The work [1] served as a starting point for many mathematicians to study the Bessel,
unconditional basis and basis properties of the systems of root vector functions of higher
order differential operators.

For a Dirac operator with a potential from the class L2, Bessel property and uncondi-
tional basis property criteria have been established in [2]. Componentwise uniform equicon-
vergence on a compact, uniform convergence, Riesz property of the systems of root vector
functions of Dirac operator and unconditional basis property for Dirac-type operator have
been considered in [3-7].

Basis property and other spectral properties of root vector functions of Dirac operator
(with boundary conditions) have been treated in [8-16] and the references therein. In [8],
the Riesz basis property for Dirac operator with a potential from the class L2 and separated
boundary conditions has been established. Dirac operator with a potential from the class
L2 and general regular conditions has been studied in [9], where the Riesz basis property
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of subspaces and, in case of strongly regular boundary conditions, the Riesz basis property
have been proved. The case where the potential belongs to the class Lp, p ≥ 1, has been
considered in [10, 11], where the Riesz basis property (with strongly regular boundary con-
ditions) and the Riesz basis property of subspaces (with regular boundary conditions) have
been established. For Dirac-type operator with a potential from L1 and strongly regular
conditions, the Riesz basis property has been proved in [12].

Consider one-dimensional Dirac-type operator

Dy = B
dy

dx
+ P (x)y, y(x) = (y1(x), y2(x))

T ,

where B =

(
0 b1
b2 0

)
, b2 < 0 < b1, P (x) = diag(p1(x), p2(x)),

and p1(x), p2(x) are complex-valued summable functions on the arbitrary finite interval
G = (a, b) of the real axis.

Following [1], by the eigen vector function of the operator D corresponding to the com-
plex eigenvalue λ, we will mean any complex-valued vector function

◦
u(x) not identically

zero, which is absolutely continuous on every closed subinterval ofG and satisfies the equa-
tion D

◦
u = λ

◦
u almost everywhere in G.

Similarly, by the associated vector function of degree l, l ≥ 1, corresponding to the
same λ and the same eigenfunction

◦
u(x),we will mean any complex-valued vector function

l
u(x), which is absolutely continuous on every closed subinterval of G and satisfies the

equation D
l
u = λ

l
u+

l−1
u almost everywhere in G.

Let {uk(x)}∞k=1 be an arbitrary system of root (eigen- and associated) vector functions
of the operator D, and {λk}∞k=1 be the corresponding system of eigenvalues. In the sequel
we will assume that every vector function uk(x) belongs to the system {uk(x)}∞k=1 together
with all corresponding associated functions of a lesser degree, and the lengths of the chains
of root vector functions are uniformly bounded. This means, in particular, that every vector
function uk(x) satisfies the equation

Duk = λkuk + θkuk−1

almost everywhere in G, where θk is equal to either 0 (in this case, uk(x) is an eigen vector
function) or 1 (in this case, uk(x) is an associated vector function, λk = λk−1).

LetL2
p(G), p ≥ 1, be a space of two-component vector functions f(x) = (f1(x), f2(x))

T

with the norm

‖f‖p,2 =
[∫

G

(
|f1(x)|2 + |f2(x)|2

)p/2
dx

]1/p
.

In case p =∞, the norm in this space is defined by the equality ‖f‖∞,2 = sup
x∈G

vrai |f(x)| .

Obviously, for the vector functions f(x) ∈ L2
p(G), g(x) ∈ L2

q(G), p
−1 + q−1 = 1,

p ≥ 1, the “scalar product”

(f, g) =

∫ b

a

2∑
j=1

fj(x)gj(x)dx

is defined.
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Definition 1.1. A system {ϕk(x)}∞k=1 ⊂ L2
q(G), q ≥ 2, is called a Riesz system, or a

system which satisfies the Riesz property, if there exists a constant M =M(p) such that the
inequality

∞∑
k=1

|(f, ϕk)|q ≤M ‖f‖qp,2

holds for an arbitrary function f(x) ∈ L2
p(G), where p−1 + q−1 = 1.

Definition 1.2. A system {ϕk(x)}∞k=1 ⊂ L2
p(G), p ≥ 1, is called p-close to the system

{ψk(x)}∞k=1 ⊂ L2
p(G) in L2

p(G) if the relation

∞∑
k=1

‖ϕk − ψk‖pp,2 <∞

holds.
Definition 1.3. Two sequences of elements in the Banach space X are called equivalent

if there exists a bounded, linear and boundedly invertible operator in X , which maps one
of these sequences into another.

The following theorems are proved in this work.
Theorem 1.1 ( Criterion of Reizs property). Let P (x) ∈ L1(G) and there exist a con-

stant C0 such that

|Imλk| ≤ C0, k = 1, 2, ... (1.1)

Then, for the system
{
uk(x) ‖uk‖−1q,2

}∞
k=1
⊂ L2

q(G) to be Riesz, it is necessary and suffi-
cient that there exists a constant M1 such that the inequality∑

|Reλk−ν|≤1

1 ≤M1 (1.2)

holds for every real number ν.
LetD∗ be a formal adjoint operator ofD, i.e.D∗ = −B∗ ddx+P

∗(x),where P ∗(x) is an
adjoint matrix function of P (x), and B∗ is an adjoint matrix of B. Denote by {υk(x)}∞k=1
a biorthogonal adjoint system of {uk(x)}∞k=1 and assume that it consists of root vector
functions of the operator D∗, i.e. D∗υk = λkυk + θk+1υk+1.

Theorem 1.2 (On equivalent basis property). Let 1 < p ≤ 2, P (x) ∈ L1(G), the
lenghts of the chains of root vector functions be uniformly bounded, conditions (1.1), (1.2)
be satisfied, there exist a constant M2 such that

‖uk‖2,2 ‖υk‖2,2 ≤M2, k = 1, 2, ..., (1.3)

and the system
{
uk(x) ‖uk‖−1p,2

}∞
k=1

be p−close to some basis {ψk(x)}∞k=1 in L2
p(G). Then

the systems
{
uk(x) ‖uk‖−1p,2

}
and

{
υk(x) ‖uk‖p,2

}∞
k=1

are the bases in L2
p(G) and L2

q(G),

respectively, and these systems are equivalent to the basis {ψk(x)}∞k=1 and its biorthogonal
adjoint, respectively.

Remark 1.1. If in Theorem 1.2 the systems {uk(x)}∞k=1 and {υk(x)}∞k=1 are inter-
changed, then we get the basicity of the system {uk(x)}∞k=1 in L2

p(G) for p ≥ 2.
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2 Auxiliary statements.

Statements below will be used to prove the above theorems.
Statement 2.1 (see [7]). If the functions p1(x) and p2(x) belong to the class Lloc1 (G)

and the points x− t, x, x+ t, lie in the interval G, then the following formulas are true for
the root vector function uk(x):

uk(x± t) =
[
cos λkt√

|b1b2|
I ∓ sin λkt√

|b1b2|
B√
|b1b2|

]
uk(x)

±B−1
∫ x±t
x

(
sin λk(t−|ξ−x|)√

|b1b2|
B√
|b1b2|

∓ cos λk(t−|ξ−x|)√
|b1b2|

I

)
× [P (ξ)uk(ξ)− θkuk−1(ξ)] dξ,

(2.1)

uk(x− t) + uk(x+ t) = 2uk(x) cos
λkt√
|b1b2|

+B−1
∫ x+t
x−t

(
sin λk(t−|ξ−x|)√

|b1b2|
B√
|b1b2|

− sign(ξ − x)

× cos λk(t−|ξ−x|)√
|b1b2|

I

)
[P (ξ)uk(ξ)− θkuk−1(ξ)] dξ,

(2.2)

where I is a unit matrix function.
Statement 2.2 (see [7]). Let the functions p1(x) and p2(x) belong to the class L1(G).

Then there exist the constants Ci(nk, G, b1, b2), i = 1, 2, independent of λk such that

‖θkuk−1‖∞,G ≤ C1(nk, G, b1, b2)(1 + |Imλk|) ‖uk‖∞,G , (2.3)

‖uk‖∞,G ≤ C2(nk, G, b1, b2)(1 + |Imλk|)1/r ‖uk‖r,G , (2.4)

where nk is a degree of the root vector function uk(x), r ≥ 1 .

3 Proof of the Riesz property criterion.

In this section, we prove Theorem 1.1 (On the Riesz property of the systems of root vector
functions of the operator D).

Necessity. Consider any real number ν. Introduce an index set Iν = {k : |Reλk − ν| ≤ 1,
|Imλk| ≤ C0}, where C0 is a constant appearing in the condition (1.1). Let’s choose the
positive numbers R and R∗ such that R ≤ R∗ and the inequality ω(R) ≤ L−1 holds for
every set E ⊂ G,mesG ≤ 2R∗, where L is a positive number to be defined later and

ω(R) = sup
E⊂G

{
‖P‖1,E

}
, ‖P‖1,E =

∫
E
(|p1(x)|+ |p2(x)|) dx.

Let x ∈
[
a, a+b2

]
. Let’s write the mean value formula (2.2) for the points x, x+ t, x+2t,

where t ∈ [0, R] :

uk(x) = 2uk(x+ t) cos
λkt√
|b1b2|

− uk(x+ 2t)

+B−1
∫ x+2t

x

{
sin

λk(t− |x+ t− ξ|)√
|b1b2|

B√
|b1b2|

− sign(ξ − x− t)
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− cos
λk(t− |x+ t− ξ|)√

|b1b2|
I

}
[P (ξ)uk(ξ)− θkuk−1(ξ)] dξ.

Add and subtract the function 2uk(x+t) cos
ν t√
|b1b2|

on the right-hand side of this equal-

ity and perform the operation R−1
∫ R
0 dt. Then we get

uk(x) = 2R−1
∫ R

0
uk(x+ t) cos

νt√
|b1b2|

dt−R−1
∫ R

0
uk(x+ 2t)dt

+4R−1
∫ R

0
uk(x+ t) sin

λk + ν

2
√
|b1b2|

sin
ν − λk
2
√
|b1b2|

dt

+R−1B−1
∫ R

0

∫ x+2t

x

{
sin

λk (t− |x+ t− ξ|)√
|b1b2|

B√
|b1b2|

− sign(ξ − x− t) cos λk (t− |x+ t− ξ|)√
|b1b2|

I

}
× [P (ξ)uk(ξ)− θkuk−1(ξ)] dξ.

Using formula (2.1) in the third term, we get

uk(x) = R−1
∫
G
uk(z)V (z)dz + 4R−1

∫ R

0

(
cos

λkt√
|b1b2|

I

− sin
λkt√
|b1b2|

B√
|b1b2|

)
sin

(λk + ν)t

2
√
|b1b2|

sin
(ν − λk)t
2
√
|b1b2|

dtuk(x)

+4R−1B−1
∫ R

0

∫ x+t

x

{
sin

λk (t− |ξ − x|)√
|b1b2|

B√
|b1b2|

+ cos
λk (t− |ξ − x|)√

|b1b2|
I

}

× [P (ξ)uk(ξ)− θkuk−1(ξ)] sin
(ν + λk)t

2
√
|b1b2|

sin
(ν − λk)t
2
√
|b1b2|

dt

+R−1B−1
∫ R

0

∫ x+2t

x

{
sin

λk (t− |x+ t− ξ|)√
|b1b2|

B√
|b1b2|

+ cos
λk (t− |x+ t− ξ|)√

|b1b2|
I

}

× [P (ξ)uk(ξ)− θkuk−1(ξ)] dξdt = R−1
∫
G
uk(z)V (z)dz + J1 + J2 + J3, (3.1)

where V (z) = 2 cos ν(x−z)√
|b1b2|

− 1
2 for x ≤ z ≤ x+R, V (z) = −1

2 for x+R < z ≤ x+2R,

and V (z) = 0 for z /∈ [x, x+ 2R].
Let k ∈ Iν . Let’s estimate the integrals Ji, i = 1, 3. Using the inequalities

|sin z| ≤ 2, |cos z| ≤ 2, |sin z| ≤ 2 |z| , (3.2)

which hold for |Imz| ≤ 1, we obtain

|J1| ≤ 8R

(
2√
|b1b2|

+
|b1|+ |b2|
|b1b2|

)
|ν − λk| |uk(x)| ≤ 8R

(
2√
|b1b2|

+
|b1|+ |b2|
|b1b2|

)
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× (1 + |Imλk|) |uk(x)| ≤ 8R

(
2√
|b1b2|

+
|b1|+ |b2|
|b1b2|

)
(1 + C0) ‖uk‖∞,2 .

Applying the inequalities (3.2) and the Holder inequality for p = 1, q =∞, we find

|J2| ≤ 32

(
2√
|b1b2|

+
|b1|+ |b2|
|b1b2|

)(
ω(R) ‖uk‖∞,2 +

R

2
‖θkuk−1‖∞,2

)
;

|J3| ≤ 2

(
2√
|b1b2|

+
|b1|+ |b2|
|b1b2|

)(
ω(R) ‖uk‖∞,2 +R ‖θkuk−1‖∞,2

)
.

Considering these estimates in the equality (3.1), we obtain

|uk(x)| ≤ R−1
∣∣∣∣∫
G
uk(z)V (z)dz

∣∣∣∣+ 8

(
2√
|b1b2|

+
|b1|+ |b2|
|b1b2|

)

× (R(1 + C0) + 5ω(R)) ‖uk‖∞,2 + 18R

(
2√
|b1b2|

+
|b1|+ |b2|
|b1b2|

)
‖θkuk−1‖∞,2 . (3.3)

The inequality (3.3) can be proved similarly in case x ∈
[
a+b
2 , b

]
. In this case, V (z) = −1

2

for x− 2R ≤ z < x−R, V (z) = 2 cos ν(x−z)√
|b1b2|

− 1
2 for x−R ≤ z ≤ x, and V (z) = 0 for

z /∈ [x− 2R, x].
Consequently, the inequality (3.3) is true for every x ∈ G.
Applying the estimates (2.3), (2.4) and taking into account the relation 1 + |Imλk| ≤

1 + C0, from (3.3) we obtain

|uk(x)| ≤ R−1
∣∣∣∣∫
G
uk(z)V (z)dz

∣∣∣∣
+8

(
2√
|b1b2|

+
|b1|+ |b2|
|b1b2|

){
5ω(R)C2(nk, G, b1, b2)(1 + C0)

1/q

+RC2(nk, G, b1, b2)(1 + C0)
1+1/q

+18RC1(nk, G, b1, b2 )C2(nk, G, b1, b2)θk1 + C0)
1+1/q

}
‖uk‖q,2 .

Due to the uniform boundedness of the lengths of the chains, we have

40

(
2√
|b1b2|

+
|b1|+ |b2|
|b1b2|

)
C2(nk, G, b1, b2) ≤ γ1 = const,

144

(
2√
|b1b2|

+
|b1|+ |b2|
|b1b2|

)
C2(nk, G, b1, b2)C2(nk, G, b1, b2) ≤ γ2 = const.

Consequently,

|uk(x)| ≤ R−1
∣∣∣∣∫
G
uk(z)V (z)dz

∣∣∣∣+ {ω(R)γ1(1 + C0)
1/q + γ1R(1 + C0)

1+1/q

+ Rγ2θk(1 + C0)
1+1/q

}
‖uk‖q,2 .
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Multiplying both sides of this inequality by ‖uk‖−1q,2, raising to a degree q and applying the

inequality
∣∣∣∣ n∑
i=1

ai

∣∣∣∣q ≤ nq−1 n∑
i=1
|ai|q, we find

|uk(x)|q ‖uk‖−qq,2 ≤ 3q−1R−q
{∣∣∫

G u
1
k(z)V (z)dz

∣∣q + ∣∣∫
G u

2
k(z)V (z)dz

∣∣q}
×‖uk‖−qq,2 + 3q−1

{
γ1L

−1(1 + C0)
1/q +Rγ1(1 + C0)

1+1/q +Rγ2θk(1 + C0)
1+1/q

}q
,

where uk(x) =
(
u1k(x), u

2
k(x)

)T
.

By virtue of Riesz inequality and ‖V ‖qp ≤ 3qRq/p, we obtain

∑
k∈J
|uk(x)|q ‖uk‖−qq,2 ≤ 2 · 32q−1MR

q
(

1
p
−1

)

+3q−1
{
γ1L

−1(1 + C0)
1/q +Rγ1(1 + C0)

1+1/q +Rγ2θk(1 + C0)
1+1/q

} ∑
k∈J

1,

where J ⊂ Iν is an arbitrary finite set of indices k, which correspond to the root functions
uk(x). Integrating this inequality over x ∈ G and choosing R∗ (consequently, the number
L−1 too) small enough to have an estimate

3q−1
{
γ1L

−1(1 + C0)
1/q +Rγ1(1 + C0)

1+1/q +Rγ2θk(1 + C0)
1+1/q

}q
<

1

2mesG
,

we arrive at the inequality ∑
k∈J

1 ≤ 4 · 32q−1MR−1mesG,

which, due to the arbitrariness of the finite set J and the uniform boundedness of the chains
of root vector functions, implies the necessity of the inequality (1.2).

Sufficiency. For simplicity we considerG = (0, 2π). Note that in this case it suffices for

us to establish the Bessel property of the system
{
uk(x) ‖uk‖−12,2

}∞
k=1

in L2
2(0, 2π). In fact,

due to the estimate (2.4) and the condition (1.1), for every vector function f(x) ∈ L2
2(0, 2π)

we have

sup
k

∣∣∣∣∫ 2π

0

(
f(x), uk(x) ‖uk‖−12,2

)
dx

∣∣∣∣ ≤ const ‖f‖1,2 .
Therefore, by Riesz-Thorin interpolation theorem, (see, e.g., [17, p.144]), the system{
uk(x) ‖uk‖−12,2

}∞
k=1

is Riesz.
On the other hand, by (2.4) and (1.1), (1.2), we have

‖uk‖2,2 ‖uk‖
−1
q,2 ≤ (2π)

1
2 ‖uk‖∞,2 ‖uk‖

−1
q,2 ≤ const, k = 1, 2, ... .

Consequently, for every f(x) ∈ L2
p(0, 2π), 1 < p ≤ 2, the estimate

∞∑
k=1

∣∣∣(f, uk ‖uk‖−12,2

)∣∣∣q = ∞∑
k=1

‖uk‖q2,2 ‖uk‖
−q
q,2

∣∣∣(f, uk ‖uk‖−12,2

)∣∣∣q

≤ const
∞∑
k=1

∣∣∣(f, uk ‖uk‖−12,2

)∣∣∣q ≤M3 ‖f‖qp,2
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is true.
So, we have to prove the Bessel property of the system

{
uk(x) ‖uk‖−12,2

}∞
k=1

inL2
2(0, 2π).

Considering the shift formula (2.1) for uk(x+ t) as x = 0 and then multiplying it scalarly
by the vector function f(t) = (f1(t), f2(t))

T ∈ L2
2(0, 2π), we conclude that to prove the

Besselness of the system ϕk(t) = uk(t) ‖uk‖−12,2 , k = 1, 2, ... in L2
2(0, 2π) it suffices to get

the validity of the following inequalities:

∞∑
k=1

∣∣∣∣∣
∫ 2π

0
fi(t) cos

λkt√
|b1b2|

dt

∣∣∣∣∣
2 ∣∣ϕik(0)∣∣2 ≤ C ‖f‖22,2 , i = 1, 2; (3.4)

∞∑
k=1

∣∣∣∣∣
∫ 2π

0
fi(t) sin

λkt√
|b1b2|

dt

∣∣∣∣∣
2 ∣∣ϕ3−i

k (0)
∣∣2 ≤ C ‖f‖22,2 , i = 1, 2; (3.5)

∞∑
k=1

∣∣∣∣∣
∫ 2π

0
f1(t)

∫ t

0
p1(ξ)ϕ

1
k(ξ) sin

λk(t− ξ)√
|b1b2|

dξdt

∣∣∣∣∣
2

≤ C ‖f‖22,2 , (3.6)

∞∑
k=1

∣∣∣∣∣
∫ 2π

0
f1(t)

∫ t

0
p2(ξ)ϕ

2
k(ξ) cos

λk(t− ξ)√
|b1b2|

dξdt

∣∣∣∣∣
2

≤ C ‖f‖22,2 , (3.7)

∞∑
k=1

∣∣∣∣∣
∫ 2π

0
f2(t)

∫ t

0
p1(ξ)ϕ

1
k(ξ) cos

λk(t− ξ)√
|b1b2|

dξdt

∣∣∣∣∣
2

≤ C ‖f‖22,2 , (3.8)

∞∑
k=1

∣∣∣∣∣
∫ 2π

0
f2(t)

∫ t

0
p2(ξ)ϕ

2
k(ξ) sin

λk(t− ξ)√
|b1b2|

dξdt

∣∣∣∣∣
2

≤ C ‖f‖22,2 , (3.9)

∞∑
k=1

∣∣∣∣∣θk
∫ 2π

0
fi(t)

∫ t

0

uik−1(ξ)

‖uk‖2,2
sin

λk(t− ξ)√
|b1b2|

dξdt

∣∣∣∣∣
2

≤ C ‖f‖22,2 , i = 1, 2; (3.10)

∞∑
k=1

∣∣∣∣∣θk
∫ 2π

0
fi(t)

∫ t

0

u3−ik−1(ξ)

‖uk‖2,2
cos

λk(t− ξ)√
|b1b2|

dξdt

∣∣∣∣∣
2

≤ C ‖f‖22,2 , i = 1, 2; (3.11)

where ϕik(ξ) = uik(ξ) ‖uk‖
−1
2,2.

Let’s prove the estimate (3.4). By the estimate (2.4) and the conditions (1.1),(1.2), we
have ∣∣ϕik(0)∣∣ = ∣∣uik(0)∣∣ ‖uk‖−12,2 ≤ ‖uk‖∞,2 ‖uk‖

−1
2,2

≤ C2(nk, G, b1, b2)(1 + C0)
1/2 ‖uk‖2,2 ‖uk‖

−1
2,2 ≤ C2(nk, G, b1, b2)(1 + C0)

1/2 = const,

because the sequence C2(nk, G, b1, b2) is bounded due to the condition (2.4). Therefore, for
(3.4) to be valid it suffices that the inequality

∞∑
k=1

∣∣∣∣∣
∫ 2π

0
fi(t) cos

λkt√
|b1b2|

dt

∣∣∣∣∣
2

≤ C ‖f‖22,2 , i = 1, 2, (3.12)

holds.
Under conditions (1.1) and (1.2) with ν ≥ 1, the validity of the inequality (3.12) has been

proved in [1]. Hence it follows the validity of (3.12) forReλk ∈ (−∞,+∞), |Imλk| ≤ C0,
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because, by the condition of Theorem 1.1, the condition (1.2) holds for any ν ∈ (−∞,+∞).
The inequality (3.5) can be proved in the same way.

Let’s verify the inequalities (3.6)-(3.9). They all are proved similarly, so we will only
prove (3.6). Denote

gi(t, ξ) =

{
fi(t+ ξ), 0 ≤ t ≤ 2π − ξ,

0, 2π − ξ < t ≤ 2π,

where ξ ∈ [0, 2π], i = 1.2. Then, by the estimate (2.4) for r = 2 and the conditions
(1.1),(1.2), we obtain

Tk =

∣∣∣∣∣
∫ 2π

0
f1(t)

∫ t

0
p1(ξ)ϕ

1
k(ξ) sin

λk(t− ξ)√
|b1b2|

dξdt

∣∣∣∣∣
2

=

∫ 2π

0
f1(t)

∫ t

0
p1(ξ)ϕ

1
k(ξ) sin

λk(t− ξ)√
|b1b2|

dξdt×

×
∫ 2π

0
f1(t)

∫ t

0
p1(ξ)ϕ1

k(ξ) sin
λk(t− ξ)√
|b1b2|

dξdt

=

∫ 2π

0
p1(ξ)ϕ

1
k(ξ)

∫ 2π

0
g1(t, ξ) sin

λkt√
|b1b2|

dtdτ×

×
∫ 2π

0
p(τ)ϕ1

k(τ)

∫ 2π

0
g1(r, τ)sin

λkr√
|b1b2|

drdτ

=

∫ 2π

0

∫ 2π

0
p1(ξ)p1(τ)ϕ

1
k(ξ)ϕ

1
k(τ)

∫ 2π

0
g1(t, ξ) sin

λkt√
|b1b2|

dt×

×
∫ 2π

0
g1(r, τ)sin

λkr√
|b1b2|

drdξdτ

≤ C2
2 (nk, G, b1, b2)(1 + C0)

∫ 2π

0

∫ 2π

0
|p1(ξ)| |p1(τ)|

∣∣∣∣∣
∫ 2π

0
g1(t, ξ) sin

λkt√
|b1b2|

dt

∣∣∣∣∣
×

∣∣∣∣∣
∫ 2π

0
g1(r, τ)sin

λkr√
|b1b2|

dr

∣∣∣∣∣ dξdτ
≤ const

∫ 2π

0

∫ 2π

0
|p1(ξ)| |p1(τ)|

∣∣∣∣∣
∫ 2π

0
g1(t, ξ) sin

λkt√
|b1b2|

dt

∣∣∣∣∣
×

∣∣∣∣∣
∫ 2π

0
g1(r, τ) sin

λkr√
|b1b2|

dr

∣∣∣∣∣ dξdτ.
Then, for arbitrary positive integer N we obtain

N∑
k=1

Tk ≤ const
∫ 2π

0

∫ 2π

0
|p1(ξ)| |p1(τ)|

×

(
N∑
k=1

∣∣∣∣∣
∫ 2π

0
g1(t, ξ) sin

λkt√
|b1b2|

dt

∣∣∣∣∣
∣∣∣∣∣
∫ 2π

0
g1(r, τ) sin

λkr√
|b1b2|

dr

∣∣∣∣∣
)
dξdτ
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≤ const
∫ 2π

0

∫ 2π

0
|p1(ξ)| |p1(τ)| ‖g1(·, ξ)‖2 ‖g1(·, τ)‖2 dξdτ.

As the inequality ‖g1(·, ξ)‖2 ≤ ‖f1‖2 holds for every fixed ξ ∈ [0, 2π], we get

N∑
k=1

Tk ≤ const ‖p1‖21 ‖f1‖
2
2 ≤ const ‖f‖

2
2,2 .

Hence, due to the arbitrariness of the number N , we get the validity of the inequality (3.6).
Now let’s prove (3.10). By (2.3), (2.4) and (1.1), (1.2), we have

θk
∣∣uik−1(ξ)∣∣ ‖uk‖−12,2 ≤ θkC1(nk, G, b1, b2)C2(nk, G, b1, b2)(1 + C0)

2
3

×‖uk‖2,2 ‖uk‖
−1
2,2 ≤ C = const

After changing the order of integration, the left-hand side of the inequality (3.10) is
majorized from above by the series

C

∞∑
k=1

∫ 2π

0

∣∣∣∣∣
∫ 2π

0
gi(t, ξ) sin

λkt√
|b1b2|

dt

∣∣∣∣∣
2

dξ.

This series converges due to the Bessel property of the system
{
sin λkt√

|b1b2|

}∞
k=1

, and its

sum is bounded from above by const ‖f‖22,2 .
The inequality (3.10) is proved. The inequality (3.11) is proved similarly.

4 Proof of the Theorem 1.2.

As the system {υk(x)}∞k=1 consists of root vector functions of the operator D∗ (formal
adjoint of D), by Theorem 1.1, the conditions (1.1) and (1.2) provide the Riesz property of
the system

{
υk(x) ‖υk‖−1q,2

}∞
k=1

in L2
p(G), 1 < p ≤ 2, p−1 + q−1 = 1, i.e.

∞∑
k=1

∣∣∣(f, υk(x) ‖υk‖−1q,2)∣∣∣q ≤M ‖f‖qp,2 (4.1)

for every vector function f(x) ∈ L2
p(G).

The inequality (4.1), the condition (1.3) and the p-closeness of the systems{
uk(x) ‖uk‖−1p,2

}∞
k=1

and {ψk(x)}∞k=1 in L2
p(G) imply that the series

∞∑
k=1

f̃k ‖uk‖p,2 ‖υk‖q,2
(
uk ‖uk‖−1p,2 − ψk(x)

)
converges inL2

p(G) for every f(x) ∈ L2
p(G),

where f̃k =
(
f, υk ‖υk‖−1q,2

)
.Denote the sum of this series byKf . As the sequenceKnf =

n∑
k=1

f̃k ‖uk‖p,2 ‖υk‖q,2
(
uk(x) ‖uk‖−1p,2 − ψk(x)

)
is fundamental in L2

p(G), the linear oper-

ator K acts in L2
p(G), i.e. Kf ∈ L2

p(G) for f(x) ∈ L2
p(G). Obviously, ‖Kf −Knf‖p,2 =

o(1) ‖f‖p,2, i.e. the sequence of finite dimensional operators {Kn} converges to the oper-
ator K. Consequently, this operator is compact in L2

p(G). Besides, Kuk ‖uk‖−1p,2 − ψk, i.e.
(E −K)uk ‖uk‖−1p,2 = ψk, k ∈ N , where E is a unit operator.



V.M. Kurbanov, E.J. Ibadov 61

Let’s show that the operator E −K is continuously invertible. The compactness of the
operator K and the Fredholm alternative imply that if the operator E−K in non-invertible,
then there exists a non-zero element g ∈ L2

q(G) such that (E −K)∗g = 0. The element g
satisfies the relation

(g, ψk) =
(
g, (E −K)uk ‖uk‖−1p,2

)
=
(
(E −K)∗g, uk ‖uk‖−1p,2

)
= 0, k ∈ N.

Hence, due to the basicity of the system {ψk(x)}∞k=1 for L2
p(G), it follows that the

element g is equal to 0. The obtained contradiction proves the invertibility of the opera-
tor E − K. Consequently, the system

{
uk(x) ‖uk‖−1p,2

}∞
k=1

is a basis for L2
p(G), and it is

equivalent to the basis {ψk(x)}∞k=1. If we denote by {zk(x)}∞k=1 a biorthogonal adjoint
system of {ψk(x)}∞k=1, then υk(x) ‖uk‖p,2 = (E −K)∗zk(x). This means that the system{
υk(x) ‖uk‖p,2

}∞
k=1

is a basis in L2
q(G) equivalent to the basis {zk(x)}∞k=1.

Theorem 1.2 is proved.
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