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Abstract. In this paper, we first study the inverse source problem for the heat equation with a memory
term. This problem is non-well-posed in the sense of Hadamard. We also investigate the regularized
solution by the exponential Tikhonov regularization method. The error estimates between the regularized
solution and the exact solution are obtained under a priori and posteriori parameter choice rules.
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1 Introduction

In this paper, we consider the parabolic equation with memory as follows

t
(t,2) = uns(ty2) = m [ u(s,x)ds + p(o). (t,2) € 0.0 x (0,)

0
u(t,0) = u(t,m) =0, 0<t< M, (1.1)
u(0,z) =0, O<z<m,

where M be a positive constant, and m > 0. The function p on the right hand side of
the first equation is called a source term. If the function p is known, we can work out the
function u by the initial boundary value problem. However, in this paper, our main problem
is determining the source term p from the additional information as follows

u(M,z) =g(z), 0<z<m. (1.2)
Let assume that g is noised by g, such that

l9e = 9l 2 ) < € (13)
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64 On recovering the source term for the heat equation with memory term

Our mentioned problem (1.1)-(1.2) is called the inverse space-dependent source problem.
It is well-known that the inverse source problem is ill-posed in the sense of Hadamard. In
practice, the terminal condition g is unknown and it is only available as noisy data g. with
a noise level e. When we use the noisy data for our problem (1.1), we will obtain the corre-
sponding source term which has a large deviation from the source function corresponding
to g. As we all know, the above inverse source problem is ill-posed and they are required
approximately by regularization methods.

— If m = 0 the problem (1.1) is called classical parabolic equation. This problem has been
studied a lot in [9,11,10,2,18,20,12,22,21,5,17,19,14,13].
t

— If m # 0 then problem (1.1) have a memory term m / Uz (S, x)ds which is called
0

Volterra integro differential equations, researched extensively in the literature [26,16,7,
15,8,3,6,24].

The parabolic with memory term has many applications in many various fields such as
heat conduction in materials with memory, population dynamics, nuclear reactors, [15]. In
[26], the authors considered Volterra diffusion equations with nonlinear terms. They inves-
tigated the stability properties of solutions in LP norms. Local existence results of solutions
to a system of partial functional differential equations are also investigated. In [16], the au-
thors studied the predator-prey system in the form of a coupled system of reaction-diffusion
equations.

Regarding some regularization methods, we see in [27], the generalized and revised
generalized Tikhonov regularization methods, see [4] with simplified Tikhonov method. In
[25], the fractional Tikhonov method, these studies focus on the error estimates between
the exact solution and the regularized solution for both methods were provided under the
a-priori and a-posteriori regularization parameter choice rules.

Recently, we proposed a novel regularization method, which we call the exponential
Tikhonov regularization method with an exponential parameter vy, see [23]. This method
was developed from the Tikhonov regularization method. Until now, the Tikhonov expo-
nential regularization method still has little research results. Our current paper may be one
of the first studies to apply this approach. We apply this method to construct the regularized
solution, the convergence estimates are established under a-priori, and a-posteriori regular-
ization parameter choice rules continue to be considered.

The layout of the article is shown as follows. Some preliminaries are given in Section
2, and attached are the results on the stability of the source function p. In Section 3, we
construct the exponential Tikhonov regularization method for solving the inverse source
problem of the time fractional diffusion equation and present convergence estimates under
the a-priori and a-posteriori regularization parameter choice rules. In Section 4.

2 Preliminaries and inverse source problem

We begin this section by introducing some notations and assumptions that are needed for
our analysis in the next sections.

Definition 2.1 (Hilbert scale space). Let D = (0, ). The Hilbert scale space H*™ (D), (1 >
0) defined by

HY7(D) = {f € L(D) : 3 K" (£.6)]a(p) < 0},
k=1
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is equipped with the norm defined by

S 2
HfHIQHIQT(D) = Zk47—fl?’ fe = <f’ €k>L2(fD), fk(x) = \/;Sin(k‘l‘).

k=1

Next, we introduce an exponent operator of —A defined by, see [23]
00 1 k8
_ A8 = — (-
exp ((—A)7) =1+ 3 = (=A™,
k=1

where I is a unit operator and (—A)*¢;, = k*P¢,, k = 0,1,2,---. For € R we define

(—A)

H(exp (T)) = {f € LQ(D);iexp (kw)‘<f,§k>‘2 < oo},

where <‘, > is the inner product in L*(D) with the following norms
e 2\ 2
1= (S0 29| er.0[ )
k=1

21 The fomula of source term for problem (1.1)

The solution to the problem (1.1) can be represented in the form of an expansion in the
orthogonal series

u(t,z) = up(t)e(x), with up(t) = (ult, ), €k) 12 p)- 2.1)
k=1

By considering that the series (2.1) converges and allows a term by term differentiation (the
required number of times), we construct a formal solution to the problem. We obtain the
problems

d 9 t
%uk(t) + kfug(t) — m/o ug(s)ds = pg, t e (0,M), 2.2)
uR(M) = gk, u(0) =0,
where
o0 [e.e]
g(x) = grék(x), and p(z) =) pple(x).
k=1 k=1
Let us set .
zk(t) = / ug(s)ds
0
Then we get

The problem (2.2) becomes to
2
@Zk(t) + k22, (t) = map(t) = pr, € (0,M), 2.3)
2. (M) = g, 2,(0) =0, 2,(0) =0.
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The solution zj, of (2.3) is given by

2(t) = ATeBt 4 A eBrt 4 O ()B4 C; (1)eBr .

Here we have

B =

(— K+ VEr +4m)

2

, By

2

(=K = VAT +am)

and A}:, A, are two constants. Using the Lagrange constant variation method, we have

Thus, we get that

Ci(t) =

and

Cp (t) =

This implies that

2(t) = <A,j +CFH(0) +

d —-Bt d _ —Bt
Leh) = L F P Zen(t) = € * Pk,
dt VE Y+ 4m  dt VEk* +4m
t e’B;spk 1— e Bit
—— 2 ds+CF(0) = ————=pp + G (0),
/o k* +4m ¢ (0) B:\/k4+4mpk ¢ (0)

p

_ _ Pk Bt
(A +Ci(0) - — L Bt
( K ¢ (0) B,;\/k4+4m> B, Vk* +4m

Since 2 (0) = z;,(0) = 0, we know that

and

4(0) = (Af +¢(0)B] +

Since (2.6) and (2.7), we obtain that

Pk

21(0) = A + CF(0) + A, +C; (0) = 0.

k4 + 4m

AF+CH0) = AL +C; (0) = 0.

This follows from (2.5) that

z(t) =

Pk

B;j VEL 4+ 4Am

()

Pk

B, Vk* +4m

G

S — (A,; + c,;(o))B,; -

k

t—C_B’:’SPk
P s G (0) = —— e+ (0)
/0 ram s T O = g e G O

k Bt
i i, E—
B;\/k4+4m> B;\/k4+4m

2.4)
Pk (2.5)
(2.6)
Pk —0
VEY+ 4m
2.7)

t—1).
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Since the fact that uy(t) = 2 (t), we know that

Bt Bt
ke * K€k
up(t) =—2 - L

VEr+4m VEY+4m
_ L2 4
Pk <exp{( k*+ vk +4m)t}

VEY 4 4m 2
—exp{(_kQ_\2/k4+4m)t}>'

Under the condition ug (M) = gi, we derive that

Pk <exp{(_k2+m)t}

gk:m B
—exp{(_kQ_\Q/m)t}>-

Thus, we derive that

s s |
’ k=1 exp{(w)]\/j} _eXp{(w)M}

9:&e)k(x). (2.8)

22 Ill-posedness

In the following, we provide an example of which shows that the function (2.8) does not
depend continuously on the given data g. For n € N*, we set

1
Combining (2.8) and (2.9), we get that
vni+4 1
() = A ().

exp { (PR M | — exp { (S MLV

It is obvious to see that

2

1
HE"HLQ(Q) = n —0, n— +4oo, (2.10)
and
PO e { (T | — exp { (2T | Ve

It is easy to check that

—n2+vnt+4m B 2m
2 n2 +vnt 4+ 4m

< 2m,
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This leads to

2 /4 4 2 _ /.4 4
exp{( nthvn m)M}fexp{( " not m)M}gexp{QmM}-
2 2
Since two latter estimates, we find that

2v/nt + 4m

||pn||L2(Q) 2 W — oo when n — o0. (211)

Combining (2.10) and (2.11), the inverse source problem (1.1) is ill-posed in the sense of
Hadamard.

23 Conditional stability of source term f

It is easy to see that

VE*+4m _ \/k:4+4mexp{k2—2M}
—k24+VkA+4m

{(—kZ— VT+m) i) e (Tedm )y g
2

exp — exp

(k? — VE* + 4m) VkA +4m exp{ivkgr‘lmM}
:eXp{ M} JiTdm :
2 exp {YAAM Y — 1
We have
AT
2 —_ )
Therefore
2 _ /14 4
exp{(k ]; + m)M} 1
We derive that
exp {¥EHmA) 1 _ 1 '
exp{ivk?élmM}—l 1—exp{—7vk42+4mM}_l—exp{—M7”;4m}

From some above observations, we deduce that

VET+4m
exp { ) Yy {2 F0) )

< VE 4+ 4m < V1+4m 2
Cl-exp{ - MY T 1 —exp{ - MY

In this section, we introduce conditional stability by the following theorem.
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Theorem 2.1 Let ||p||m2-(py < &1, for &1 > 0 then

< C(m, M)FTETT gl| 3

HPHL2(D) L%(D)

Next, we assume that HpH 8.cap < &, B > 0 then we have

B
19| o < CCm2, M) 1 g g1l 73

Proof. Combining (2.8) and Holder inequality, we have:

S K+ 4
HPHiQ(D) = Z _k2+\/m m _kg_m ‘<g7£k>‘2
2 o { (P ] e { (1)

5 VAT
T~ exp{(—k2+\ém)M}

—exp{(_m—‘ém)M} ‘<9’5k>|7 ’<975k>|T

A

S (VE +4m)” |(p, &)|” o
2 T ===l I L S8
k=1 ‘ <exp{(f)M} — exp {(f)MD

This inequality leads to

_<§ (VR 4m)™ [{p,e)] ) ol
k=1 ‘(exp{(i_w‘“ém)M} —exp{( k2_‘/m M )

1+4m T+1 7—+1 ( 4T )
< k
< (1_expv{_M@}) Ll OO ICLY

HPH;(D)

1

27

277’ T T
SC(m,M)T“HPHHE gl 72 (p), where C(m, M)

B V1+4m .
1—exp{—Mivl'2F4m}

3 Exponential Tikhonov Regularization method

From now on, we denote

—k2+VEr+4 —k? — VKt +4
exp{( + 5 + m)M}—exp{( 5 + m)M} A
VEY +4m '

We know that retrieving the source p(x) from formula (2.8) is ill-posed. Next, we use an
exponential Tikhonov regularization method to solve 1.1, and present the corresponding
convergence estimates under a-priori and a-posterior regularization parameter choice rules.
We define a linear forward operator K : L?(D) — L?(D) as follows

Fi(m, M) =

z) = grlk(x). (3.2)
k=1



70 On recovering the source term for the heat equation with memory term

Thus, Eq. (3.2) is rewritten as
Kp=g. (3.3)

Obviously, K : L?(D) — L?(D) is a linear self-conjugate compact operator, and operator
equation (3.3) is ill-posed, see [1]. In order to stably reconstruct the source p(z) from the
noisy data g.(x) of g(z), with an exponential penalty, we minimize the following Tikhonov
regularization functional :

T(f) = 11Kp = gl 20y + V(O 0] Eexp (34)

whereby v(¢) € R is a regularization parameter. Similarly, the exponential Tikhonov

functional (3.4) has a unique minimizer in L?(D). Let pz’ﬁ be the unique minimizer of
exponential Tikhonov functional (3.4), then we get

K K2 P 4 () exp(k2P) p2 ()P = K*ge. (3.5)
From (3.5), we obtain

V(€)B (1) = N Fi(m, M) x
) = L [t ey ety )

31 A priori parameter choice rule

Theorem 3.1 Let pz(g)”g (x) be the regularization solution with respect to the noise data
ge(x) and the noise assumption H Je — gH L2(D) < € be held.

— Under case of B < 0, assume that ||p||g2-(p) < &1, one has the convergence estimate

— If T > 2, the choice y(€) = €3, we have

12297 = pll 2y < (€ +Csr) €.

- If 7 € (0, 2], the choice y(€) = e%rl, then we get
P77 = pll oy < (€ +CaEr) 7.

where Cs, and C4 are defined in the (3.8) and (3.9)
16+83

— Under case of B > 0:suppose that ||p||g.cap < E2, we choice y(€) = e34+20) yields the
convergence estimate

8
1297 = pll oy < Co€77% + Cuae,
where Cs is defined in above the formula (3.10).

Proof. From (3.1), it follows that

176XP{7M vV 142»47n
V1+dm

(A pHL?(D) < 297 - /ﬂ(e)ﬁHL?(D) + [ p”L?(D)' (3.6)

] ,Co = exp{2mM }. By the triangular inequality, one has

inwhich C; =
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— For 8 < 0, the first term on the right-hand side of inequality (3.6) has
(€8 _ (.82 _ Fr(m, M) 2
p;/ —p 9e — 9, gk:
H HL2( H Z T | Fi(m, M) ‘ +7 )exp(k25)< >‘ L2((D))
] P
< ge — 9, gk
C2
k=1 | 74 +’Y(€) exp(O)
< C?
S Iy — 9,k)|
2 2
< <C2> . (3.7)
2C1) (e
It follows that
7(6)75 _ 'Y(E)’B < C €
Hpﬁ P HLQ(D) — ’Y(ﬁ)
where C = <QCC ) The second term on the right-hand side of inequality (3.6) has
1
H/ﬂ(e)ﬁ - pHL2(D)
2
= i( Fi(m, M) o 1 >‘<g §k>’
= \|Fu(m, M)[* + () exp(k2?)  Fi(m, M) L2(o)
_ = —(e€) exp(kw) <f ¢ > ?
- 2 28 » Sk
it [Fie(m, M| +(e) exp (k) 12(D)
- y(e)exp(¥)  \? 2
<> (4 —) 170
=\ (%)7 + 7(e) exp(k2?)
e’} 2
— Z (e )k4 exp(k% }<f §k>|
C? + y(e)k* exp(k2P) ’
(R exp(1) )4 2
< k*T
—%( C2 4 ~y(e)k? ’<f’§k>’
y(e)k % exp ) 4
< k T
< (o Gan ) Rl
We present two cases as follows:
— Under case 7 > 2, we know that
V(K> exp(1) exp(1)
<C , C3= . 3.8
a6 g oy
— Under case 7 < 2, we get
k4727' 1 1 4—-21 -
qup LB g, OPUE () < ey(o)f. 39)

ke CE+v(ek* T >0 CF+(e)2?
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T

2 — 27\ "2
WherebyC4:CfTexp(1)( 2T>( TT> .

In case 0 < y(€) < 1 one has

€), 03817(6)7 T
1579 = blary < { et

2,
Ca&a[y(6)]2,0 <7 <2,

where C3, and C4 are defined in the (3.8) and (3.9). Placing the above together yields that

. 2 .
- If 7 > 2, we choice y(€) = €3, we receive

16798 = o] 2y < C——= + C3E17(e).

Vv (e)

This leads to

12297 = pll 2y < (€ +Csr) €.

- If 7 € (0.2], we choice y(€) = €741, we receive

wH

1979 = pll pogpy < C——= + Ca€alr(e)]2.

\/7( )

This leads to
P27 = pl| 2y < (€ + Caba) €741

— For 8 > 0, the first term on the right-hand side of inequality (3.6) has

2

o0

€ € 2 fk m7M
127 = p OBy = 1D S 2D (9~ 9:)
it [Fr(m, M)+ ~(e) exp (k29) L2(D)
o 4 2 :
< - [{9e = 9,&)|
= C2 € Y
k=1 | & + () exp(kw)
3 [o¢]
<C3s 2—42 Z = 9:6))|
vl | CZ + (e kA28 P
3779 (1 4 23) i+25 2
4+2,8 + 4423 _ 3
<"z (o)== | €.
C* (4+28)
3
37728 (1 + 23)1+28
Thus there exists Cs = S +§ 5 +26) such that
C"7 (4 +28)
€
2P = | ) < Cs g (3.10)

v(e)a+28
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The second term on the right-hand side of inequality (3.6) has

0o 2

v(€),8 _ |2 _ ]:k(m,M) ) 1
Iz PHm(D) kzzl (}fk(m, M)| + ~(e) exp(k2°) fk(m,M)><g’§k> o
] —’Y(E) exp (]{726) 2
- 1.6
kzzl ‘fk(a,L)‘2+7(6) exp(k2ﬂ)< k)

L*(D)

€ 2€X 28
_ ’7( ) p(k ) 5 eXp(kQﬁ)}<f,fk>|2

k=1 (\fk(m, M)|* +7(e) exp(k”))

< (ap O %) ) el
- keg ‘]:k(oz,L)lz%-V(e)exp(k%) k=1 ’ o

Obviously, there exists an integer ko > 0 such that k* < exp(k??) for k > k.
— The case of k > kg we can derive that

7(€) exp (@) 7(€) exp (@) 7(€) exp <¥ + k”)
? 2 = @ = T2 (e) oxp (2K29)
| Fi(m, M)|” + ~(€) exp(k2P) 7 + () exp(k2P) 1T p
€ 253 1
< sup 197 < gyt

2>0 C% + ’7(6)24

o

where Cg = 2.

— The case of k é ko we have

~v(€) exp (#) 7(€) exp (%) ~(€) exp (@)
5 < 5 < e < Cry(e)
| Fio(m, M)|” +y(e) exp(k?®) — T 4 y(e) exp (k) o

—2 74 k28
whereby C7 = C{ “ ky exp (%)
Combining the above two cases yields that

pr(e),ﬁ _ pHL2(D) < Cs&ay(e).
For 0 < 7(¢e) < 1, where Cg = max {C6, C7}. Therefore, we have

1797 = ol 2y < 1627 = 27 V2] oy + 077 = | oy

€ 1
= 0573 + ngg’y(e)‘l .
v(€)*F27

16483

By choosing v(e) = €3(4+25) yields

167 = | oy < Cae77 + Coae.

The proof is completed.
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32 An a posteriori parameter choice rule

Theorem (3.1) offers an a priori approach for choosing regularization parameters, but it ne-
cessitates knowing the precise regularity of the exact solution p(z) before choosing. How-
ever, the regularity of p(x) is not well understood in many real-world circumstances. There-
fore, it is necessary to research posterior techniques for selecting regularization parameters.
Here, we choose the regularization parameters based on the Morozov discrepancy principle
[29,28], and we give estimates of the convergence of the regularization solutions. Accord-
ing to the Morozov principle, the regularization parameter () is selected as the solution
to the discrepancy equation.

1527 = gell 12y = ve. 3.11)

where v > 1 is a given constant. The solvability of the discrepancy equation (3.11) is
guaranteed by the following lemma for 0 < ve < [|ge||z2(p-

Lemma 3.1 Let g. € L*(D) and Z(y(¢)) = ||K s _
results hold:

2 .
QEHLQ(D). Then the following

- =Z(v(€)) is a continuous function;

- hm'y(e)%O 5(7(6)) = 07 hm'y(e)%oo 5(7(6)) = HQEH%Z(’D)
- Z(v(e€)) is a strictly increasing function for () € (0, 00).

Proof. We have

SN 7(€) exp(k??) ? S
m(e))—;\‘fk(m,M)Fﬂ(e)eXpW)\ (ger )| g\ g )| < oo,
(3.12)

which implies that = (y(e€)) is continuous on [0, +00).

Theorem 3.2 Suppose that the observed data g.(x) satisfies (1.3), and 0 < ve < ||gc|| for
v > 1. Let pﬂ{(e) P be the exponential regularization solution in which the regularization
parameter y(¢€) is selected by the Morozov’s discrepancy principle (3.11).

1 For 3 <0, there exists £, > 0 such that ||p||2r(py < &1, then we get
— Incase T > 1, we have

1
C3&1 \ 3 2 b 2
sz(e)’ﬂ - PHLQ(D <C1 (7_3_11> * 4 (C(a, L))TQHSf+1 (1+ U)T+1> 7.
(3.13)
- Incase T € (0,1), we have
1
Cs&r \ 71 2r L o\
sz( pHL2(D <Cl (7—4_11> _l’_(C(a)L))TQlegl‘r—O—l(l+U)T+l)6r+1_
3.14)

2 For 8 > 0, there exists £ > 0 such that ||p|| g ezp < E2, then we get

105 < (Cla, L)) 7% (262)7 (1 +v) 7z eria, 1
P77 = pll 2y < (Clov, L)) 72 (262) 737 (1 +0) (3.15)
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Proof. — For 8 < 0. The discrepancy principle (3.11) for choosing the regularization
parameter [ yields that

ve = H’sz(e)ﬂ - 9€HL2(D)

> ( ’fk(m, M)|2
| Fi(m, M) + () exp(k??)

1) 000

L2(D)
S () exp(k*?)
€ . 316
SH‘Ewa,mf+v<e>exp<kw><g 5’“>‘L2<D> 10
It follows that
o0 kQB) 2
(1)’ < pexp 0.6
} !fk<a,L>>2+v<e>exp<k2ﬁ>’< +l L)
& () exp(R2P) k2 Fy(m, M)\, )
_kg(m D+ 71 >exp<k2ﬂ>> KIS &)l
4—-21
< (G T Swal. e

It is easy to see that

v(€) exp(1)k*=27
sup ) 1
ken  Ci +(e)k

< Csv(e), forT > 1,

and

y(€) exp(1)k*—27 r
su <cC 2, for0 <7< 1. 3.18
keg ARt = 17(€) T (3.18)

Combining (3.16) to (3.18), it yields

1
— If 7 > 1, by choosing [y(e)] "2 < (%) *¢72, then we have

E E CsE1\} 1
Hpg( B 5 )”BHB( <C1( 3 11)26 .

»

1

- If 7 € (0,1), by choosing [fy(e)]*% < <C451> ¢ T , then we get

Cali \ 71
|07 — OB ) < Cl( 41 ) e,

T—1

On the other hand, we have

2
(CERPIN s Fi(m, M) o )
’ e ;<‘fk(m7M)\2+7(6)eXp(k25) Fr(m, M) o8] H" (D)
2
R Fio(m, M) I N 2
_;(\fk(m,Mﬂzﬂ(e)exp(kw) fk(m,M)> E71(9 )|

> €) exp (k2P 2 o
Z( e) seplt ) ) KT e < DRI e < €.
k=1

i1 \|Fu(m, M)|” +~(e) exp(k>?)
(3.19)
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Next, one has

v(€).8 _ ) — N Fir(m, M) — 1 T
IC(p ,0) ;}-k <}]~'k (m M‘ + v(€) exp(k2P) fk(maM)><g’£k>£k( )
N —7(e) exp(k*?) .
2 Bt A+ (o) expiin) )
v —(e) exp(k*) _ N
; }]:k;( 7]\4)‘2 ’7(6) eXp(kaB) <g€ ga£k>£k( )

—7(€) exp(k*”)
k=1 |]:k<0¢aL)|2 + () exp(k?P)
<e+ve=¢€(l+v).

<967 §k>§k

The conditional stability estimate in Theorem 2.1, we obtain

T 1 T
HPW(E)’B - pHLQ(D) < (C(m, M))%“gfﬂ (1+wv)Flem. (3.20)

By combining (3.19) with (3.20), the assertion of the theorem is proved for the case of
B <0.

— For 8 > 0. Since pz(e)”g

is the exponential regularization solution, it gives

€ 2 € 2 2
o2 = el |2y + VPPN o < KR = 96l 2y + VO N0IE )0

= Hg - gEHiQ('D) +(e)llp %,ezp'

The discrepancy principle (3.11) for choosing the regularization parameter 3 directly
yields that

02PNy < I3y + B (1= 0?) € < |Jo]l5,,, < €3

Thereby, one has

H’O’EY(E)”B - pH[)’,ea:p < Hpg(e) g B.exp + Hp‘ B.exp =< 282'
On the other hand, we have
1027 = gll 12 py < K0T = gel| oy + 1196 = 9l oy < ve+e= (1 +0)e.

From the latter conditional stability in Theorem 1, we obtain

16797 = b oy < (Cm, M) 757 075 — Pl K (020 — p) |

< (C(m, M)) 752 (26,) 72 (1 + v) 7272,

The proof is completed.
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