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Abstract. In this paper, we obtain results of the Spanne-Guliyev, Adams-Guliyev, Adams-Gunavan and
Gunawan-Guliyev type on the boundedness of the G-fractional maximal operator M on generalized
Gegenbauer-Morrey (G-generalized Morrey) spaces. In addition, we characterize the boundedness of
the kth order Gegenbauer fractional maximal commutator M, ga,k on a generalized G-Morrey spaces
Mp w(Ry).
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1 Introduction

The classical Morrey spaces were originally introduced by Morrey [34] to study the local
behaviour of solutions to second-order elliptic partial differential equations. Later, various
problems of harmonic analysis (HA) were studied in these spaces. As is known, such opera-
tors as: maximal functions, potentials and singular integrals are important object of HA, play
a huge rol and have numerous applications in various HA problems: approximation theory,
theory differential equation in various problems, physics and mechanics. On of the main
problems of HA is the question of the boundedness of the above operators and their com-
mutators in various functional spaces. Morrey spaces, generalized Morrey spaces, weighted
Morrey spaces. Therefore, if is no coinicidence that a large number of work are devoted
to this theory (see, for example [1-9, 11-14,16,17, 19-26, 33,35-40]). All this indicates the
relevance of studuing various kinds of properties in these spaces.

Let 1 < p < 00,0 < X < n. The classical Morrey space M, y (R") is defined as
follows

My (RY) := {f € L2 (R") : ||fllas,, < o0},

loc
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where

1
£ty = suw (s [ (7@
B ’B| n JB

supremum is taken over all balls B C R", and | B| is Lebesgue measure. It is knowh that if
1 <p<oo,thenby A =0, M,o(R") = L, (R") and A = n, M, , (R") = L (R").
If A < 0or A > n, then My, y (R") = ©, where O is the set of all functions equivalent to
zero on R™ .

Denote by W.M,, \ (R™) the weak Morrey space of all functions f € WL} (R™) with
the finite norm

1

| llwaty ey =supr sup (0 {y € Bla ) £ )] > 1})"
r>0 zeR™ >0

The fractional integral operator I, 0 < a < n is defined by

L f(x) = /R Swdy (L.1)

N
For locally integralrable functions b, the commutator is defined as follows

[b, Ia] f(z) == b(x)Ia f(x) — La(bf)(2). (1.2)

On M,, \ Morrey spaces classical theory of operators (1.1) is based on the Adams theorem
[1] and the Spanne’s theorem, published in the paper of Peetre [37], but classical M,, )
theory of operators (1.2) is based on the theorem of Komori-Mizuhara [33] and the theorem
of Shirai [39] which are given below.

Classical result Hardy-Littlewood -Sobolev’s is as follows:

Theorem A.Letl <p<g<oo, 0<a<nandl <p<n/a.

(i) If 1 < p < n/a, then the condition

p g n

is necessary and sufficient for the boundedness I, from L,(R") to Ly(R") .
(1) If p =1 < g < oo, then the condition
ol
g n

is necessary and sufficient for the boundedness I, from L (R™) to WL, (R™).
In [1] for the I, in the Morrey space, Adams proved the following theorem.
Theorem B. (Adams [1]) Let0 < a<n,0<A<nandl1 <p< (n— A/«
(i) If1 < p < (n—\)/a, then the condition

1 1 «

p g n—A\

is necessary and sufficient for the boundedness 1, from M,, (R") to M, (R").
(i1) If p = 1, then the condition

1 a

q n—A

is necessary and sufficient for the boundedness I, from M y(R™) to WM, y(R™).
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Theorema C. (Spanne [37]) Let0 < a < n,1 < p <n/a,0 < A < n— apand
L1 _a Thep:
P q n’ ’

(i) If p > 1, then I, is bounded from M,, \(R") to M, ,(R™) if and only if \/p = 11/q.

(ii) If p = 1, then I, is bounded from M,, (R") to WM, ,(R") if and only if A\/p =
1/q.

Theorem D. (Komori-Mizuhara [33]) Let 0 < a<n,1 <p <n/a,0 <A <n—ap
1 1 «

and 5T T e

Then the following statements are equivalents:

(@) be BMO (R").

(b) [b, 1] is bounded from M, y(R"™) to Ly ,(R™).

Theorem E. (Shirai [39]) Let 0 < o < n,1 < p < n/a,0 < A < n— ap and
Ap=p/q.

Then the following conditions are equivalent:

(@) be BMO (R").

(b) [b, I,] is bounded from M, y(R") to M ,(R™).

Let f € L'°°(R™). The fractional maximal operator M, is defined for locally integrable
functions in the form

Maf(ﬂj) = Sup !

r>0 TS

[ 1wl o<a<n,
B(z,r)

and its fractional maximal commutator generated by a locally integrable function b has the
form
1

Vo)) = sup s [ 10@) b))y

r>0

From the pointwise estimates M, f(z) < I,(|f|)(x) and My o(f)(z) < [b, I](|f])(z)
follows that Theorems A-E remains strength for the fractional maximal operator and its
commutator.

Later these results were obtained for Gegenbauer-Morrey spaces and were reflected in
[16,17,29,30].

In [27] we have introdused Riesz potential I¢; generated by differential operator G in
the following form

I&f(chz) = 1) /O h ( /0 h rg_lhr(cht)dr> AN f(chx)sh® tdt,

I (3
where

hq(cht) = / e A2 P (eht) (1% — 1)) 2 dy
1

P (cht) is the eigenfunction of G’ operator and

() 1 T
Ay f(cha) = ( +(21)) / f(chazcht — shxsht cos @) (sin )2 Lde,
3) Jo

(T

is a generalized shift operator associated with Gegenbauer differential operator G [10]

(2 Ao d 1
G_G)\—(a: 1) dx(l‘ 1) T x € (1,00), )\6(0,2 .
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Denote by, L, ,(R), 1 < p < oo the space of 11 - measurable functions () (z) = sh*z)
with finite norm

o0 p
\|f||L,,,A<R+)=< / !f(chﬂf)!psh”xdas> 1<p<o,

||f”Loo,A(R+) = ||f||Loo(R+) = esssup | f(chx)|,
$€R+

and denote by W L,, \(R.) the weak L,, y(R.) space of y-measurable functions f(chx),x €
R with the finite norm

1
Ifllwe, \®e) = supr [{z € Ry« |f(cha)| > r}[}

p
=supr / sh®?zdx , 1<p<oo,
r>0 {z€Ry:|f(chz)|>r}

In [15] for potential ¢ the following theorem which is an analogue of Theorem A was
proved.
Theorem F. Let 0 < A\ < %,0 <a<2A+landl1 <p< 2’%1

@Ifl<p< %, then the condition

1 1 «

p ¢ 22 +1

is necessary and sufficient for the boundedness for I& from L, y(Ry) to Ly z(R4).
(b) If p = 1, then the condition

1 o

¢ 2\ +1

is necessary and sufficient for the boundedness of /¢ from L »(R4) to WLy A (R4).

In [16] was introduced the concept of Gegenbauer-Morrey space ( (G-Morrey space )
associated with differential operator G on the set of locally integrable functions with the
finite norm

3=

z€RL,r>0

i
l @ = s |7 /Aéht|f<chx>|psh”tdt 0<v<aa+,
0

and also weak WL, » , (R ) space with the finite norm

B =

{re .0 Y, e >} )

fllwr R.) = Supr sup (f”
H H porw (B) r>0 zeR4,t>0

1
r>0 zeR4,t>0
{ye(0,0):A2,, |f (chz)|>r}

For potential /& on G- Morrey space we have the following theorem ([16, §2 Theorem
2.1]), which is an analogue of Theorem B.
Theorem G. Let0 < a <22+ 1, 0<v <2A+1—apand1 <p< %
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22+1—v
a

OHIfl<p< , then the condition

1 17 o

p_a_Q)\-i-l—l/

is necessary and sufficient for the boundedness I& from L, » ,(Ry) to Ly x, (Ry).
(i) If p = 1 < 22E1=2 then the condition

1 «
P
qg 22 +1—-v

is necessary and sufficient for the boundedness I& from Lj » ,(Ri) to WL, » ,(R4).

In [28] Muckenhoupt type weighted class AI))‘(R+) associated and with differential op-
erator G was introduced and in this class for operators M& and I , on conditions 0 <

a<22+1,1<p< % and % — % = ﬁ, the strong and weak types weighted
(Lp’,\w, Lq)\’w) inequalities ([ 28, § 4.1, Theorems 4.1 and 4.2 and also § 4.2, Theorems 4.4
and 4.5]) were proved.

In this paper on pair (w1, w2 ) the necessary and sufficient conditions for the boundedness

of fractional maximal operator Mg, 0 < o < v, from one generalized G- Morrey space

M (Ry) to another My, (Ry), 1 < p < g < oo, § — 1 = < and from the

space M ., (Ry)th the weak space WM, ., (Ry),1 < g < 00,1 — % = o were

obtained. Also find necessary and sufficient conditions on the w, which ensure the Adams

type boundedness of the M from M (R+) to M 1(Ry)forl < p<g< o
D,Y,w w

and from M, ,(Ry)to WM 1(Ry) for l=p< q < 0.

qwa
In the case b € BM O¢ on pair (w1, w2), the necessary and sufficient conditions for the

boundedness of the commutator Mg’o‘ from My 5 o, (R4) to Mg 4w, (Ry) by 1 — % = %

and also the necessary and sufficient conditions for the boundedness of commutator M, g’o‘
from /\/l (R+) toM 1(Ry)forl <p<g< .
YW q,y,w9q

Later we w111 consider w(z, 1), wy(x,r) and we(x, ) as nonnegative Lebesgue measur-
able functions on R} = (0, 00).

Note that all result obtained in the paper are the future development of Gegenbauer har-
monic analysis theory, foundations of which were laid in [32]. This theory was later devel-
oped in different directions: approximation and embedding theory, transformation theory,
theory of singulars integrals, maximal functions theory, theory of potentials and its commu-
tator.

2 Definitions, notations and auxiliary results

Throughout the paper, we will denote by shx, cha the hyperbolic functions.

In what follows, the expression A < B mean that there exists a constant C' such that
0 < A < CB, where C may depend on some inessential parameters. If A < Band B < A
then we write A =~ B and saoy that A and B are equivalent.

Let f € Lloc S(R4). Denote by H, = (0,7) and r € (0,00).

Later we Wlll need the following relation (see [15,§1, formula (1.2)])

|H, |, :/ sh? tdt ~ (shg)7 2.1)
0
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where 0 < )\ < % and

B (241, if0<r<2,
TENC =90 T i 2<r < 0o

and |H, |, is an absolutely continuous measure of the interval H,..

According to formula (2.1) Gegenbauer maximal operator (G-maximal operator) M,
fractional maximal operator M7 and Gegenbauer fractional integral J¢& for any x € R are
defined as follows:

1
Mg f(chx) = sup

T A P
r>0 |Hr |>\ Y

1
Mg f(chz) = supl_a/Aé‘ht |f(cha)| sh® tdt, 0<a <.
r>0 ‘Hr|>\ ¥ e

It’s obvious that M f (chx) = Mg f(chz).
[e.o] a_q
Tf(eho) = [ IR A f(cha)shPedt, 0.<a<,
0

where o
’Htu%)—lz |H,5§AZ1 . 0<t<2, 0<a<2\+1,
|He| P, 2<t<o0, 0<a<4\
In this section we present some generalization of Gegenbauer-Morrey space (G- Morrey
space).

In [29] by analogy to Nakai [36] introduced the concept of generalized G-Morrey space
on the set locally integrable functions f(chz), x € Ry which the finite norm

S =

1 A 2
||f”MT_,,)\,w(R+) = sup Lc)(?")/ACht ‘f(chl')‘p sh* tdt
Hy

$€R+ ,7’>0

and weak G-Morrey space WM, 5 .,(R ) with the finite norm

3 =

1
- A N E NG
19 0wat oty =107 sup (s |y € Hos 4B, |f(cht)] >},

where w(r) nonneagtive Lebesgue measurable functionon R4, 1 < p < oo.

Note that, when w(r) = 1 the space M), » .,(R ) goes above considered space L, x(R),
and Theorem F is a conseqense of the Theorem H given below.

Let 0 < § < 1. Suppose that w(r) satisfies the conditions

r<t<2r= w(t) ~wr), (a)

oo
w(t) pm A (), v =20+ 1, 0 <7 < 2
< ) ) )
/th—l dt S { r_4>‘§w(r), v=4x 2<r<oo. (b)
T
Theorem H. [29] Let 0 < A < 3, 0 <a <2\ +1,1<p < 587 and  —
Suppose that w satisfies the conditions (a) and (b). Then:

_ 0]

1_ _a
7 I
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(i) if p> land f € My ».,(R4), then the inequality

MGl g S Il

a
g, \,wP

is true.
(i) if p=1and f € M ). (R4 ) then the inequality

& lwar, oo S 1F a2

is true.
Theorem L. [29] Let the conditions (a) and (b) be satisfied. Then:
(i) for fe Mpro(Ry)and1 < g <p < oo

1MEA Ly - S 1t
(i) for f € M\ (Ry),1 <p<ooandanyt >0
1MEflwa, S 1N, -

In accordance with the formula (2.1), we give the following generalization of G-Morrey
space.

Definition 2.1 Ler 1 < p < oo. Generalized G-Morrey space M, ,(R) associated
with Gegenbauer differential operator G is defined as a set of locally integrable functions
f(chx),x € Ry with the finite norm

.
- ot (05)
= sup w(z,r sh A
[ F My s o () WG& (z,7) 2 o Lp,\(HT)
1 r
= max{ sup w(z,r <sh7) )
zeR L ( ) 2 Chz Lp,x(Hr)
o<r<?2
-2 2
-1 P
sup wl(x,r (Sh*) ‘A f }7
zeR L ( ) 2 chz Lp A (Hr)
2<r<oo
where
, 1
A - ( / AN | f(cha psh”tdt>‘°
H chx Ly(Hy) 0 cht‘f( )|

Also the weak generalized G-Morrey space WM, - ,(R) of locally integrable functions
f(chx),x € Ry with the finite norm

- gt (o5)
”fHWMp)\w(R-Q-) :ET‘GE Ch:D WLp /\(H'f)
A
:max{supwxr ( ) f‘ )
z€ER L it WLy (Hr)
0<r<?2
r _4Xx
—1 p A
sup w(x,r <sh7> HA f‘ }’
TeER4 ( ) 2 che W Lp\(Hr)

2<r<oco
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where

1
A D
= sup sup t‘{yGH:A f(chx >t} .
‘WLP,)\(HT) t>0z,reRy " chy ’ ( )’ A

HAé\hxf

We will prove some auxiliary statements, which we will need later.
Lemma 2.2. Let w(x, r) be a positive measurable function on R .

I
r 2
sup <3h7> P w(z, )™t = oo (2.2)
t<r<oo 2
is true for some t > 0 and any v € R, then M, ~ ,(Ry) = 6.
(i) If
sup w(z, 7)™t =00 (2.3)
0<r<t

is true for some t > 0 and any x € Ry, then M, ~ ,(Ry) = O, where O is a all functions
that are equivalent to zero on R .

Proof. Suppose (2.2) is true and f is not equivalent to zero. Then sup || f]| Loa(H) > 0,

z€R4
hence .,
16y = sup sup wla,r) ™t (shS) 7 || A4S >
o z,reRt<r<oo 2 Lp,x(Hr)
> sup ||AN.f sup w(z,r)"! <3h5>_%.
zeRL Lp,/\(Ht) t<r<oo 2
Hence || lu,.,., = oc.

(ii) Let f € M, ~ (R4 ) and (2.2) be satisfied, then there are two possibilities:
Case 1: sup w(z,7)~! = ocoforall t > 0.
o<r<t
Case 2: sup w(z,r)~! < oo for some t € (0, 5).
o<r<t
For Case 1, by Lebesgue differentiation theorem (see [27], Corollary 2.1 from Theorem
2.2), for almost x € R

Al X
lim 140k P, \f(cha)|, 2.4)
r—0+ HXHT

Lpa

where x, is a characteristic function of a set H,.. We require that f (chx) = 0 for all those
x. Indeed, fix x and assume |f(chx)| > 0. Then from (2.1) and (2.4) there exists ¢y > 0
such that

Ay f
Mol o ey,

(sh3)?
for all 0 < r < 1. Consequently,

Ai\hx f

_ AN
16y = sUD w(ar) ™t (sh3)
0<r<tp

Lp,)\(Hr)

Z sup w(w,r)!|f(cha)|.
0<r<tp

Hence || f||m,.,., = 00,50 f & M~ (R4 ) and we have arrived at a contradiction.
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Note that Case 2 implies that sup w(z, )~}

t<r<s

= 00, consequently

~

sup w(z,7)7 (Sh;)_; > sup w(w, )" (shg>_;

t<r<oo t<r<s

.

gy~

> (shf) " sup w(z,r)"! = oo,
2 t<r<s

which is the case in (i).

Denote by L« ,,(0, 00) the space of all functions g(cht),t > 0 with the finite norm

191l 100 0(0,00) = €85sup v(cht)g(cht)
t>0

and
Loo(0,00) = Lo 1(0, 00).

Remark 2.3. Denote by (2 a set off all positive measurable functions w on R, such
that for all 1 > 0

sup

< oo and sup Hw x,r)
zeRy

zeR L

HLOO(Ot) < 00,

Lo (t,00)

respectively. Lemma 2.1 shows, that it makes sense to consider only functions w, from (2},
which we will assume in what follows.

A function w : Ry — R, is said to be almost increasing (resp. almost decreasing) if
w(r) < w(s) (resp w(r) 2 w(s)) forr < s.Let 1 < p < oo. Denote by @) a set of all
almost decreasing functions w : Ry — R, such thatt € Ry — (sh%)% w(t) € Ry is
almost increasing.

Lemma 24. Let w € &),1 < p < oo, Hy = (0,79) and X, i the characteristic

function of the characterictic function of the interval Hy, then x ,, € Mp,, w(R4).
Moreover,

<
Mpy,w(R1) W(TO)

1
<
w(re) — HXHO - HXHO

W Mp (R

Proof. Letw € @),1 < p < oo, Hy = (0,79) be any interval on R.. It is easy to see that

J -2 (M)
o WMp,~,w(Rq) zeRy W(T) |HT|)\

1 <]H00H0|/\>zlz 1

~ w(ro |Hol w(ro)

)
Now, if < r¢ then w(rg) < w(r) and
1
p

w(r) \ [Hrly Twro) \ Hrly ™ w(ro)

On the other hand, if r¢o < 7 then by (2.1)

w(ro) (shQ)z w(r )(sh )

LA

J
P
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then )
([Holy)?
w(r) (sh%)

hSAl

1
1 (’Hrﬂﬂob\)l’ < (|HO0H0‘)\
w(r) |HT‘|>\ w(r) (sh%)

(shig)¥ L1

w(r) (shg)? ™ wlro)

s R|~—

x
P

<

This completes the proof.

Lemma 2.5. [32]If f € Lloc S(Ry). 1 < p < oo. Then for any 0 < t < oo the following
inequality

AN <
H Chét LP,A(RJ,-) —_ Hf‘|Lp7/\(R+)
holds.
Denote
Mg, f(chx) = sup / AN | f(cha)| sh® tdt.
re(0,2) \H| T

Lemma 2.6. (1) Let 1 < p < 00,0 < a < 2)‘%1,% - % = 2)\+1 Then for p > 1 and
any interval H, = (0,7),0 < r < 2 the following inequality
M S|,y 5
H chx Glf q)\ (H,) ~ chmf Lq,A(Hr)
22+1
r\ === s\ a—2A-1
+ (shf) ‘" su <sh7> HA)‘ 2.5)
2 7‘<582 2 chxf Lq,)\(HS)
holds for all f € LIS(Ry).
Moreover, for p = 1 the following inequality
MBSy 542
H Ml gy = 14T,y
AN BT 4 2.6)
+(shg) s ()| 7 -
2 r<sI<)2 chw Ly \(Hs)

holds for all f € Li’ (Ry).

Proof. Let 1 < p < g < oo. For the interval H, = (0,2), where € (0,2) let f = f1 + f,
where f1 = fxu, and f2 = fX(H,)c = X, then

168, £\l 1, o,y S 11ME A 1,y + M8, P2l @7

From continuity of the operator Mg : L, y\(Ry) — Ly (Ry) , (see [18, Corollary 5.6])
follows that

188, il oy S WAz, sy S I Ny - 2.8)

If H; N (H, )¢ # &, then s > r and, we have
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L
Mg, ilcha) =sup [HLE [ A ileha)| st
i HO(Hy)e

S

sup |Hj |2A+1 1/Ag‘ht|f1(chalt)]sh”tdt

r<s<2

IN

< sup |Hj |2A+1 /Acht|f (chx)| sh* tdt
r<s<2

= sup |Hj |2A+1 /Acht|f (chx)| sh* tdt. (2.9)
r<s<2

From (2.9) and Lemma 2.5, we get

1ME,fillr, iy S 1Hr K sup. 2Ty ) (2.10)

Taking into account (2.8) and (2.10) in (2.7), we obtain
HMGlfHL AH) S S llz, s + [ Hr |A S |H |2A+1 HfHLp,,\(H )

Using equality (see[16], proof of Theorem 1.4) MgA e f (chx) = AN oMea f(chx), and
(2.1), we have (2.5).
Indeed

hfr 2/\;_1 hs a—22—1 A
(shy) T s (sh3)" |
Loy \2) TR T chr

Let p = 1. Obviously that for interval H,

| A2erae, ||,

~ H ch:pf

q)\ H’I‘ Lp,)x(Hs)

HMgpleWLq’)\(H ) N HMgpleWLq,)\(HT) + HM&JC?HWLM(HT)‘

T

From continuity of the operator M& : Li x(Ry) — WLy (Ry) (see[18, Corollary
5.6]) we get

1M8, Filly i, sy S I N acinn)- @.11)

Similar to the previous from (2.10) and (2.11), we obtain (2.6). The proof of the Lemma is
complete.

Denote
Mg, f(chz) = sup —— = Acht |f(cha)| sh® tdL.
r€[2,00) ’H | ix
Lemma 2.6. (2). Let 1 < p < 00,0 < o < 44 ,_% = 1x- Then for p > 1 and any

interval H, = (0,7),7 € [2,00) the following mequalzty

| A2nerie, 1 S [[4der

Lq,A(Hr) Lp,)\(Hr)
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hrr % hs a—4)\ A
+(S 5) sup (S 5) H chf

s>r>2 Lp,)x(HS)
holds for all f € Lloc S(R4).
Moreover, for p = 1 the following inequality
A M, | S |43
H Mo Tllyp iy S 14|,y
r 44 S\ a—4A
+ (5h7> ! su <5h7) HA)‘ ,
2 s>7‘§2 2 chxf LI,A(HS)

holds for all f € L (Ry).

2.12)

2.13)

Proof. Let 1 < p < ¢ < oo. For the interval H, = (0,7),r € [2,00) let f = f1 + fo,

where fl fXH and fQ fX Hyp)C fX(r,oo)v then
HMngHLq,A(HT) S HMgwleLq,)\(Hr) + HMngZHLq,A(HT)’
From continuity of the operator M& : L, \(R4) — Lg A (R4 ), follows that
HMszHL (H.) ~ HfHLM(HT)
If H, N (H,)¢ # @, then s > r and, we get

Mg, ateha) =sup HIE ™ [ A faCcho)] st
s>0
~ HsN(H)¢

<  sup |HS\§%_1 /Aé\ht | f2(chax)| sh® tdt

2<r<s<oo

s

< sw [T [ o) sk =

2<r<s<oo
0

a ]
= sup |Hs|P / AN | f(chx)| shP tdt.
2<r<s<oo %

By Holder’s inequality from (2.16) and (2.1), we have

1 o _q
~ ‘HT’)\ Sup ‘HS|§>\ HfHLp,)\(HS)‘

2<r<s<oo

1M, foll,,

Taking into account (2.15) and (2.17) in (2.14), we obtain

’r

1 o _q
18,11, oy S W zpacary + VL sup ST 7, )

2<r<s<o0

Arguing as above, we get (2.12).
Now let p = 1. Clear that

HMg'szWLq,A(H,«) N HMg'z-ﬁHWLq,A(HT) - HMng?HWLq,A(HT) '

(2.14)

(2.15)

(2.16)

(2.17)
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From continuity of the operator Mg : L; (Ry) — WLy A(R4), we have

M8, Fillwr, sy S W o) (2.18)
From (2.17) and (2.18), we obtain (2.13).

Lemma2.7.Letl <p <oo,and0 < a < %.

11

@Let - — - =2 y=2\+1,if re(0,2),
p a7
11

(b)Let - — = = & 4 =4\, if € [2,00).
P a7

Then for any interval H, = (0,7) C Ry the following inequalities is valid:

|45, <l (5) s (o0) " [t

forany p > 1and all f € LI°{ (R, ) and

’ WLy A (Hy)

forp = 1andall f € L (Ry).

q)\(HT Lp,)\(Hs)

X
q

r s\
Cha chat + (Sh*) su (sh7> HA? .
" Gl NG 2) S\ haf

5

Ll,/\(Hs)

Proof. By the definition and (2.1) , we have

Mg (eh) = supl#,[] [ 43| (cho)] st
s>r 7.
= Mg, f(chx) + Mg, f(chx).
Taking into account (2.5),(2.6) also (2.12) and (2.13) we will receive our approval.
Let

(sh5)" sup (sn3) 43t
2) Sp\’ N Ly (11,)
7’ 2>\+1 ( s 2241
= max = su sh7> AN, )
{( 2) r<sI<)2 2 g f Lp,)x(HS)
(Shr)élqA sup (sh ) 0 Achwf }
2 s>r>2 2 LPq)\(HS)

Lemma 2.8. Suppose 1 < p < 00, and let the conditions (2.19) holds.
Then for any interval H, = (0,7) C R the following inequalities is valid:

x s _
HACM Gf) Ly (Hy) (Sh )q i‘i‘f (Shi) Ak S Ly (Hs)
foranyp > landall f € Lé‘ji(]RJr), and
] S\ 77 || 4
’ cha W Lo (Hy) ™ <Sh > e (8h5> Achaf Ly A (H)

foranyp=1landall f € LloC S(R4).
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Proof. Denote,

sup |HS\/\ /Acht | f(chz)| sh® tdt | ,
s>r

> =

A:=|H,|

chx

B—HA

Lp(Hr)
Using the Holder’s inequality and (2.1), we get

1

p
1 1 a_q
A SJ |Hr‘§\ sup ’Hs‘)q\ |I_Is|;\Y / cht ’f(Cth)’p hzktdt
s>r
Hs

x
q

r s\~ 2
~~ shf) su (shf) ¢
Lya(Hy) (43 oy \71g

Aé\hx f

‘H ’)\ (Sup’H ‘)\ >HAchm

On the other hand

Lp,/\(HS)

1 1
|H, |} | sup |Hyl, “ /Aﬁht | f(cha)|P sh® tdt
s>r

~ B.

> |H ‘/\ <SupH ‘)\ ) HAchm I )\(H)
D, T

By Lemma 2.7

HAchac SJ A+ B.
L ,A(Hr')

From this it follows the approval of lemma.

3 Boundedness of fractional maximal operator Mg on the space M,, ., ., (R})

In the following theorem (see [ 24, Theorem 3.2]) the Spanne-Guliyev result was obtained.

Theorem 3.1. Suppose 1 < p < 0o, w1 € (2), wo € §2). Moreover, let the conditions
(2.19) holds, also the pair (w1, ws) satisfy the condition

sup (sh%)awl(x, s) S wo(x,T). (3.1)

s>r

Then ME is bounded from My, ., (R1) to Mg~ 0, (Ry) for p > 1 and M is bounded
Jrom Mi 0, (Ry) 10 WMy 0, (Ry ) forp = 1.

Proof. Denote

Then by Lemma 2.8, we have

r _x
IMEFad, iy = Supwala )™ (shi) 7 || A ME

z€eR
rek,

L‘Zv’Y(H”‘)
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.
s\ —2
< sup wo(z,r) " Lsup <5h7> “|lar y
zeRy ( ’ ) s>r 2 chax Ly A(Hs)
rek,
12 wi(z,s) AN SllL
< sup wo(z, ) Lsup (shf> "z, 8) ¢ 21 pA(Hs)
zER4 s>r 2 (Sh%) p
rek,

_ S\ ¢
S Mgy ) S0P ()~ sup (52 )" wi(a, )
z,rER s>r

Sl Mps o, ey i P € (1,00).

If p =1, then
1 S\ || 4
Mg S ) (h*) A
I GfIIWMsz(R+)Nmselglwz(a: r) (21;5) shg chat Lo (H)
reky

_ s\«
Sy ) 59D ()~ sup (552 ) i) S I Lty -
z,r€ERL s>r
In the case, then @ = 0 and p = ¢ from Theorem 3.1, we get the following corollary.
Corollary 3.2. Let 1 < p < o0 and (w1, w2) satisfy the condition

sup wi(z, s) S walx,r). (3.2)
s>r
Then Mg is bounded from M, ., (Ry) to Mg, (Ry) for p > 1 and Mg is bounded

Jrom My 0, (Ry) 10 WMy 0, (Ry ) forp = 1.
Later we will need the following lemma.

Lemma 3.3. The following inequality t < sht < e?t, A > 0 is true for any t € [0,4] C
Ry.

Proof. Consider the function f(t) = sht — t. From the inequality f'(t) = cht —1 > 0 it
follows that f(¢) is increasing on R .. Therefore, the functions f(¢) takes smallest value
when t = 0, and f(¢) = 0, hence, f(t) > 0 < sht > t. We will prove the right side of the
inequality
ol — ot
sht < et = — < et = % < 2e4tel + 1.

We will find the minimum of the function ¢(t) = 2e4tet +1 — %,
' (t) = 2 (et +te!) — 2e% = 2ef (e + et —e!) > 0= et +1) > €,

hence (t) takes the smallest value at the point ¢t = 0 and ¢(0) = 0. Then ¢(t) > 0 <
2edtel +1 > €% <« sht < e/, forany A > 0.

Lemma 3.4. Let Hy = (0, 7) then the estimate
(6%
(sh2)" S M, (cha)

is true for any x € R..
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Proof. We will choose ¢ so large, that the inequality » < cgrg would hold. Then by Lemma
3.3, when 0 < t < ¢, the inequality ¢ < sht < et is true and by according to (2.1), we
get

T 1_% coTo 1_%
1—o
\H,|, " = / sh®\tdt < / sh* tdt
0 0
~ (Sh76027”0>7_0‘ < (ecO —COQT())W_Q < (cpe®)" ™ (sh%)w_a.

On the other hand,

/ Adpexn, (cha)sh®tdt > / AN, (cha)shP tdt
H, H,NHy

> / shP\tdt ~ (5h%0>7 .

Hy
Thus,

M&x 1, (cha) = sup |H,|5 " / Axag(cha)shtdt 2 (sh'))"
r>0

The following theorem is an analogue of Theorem 4.3 from [25] and this is one of the
main results of this paper, (Gunawan-Guliyev type result) (see [13, Theorem 2.3]).

Theorem 3.5. Let 0 < o < v,p, q € [1,00), w1 € 2, wy € 2.

(1) If the conditions (2.19) holds and 1 < p < g, then the condition (3.1) is sufficient for
the boundedness ME from M, o, (Ry) to WMy w, (Ry) for p = 1. Moreover, if 1 <
p < 2, then the condition (3.1) is sufficient for the boundedness M from My, ., (R ) to
M‘L%wz (R—i—)'

(i1) If the function wy € @217 then the condition

<shg>aw1(r) Swa(r), r>0 3.3)

is necessary for the boundedness M from M, ~ o, (Ry) to WM w, (R4) forp =1, and
Moy Ry) t0 Mgy o (Ry) for p > 1.

(iii) Let the condition (2.19) holds and 1 < p < L. Ifwy € §2;, then condition (3.3) is
necessary and sufficient for the boundedness of M from Mp v (Ry) 10 WMy o (Ry)
for p = 1. Moreover, if 1 < p < L, then the condition (3.3) is necessary and sufficient for
the boundedness M from M, ~ ., (R4) to My~ 0, (R4).

Proof. The first part of the theorem follows from Theorem 3.1 when s = r, wy(z,7) =
w1 (r) and wo(z, r) = wa(r).

We will prove the second part of the theorem.

Let Hy = (0,70) and = € Ho. By lemma 3.4, we have (sh%)® < M&xn,(chz).
Therefore, by Lemma 2.4 and 3.4, we obtain

o\ ¢ -1
(sh)" S 1Hol\ ™ IMEXe 11, ) S w2lr0) IME X0l pg, oy

S wa(ro) Xm0 ey S
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or

(sh2)" 5 220 s (5h72) " nr0) 5 o)

when rg > 0.
Since, this is true for any the ry > 0, then the second part is proved.
The third part follows from the first and second parts of the theorem.

Remark 3.6. If we take wi(r) = (sh%)% and wy(r) = (shg)% at Theorem 3.5

then the condition (3.3) are equinvalentto 0 < v < v — ap and % = % respectively.

Therefore, we get the following analogue of Theorem C .
Corollary 3.7. Let 0 < a < v,1 <p < g, 0 < v < v — ap and decides:

1 1
@Let -~ — -~ =2 y=2x+1,if re(0,2),
p q -V
1 1
(Let — — - = % 4 =4) ifr € [2,00). (3.4)
p q -V
Then for p = 1 Mg is bounded from Ly, » , (R+) to WLg 5 ,(R+) if and only if 2 = %
Moreover, for p > 1 Mg is bounded from Ly, » ,(Ry) to Lg » ,(R) if and only if

v _ K

p q’

4 Adams-Guliyev and Adams-Gunavan type result

The following statement is an analogue of Theorem 4.5 from [25] and plays an important
role in the proofs of our main results.
Theorem 4.1. Ler 1 < p < o0, 0 < a < v and f € LYS(Ry). Then the following

inequality

ME f(chz) < (sh ) Mc f(chz) + sup <5h ) “h ANLf 4.1)

s>r

Lp,A(Hs) .
is true forall x € R, .

Proof. Let 1 <p < ocand f € Lé‘ff\(]RJr). We split the function f as f = f1 + fo, where
fi(chz) = fx(n,)(chx) and fa(chz) = fx(m,)c(chz). Then

Mg f(chx) < ME fi(chx) + Mg fa(chx).

First let’s chow o
ME& fi(chz) < (Shi) Mg f(chx). (4.2)

Valid according to the formula (2.1), we can write

At | f(ch)| (shi)7™ sh?t

/cht\fl(Chx hz/\tdt<2/ ht)v—oc

2

dt

—kp

> o\ A f( chx)\sh”t
5 Z (Shw) / ¢ (ShQ) dt

k=0 9—k—1,
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r\Y—o 1—2
< (sh§> Jef(cha) ~ |H,|, * J&f(chz). 4.3)
From (4.3), we have
Mg f(chz) < Jgf(chx). (4.4)
We will consider J& f (chx).
h h2At
J& f(chz) / / cht|f chz |Cf dt = Jy + Ja. (4.5)

Let’s estimate J;. Applying Lemma 3.3, we obtain

ok
e’} Oé r

AN h h”t
Jy = Z / cht\f chx) dt < Z : / AN | f(chzx)| shP tdt

k:0

k:()

<2 (sh )ai 2%;7/ AN | f (cha)| shPtdt
0

A% —kox AN
5(sh2) Mgf(chm)kzzo2 §<sh2> Mg f(chz). (4.6)

We will estimate .Jo. By Holder’s inequality, we have

J2 — /Aé\ht ‘f(Cth)‘ ShQ}\tdt
(sh3)"

1
h ]’L2/\t ' h h2)\t P 11
< TAN (e o)l sht [ Ay £ (cha)] s dt| =J7Jn. @7
(sht) =P (shg)

Consider Jo;. Again use the Lemma 3.3, we get

ch:c sh2M
J21 — Z / ht ‘f o dt

r

° EryY—(r—)g 2k+1y
sh2 ) N
Z (sh2kr) ANy | f(cha)| sh* tdt
k=0 0
r\7—(v—a)p’ 00 y—(y—a)q r\Y—(r—a)p!
S (shg > (2 < (on"
) <Sh2> Maf(che) (2 ) ~ (Shz) Mg f(chx), (4.8)

k=0
We will similarly the following estimate for Ja9

~(r-a)
oz < (shg)7 " Mef(eha). 4.9)
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Then from (4.8) and (4.9), we have
Jok < <shf>aMGf(chx), k=1,2.
2
From this and (4.2) follows that
Jo < (shg)aMGf(chm), 0< shg <1 (4.10)

If sh% > 1, then by using (4.8) and (4.9) in (4.7), we obtain

T —ytat+T—y+a 20—
Ja S (shg) o Mg f(chz) = (shg) 7]\4@]‘“(ch$)
_ _(sh3)” rye
_ WMgf(chx) < (shi) Mef(ch). @.11)

Thus, from (4.10) and (4.11), we have
Jo < (shg)a Mg f(chz). 4.12)

Using (4.6) and (4.12), we obtain (4.2). If H, N (H,.)¢ # () then s > r and by (2.9) and
(2.16), we have
o1
Mg fo(cha) < sup |Hy | / AN, | f(chx)| sh®tdt
s>r i
(we used Holder’s inequality)

2_q
< sup | Hyly / AN | f(chx)|P sh® tdt / sh? Mtdt
s>r

1
q

. .
1 o
|Hsl$ | oa |Ho|3 || oa
AT — )
. 2 eha S| ) aem chaf| A(H)
|Hs|)\ P, ’Hs‘f\) D,
sya—2
~ su sh7> Pl A , 4.13
s>£)< 2 che S Ly (Hy) +-13)

At the end we used (2.1).
We get (4.1) by bringing together (4.2) and (4.13).

In the following theorem we obtain Adams-Guliyev type result (see [24, Theorem 3.3]).
Theorem 4.2. Let 1 <p < qg<00,0<a< %, w € $2) and satisfy the conditions:

1 1
sup w(z,s)r Sw(x,r)r (4.14)
s>r
and
5\« 1 (b
sup (Sh*) w(z,s)r S (shf) o (4.15)
s>r 2 2

where ,r € Ry.
The operator M§ is bounded from M 1 (Ry)to M 1(Ry) when p > 1 and
Pyw

b b q?’y?wq
from My, , ,(Ry) to WM %(RQ when p = 1.

IR}



102 Boundedness of Gegenbauer fractional maximal commutator . ..

Proof. Let 1 < p < g <o00,0< a< %andf e M (R). Let’s put f = f1 + fa,

where f1 = fx(m,), f2 = [X()e -
Then
ME f(chz) = Mg f1(chz) + ME fa(chz).
For M¢ f1 estimate (4.2) is valid. For M§ f» by Holder’s inequality and (2.1), we have

1
pv’Yvw P

a_q
M&fa(cha) < sup |Hy|y / A, | F(cha)| sh? et
s>r
H,

1+a—'y
Ssup (sh2)" || 4t
s>r 2

Then from (4.16), also from (4.2) and (4.15), we obtain

(4.16)

Lp,)\(HS)

« 1-‘(-04—’}/
Mg f(chz) < (sh%) Mg f(chz) + sup (sh%) ! HAg‘hmf

s>r Lp,)x(HS)
&8 -1 Ag\hxf
= (shz) ME f(chz) + sup (sh£>a P w(z, s » | “L”‘f(HS)
2 s>r 2 w(x’ 8)5

T\ s\« 1
< — Z
< (k)" Maf(cha) + £l (2SI (sh3)" wia,s)r

p,Y,wP
ap

< <3hg>aMgf(chx) + (sh%)_ﬁ Ifllm | ®y)-

p,y,wP

a—p

e @\

Shoosing shy = #{’csz) , we get

MES(eha)| S (Maf(cha)? If 1y’ e

p,y,w

=

forany x € Ry.
1
If we take w; = w9 = wr into account in condition (3.2) then conditions (4.14) and

(3.2) will be equivalent and the statement of this theorem will follow from the boundedness
(R ), which was proved in Corollary 3.2.

of maximal operator M on the space M|
Indeed, et
o -1 S\ 7 || 4n o
HMGf”Mq,%w%(R” = I7$8161HI§+W(3775) ‘ (3h§) AchaMc f Lo r(Hy)
SIS s i) (sn2) 7 [ A ar])
oo TSERL 2 Lp A (Hs)
_1 S\ "% z
SIfm ( sup w(x,s) » (sh§) P Ag\thGf‘ Lp,)\(Hs)>

pywP \T,SER4
1-2 P
S IMefli SIfla

p,y,wP p,y,wP p,y,wP
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if 1l <p<qg<ooand

ol

_1 S\ —
MEAS = sup w(x,s) ¢ (Sh*) 7 1A Mo‘f‘
| Mé ”WMMW% el (z,5) 2 che "G lwr, \(12)
S Il (s (02) 7 [ 4Bt
su w T, s a\Sh—
S, g o)™ () [adantor]s,

1

1-1 -1 SN TV 4 '

< ||f||M1W xilelg w(z,s) (Sh§) HAch:cMGfHWLl ()
7 SERY e

1

1—1 1
Il IMafli, < v

1,y,w’

if 1 < q < o0.

In case w(z,r) = (sh5)”"7, 0 < v < v from Theorem 4.2 for fractional maximal
operator Mg, we obtain the following Adams type result [1] .

Corollary 4.3. Let 0 < a < 7,1 < p < I, 0 < v < v — ap and conditions (3.4)
holds. Then when p > 1 operator M is bounded from Ly, » ,(Ry) to Lg »,(Ry) and
when p = loperator Mg is bounded from Liyu(Ry) to WLy, (Ry).

From this in particular when v = 2\ + 1 we get Theorem G.

Theorem4.4. Let 0 < a <7, 1 <p<g<oocandw € (2.

(i) If w(x, ) satisfies the condition (3.2), then (4.15) is a sufficient condition for the
boundedness of Mg from My ,(Ry)to WM | (Ry).

,vsw 4
If1 < p < q < oo, then the condition (4.15 )q ;s a sufficient for the boundedness M
from My, , (Ry)to M, (Ry).

q,v,w 9

(ii) If w € @}, then the condition
T\« r —%

(sh§> w(r) < (shi) >0 4.17)
in necessary for the boundedness Mg from M, ,(Ry) to WM (Ry), and from
M 1Ry)teM L (Ry)ifl<p<qg<oo.

p?’Y’wq q,fy,wa
(iii) If w € D)), then the condition (4.17) in necessary and sufficient for the boundedness
M§ from My u(Ry)to WM (Ry).

q,v,w 9

Moreover, if 1 < p < g < oo, then the condition (4.17) is necessary and sufficient for
the boundedness Mg from My, ,(Ry)to M, (Ry).
q

q,7,w

1
a,v,w 4

Proof. The first part of the theorem follows from Theorem 4.2 when w(z,r) = wP(r). We
will now prove the second part of this theorem. Let Hy = (0,79) and x € Hp. By Lemma

3.4 (sh®)® < M&xm,(chx). Moreover, by Lemma 2.4 and Lemma 3.4, we obtain

70\ ¢ -1 z
(sh2)" S 1Holy " 1MEX s, 1) S 90)7 IMEXINpe o)
q

q,7,w

P P_1
Sw(ro)® o llae, sy S w(ro)
or op

(shrj)(XW(TO)l*g Slew(r) S (sh%)_ﬁ
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a _oap
& (sh%o) w(re) S (sh%o) ~r.
The third part of this theorem follows from the first and second parts of theorem.
The following theorem is an analogue of Adams -Gunawan type result, (see [25, Theorem

4.8)).
Theorem 4.5. Let 0 < e <7, 1 <p < q <00, w E 2) and satisfy (3.2), and

r\«o S\ & D
_ = <
<8h2> w(z,r) + ili%? (sh2) w(z,s) Sw(z,r)e,r>0. (4.18)

Then M§ is bounded from My, , ,(Ry)to M, (Ry) whenp > 1and from My, ., (R)
g, w4
toWM | (Ry) whenp = 1.

g,7,w
Proof. Let 1 < p < oo and f € M, (R). By Theorem 4.1, we have (4.1). Then from
(4.18), we get

T\ $\%7p
M&f(chz) < (sh=) M, h h- " lA
Gflchz) 5 (8 2) cf(cha) I (s 2) chaf Lp, A (Hs)
T\ S\
< (shy)" Maf(che) +sup (sh3)" w(e.s) [l ..

p_ D
< min {wle, )5~ Mg f(cha), e, r) 8] g -
p
q

_ o _
If (e, r) i Mef(cha) < w(e,r)5|fllm, .. then w(z,r) > Mef(cha)l|fl5)

and, we have
2_q

Mg f(ehe) S wler, 1)~ Mo f(cha)
1 ,
< Mofleho) (i) < (Moseho)f 15157,

2
q

_ e _
If w(z,r) 1M§f(chx) = w(@,r)a || fllpg,. ., thenw(z,r) < Mgf(cha:)HfH/V}pmw
and we have

I3

Me f(chz)

a p 1-2
i | IS S (Mg f(chx))a ||l -
[ ) Moo Mo

p
Mg f(chz) S w(x,r)e HfHMp,y,w S (

Thus, we obtain )
P 1-2
Mg (cha) S (M f(cha)s |1f]l . . (4.19)

From Corollary 3.2 and (4.19), we have
«a < 17% 2
IMES | g ~ ”f”Mm,w /

(Mcf)

P
q,v,w 9

M p
q

pyy,w

1-2 P
Sy o 1M f I3, S 1 F Ity

if 1 <p<gq<ooand

1-1 1
M8 lwa | S I, UM, S 1 vt

1
q,v,w9

ifp=1.
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The following result is an analogue of Theorem 4.9 from [25].

Theorem 4.6. Let 0 < a <y, 1 <p< g <oo,andw € §2;.

(i) If w(z,r) satisfies the condition (4.2), then the condition (4.18) is sufficient for the
boundedness Mg from My ,(Ry)to WM | (Ry).

w9
Moreover, if p > 1, then the condition (4. Iq8W) is sufficient for the boundedness M§ from
Mpyw(Ry) to M 2 (R+).

s I

(i) If w € @}, then the condition
T\ P
<5h§) w(r) Sw(r)d, r>0 (4.20)

is necessary for the boundedness Mg from My~ ,(Ry) to M, (Ry) if p > 1, also
a,7,w 4
from My, (Ry)to WM (Ry) if p=1

q,v,w 9

(ili) If w € B then the condition (4.20) is necessary and sufficient for the boundedness
ME from My o(Ry)to WM | (Ry).

w4
Moreover, if p > 1 the condgtion (4.20) is necessary and sufficient for the boundedness
M, from My w(Ry) to M, (Ry).

q,7v,w 4

Proof. The first part of this theorem follows from Theorem 4.5.
We will prove the second part. Let Hy = (0,79) and z € Hj,. By Lemma 2.4 and
Lemma 3.3, we get

T0 0‘< —é o
(sh3)" S 1Holy * 11 MExm 1, i

QI3

P P
Swlr) IMExmolp gy S©00) Xillng, gy S w(r0)
‘LWWJE
or

ro\ 1-2 To\* L
v < Y <
(sh 5 ) w(rg) ¢« S1& (sh 5 ) w(re) Sw(rg)a,ro > 0.

Since, this true for any € R and ¢ > 0, then our statement is proved.
The third part follows from the first and second parts of the theorem.

5 Fractional maximal commutator on generalized G- Morrey spaces M, - ., (R4)

In this section we characterise the boundedness of fractional maximal commutator on gen-
eralized G-Morrey spaces M,, - ., (R).

The result obtained are analoques of relevant Spanne-Guliyev results, which were ob-
tained in [24,25] for fractional maximal operator

r>0

Maft) = sup B, [ 17y, 0a<@
and k-th (k = 1,2, ...) order fractional maximal commutator

Myanf () = sup | B, )|~ / Ib() — b(y)[*|£ (w)]dy.
r>0 B(z,r)

where B(z, ) is an open ball centered at the point = with radius > 0, and |B(x, )| is its
Lebesgue measure.
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51 Spanne-Guliyev type result

Firstly we will consider the BM Og Gegenbauer space, which was introduced in [31].
Definition 5.1. Denote by BM O¢(R.) the Gegenbauer- BMO space (G-BMO space)
as the set of locally integrable functions on Ry = (0, 00) such that

||f||BMOg(]R+) = Sup

/ )Ai‘hyf(chx) — fu. (chx)| sh*ydy < oo,
z,r€RL |Hr|

where )
fi eha) = = [ AY fcha)sh®ydy

and H, = (0,r).
According to the definition

BMOG(Ry) i= {f € LIS (Ry) : If | satog(ry) < o0}

In [31] for the operator M§& commutator k-th (k = 1,2, ...) order is defined as follows:
ME™ (eha) = sup || / |43y, £ (k) — b, (cha)| Ay IS (cha)lsh*ydy.
T

where b € L% (Ry) and 0 < v < .

We will later need the following preliminary statement.
Lemmas5.2. Let1l <p<o00,0<a< 1, (2.19) holds and b € BMO¢(R..). Then for

any f € Lloc S(R4) and any interval H, (O, r), r > 0 the following inequality

A b,()é,k < r % k‘ S _% Sh% k’y A)\
H cha Mg Lq’A(HT)N(Shﬁ ‘|bHBMOG(R+)igE (3h§> L+ shy H cha

is true.

Lp,)\(Hs)

Proof. Write f = f1 + fo where f1 = fxp, and fa = fX(u,) Where x g, -is a character-
istic function of the set H,. Then we obtain

|Adcrats|, < | AdaME 5.1

Jbek
4ot

q )\(H’r q )\(HT Lq,A(HT‘)

By the boundedness of M5** from L, (R ) to L, A(Ry) (see [31, Theorem 4.1]), we
have ( see prof of Lemma 2.6)

HActhgla kf ‘

Achx fl ‘ Achz f

q A Hr) Lp,)x(Hr) Lp,)\(Hr)

Letx € Ry and Hs N (H, )¢ # () then s > r and we have (see the proof of Lemma 2.6)

Mga’kf(cha:) < sup |Hr\%_1 / ‘Achy (chx) — by, (chx)‘ chy | f(chz)] sh®ydy.

s$>T

5.2)
From (5.2), Lemma 2.5, we obtain
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174N AN

+/
Hy

HAchmMga kf’

< et

Q>\ H’" qA(Hr

s>r

sup | H,|5 ! / |42, bleh) —bi (cha)|* AN, | (cha)] sh*ydy
H

k
sup | H, ]v /‘Achy (chz) bHr(chx)’ Aé‘hy\f(chx)\sh%ydy

s>r

q
sup]HS\w /|bH (chx) — by, (cha)|? Achy |f(chz)| sh* ydy | sh* zdx
s>r

H,
= A + As.

1
P

z,r€R ¢

we have

/ ‘Achy (chx) — bHS(chx)‘ chy | f(cha)| sh® ydy
Hs

1

k /
/‘Ai‘hyb(cha:) - bHs(chx)‘ ! shPydy
Hy

S VELIP bl o || 420!

h .
che Lp,)\(Hs)

From this, and (2.1), we obtain

cha:

B 1 g,,
A1 < bl parog [Hrle SI>1P|H5’7 HA Ly A(Hs)
s>r P, s

~ o ()" s (35) 7 |44

s>r

Lp,A(Hs)

q
q

1 p
swp | / ‘Aghyf(chx)—bHs(chx)‘ sh*ydy |~ | fllByoc,

8h2/\

ShQ)\

[ A0, tcha)l sty

For estimate As, again using Holder’s inequality and the inequality (see [31])

and (2.1

|Hz|x

‘fH1 (Chl’) bHQ(Chx)‘ < ’H ’

1 fllgarog » Hi € Ha,

), we get

QR

A < (sh%) sup (Sh§>a |br, (chx) — by, (chx)| HA

s>r

chx

p,A(Hs)

xdx

zdr

)
}

(5.3)

We will estimate A;. By applying Holder’s inequality and considering the following
relations (see [31, Corollary 2.8])

54

P

(5.5)

Q=

Q=
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S (Sh;) ||bHBMoGSsu£’ <3h )a—* <:Zrl;\\> HAé\hxf

X _ s\ kv
e & s\o—3 (shs A
S (shi) 161 Brr0 sup (Sh§> (m;) HAchxf

Summing (5.4) and (5.5), we obtain

Lp,)\(HS)

(5.6)

Lp,/\(Hs)

b,a,k
2

chx

(Hy)

;A
% sya—7 sh2
< X k d P 2 H
B ™2 ik s\~ 7 shg A
= (shQ) 1bllar0 P <8h2) L+ Shﬁ HAchxf

Finally from (5.1), we have
[A43a22" 1],

p,)\(HS)

Lp,)\(Hs)

< || HBMOG HAch:c

q /\(H'r Lp,k(Hr)

T™NT ik s\~ % shi ky A

+ (Shi) Hb”BMOG S;;E (Shg) 1+ Shz HAch:cf
™1 ik s\—2 sh A

< "\a d q

N <5h2) 16l Brr0¢ Sslig (5h2) <1+ <5h2> > HAcha;f

Lemma is proved.

The following theorem is Spanne-Guliyev type result (see [24, Theorem 4.1]).
Theorem 5.3. Let 1 < p < 00,0 < a < %, (2.19) holds, b € BMO¢(R..) and the pair

(w1,w2) satisfy the condition

Lp,)\(Hs)

Lp,A(HS)

a2 shi\ kY
sup (shi) L1+ ( %) wi(z,s) Swaz,r). (5.7)
s>r 2 Shg
Then the operator Mga’k is bounded from My, ., ., (Ry) to My, (R).
Moreover,
bya,k < pIk
[pe s, S WelEasoq Mllug o,
is true.

Proof. By Lemma 5.2 we can write

b o,k
chz G

HMga’ka = sup wy(z,r) ! (shg)

Ma,~,w9 z,reR

"% S\ "% shs kY
<|]b||BMOG sup wo(x,r)” (Shi) ig}g <3h§> 1+ sh HACM

z,reR4

Lq,A(HT)

Lp,)\(HS)

< k ‘
Lya(H) ™ 1 f 1 Erroc 1 F My g o,

chx f

r
< Wlaio, sup wile.r)™ (sn2)

z,re€R4

Theorem is proved.
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In the case when oo = 0 and p = ¢ we get the following result.
Corollary 54. Let 1 < p < oo, b € BMOg(Ry) and the pair (w1,ws) satisfy the

condition
S\ "7 sh
e <
sslig (sh2> (1 + <sh2> ) wi(x, s) S wax,r). (5.8)

Then the operator Mgk is bounded from M, , .., (Ry) 1o My~ .0, (Ry) .
Moreover, we have

bk < k
|mts S Iblasoq 11, ...,

q,7,w2

52 Adams-Guliyev type result

The following theorem is Adams-Guliyev type result (see [24, Theorem 4.2]).
Theorem 5.5. Let 1 < p < g < 00,0 < a < %, b€ BMO¢(R,) and w(x,r) satisfy

the conditions:

S sha\ P\
5 <
up <5h2) 1+ <8h2> w(z,s) S wla,r), (5.9)
S\ shi\"™ 1 ™ i
- < _ q—p
Then the operator MY is bounded from M 1 (Ry)10 My (Ry),
p,,w q,7y,w

Proof. Letl < p<g<oo,0<a<? andeM %(RJF).Letf:fl—i-fzwhere
DyY,w

J1=fxm, and f2 = fx(m,)
By doing the same as in Section 5.1, for p € (1, 00), we can write

M £y (cha) < < sup (sh /’Achy (chz) — by, (chx)‘ ony | f2(cha)| sh* ydy
k S Oé—l Sh% k'y )\
<1l AR ] H A . 5.11
S lblsaoq sup (3 2) t <5h5> chaf Ly (H) G-AD
From (4.2) follows that
MG ileha) 5 (shg)” ME*Fcha) 6.12)

From (5.9) - (5.11) we obtain

~

k a_*
+ ||bHBMOG Sup (Sh <1 + r> > ch:vf
s> 2 L

s\ kv
T\ & bk k 1 S\ & 8h§
< — y —
S (shg) " M (cho)+ bl us0,, supe. )7 (sh3) <1+(3h2) >||f||MW;

Mg’a’kf chz) < (shg)a f(chzx)

(5.13)

p,A( S)
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ap

r\ o ™  9—p
< (shg)" MG fleha) + BllEaro, (shg) “Iflae - (514)
p,y,wP
Soosing
k o
10l Brrog 1f1Iae
Shtz p,y,w P ’
2 MEF f(chx)

for any x € R, we have

bk k(1-¢ bk -2
Mg™" f(chz) < Hb”B(Mqu) (MG f(Chl’)) (Rl

1
p,y,wP

Now the statement of the theorem follows from the the boundedness of commutator
Mgk on M 1 (R4) which was proved in Corollary 5.4 by condition (5.8). Indeed,

p?’y?wp
HMb’a’ka = sup w(z r)_% (shi>7% AN Mb’a’kf’
¢ M 1 z,r€ERy 7 2 cha G Lq,/\(HT‘)
q,v,w 4 ’
SISt 15, sup wloor) ™ (snD) T [ ad,0att]
~ up w(x,r sh—

BMOg¢g Mp,y,wECCJ’E . ) 2 chz" @ Ly A(Hy)
(1-5) g
k(1-2 1—2 1 r\—2 bk q

S WllSeot 171t ( sup wizr)F (shl) 7 40
Baos Mp,’y,w% z,r€Ry , 2 cha TG Ly A(Hr)

P

1-3 < k( 711)
Iflla® ) S I0llaog 11l
P,

EO=2) 10 ok |5
< il e
S Wllavor, |M254],

1
pyy,wP

In case when w(z,r) = (sh%)”"",0 < v < v, from the Theorem 5.5 follows Adams-
Guliyev type result for commutator of Gegenbauer fractional maximal operator M g.
Corollary 5.6. Let 0 < a < v, 1 <p < %, 0 < v < v — ap, condition (3.4) holds and

b € BMO¢g(R.). Then the operator Mg’a’k is bounded from Ly, y(R4.) to Ly x(R4).
We will use the following estimates to prove the main results.
Lemma 5.7. Let b € LY (R.) and Hy = (0,70) C H, = (0, 7). Then the estimate

rO a < b,Oé
bllzarog (sh7) " S Mg X (cha)
is true for any x € Hj.

Proof. We choose ¢ large enough to satisfy the inequality r < cgrg. Then by Lemma 3.3
when 0 < ¢ < ¢ the inequality ¢ < sht < e“t is true and by (2.1), we get (see proof of
Lemma 3.4)

1_o 1o
|H, |\ 7 < [Holy 7 (5.15)
From the definition and the estimate (5.14) and (2.1), we get

« 51
MCbTJ XH,(chx) = su%) |H | / ‘Aéhyb(ch:c) — by, (chx) Aé‘hyXHO(cha:)shQ)‘ydy
r>
Hy
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]
> |H, |} / )Aghyb(chx) - bHT(chx)‘ shPydy
H,.NHy

a_q 7
> |Holy /‘Ag\hyb(chx) — bHT(cha:)’ sh® ydy ~ (shEO)O‘HbHBMo.
Hy
The following theorem is an analogue of Theorem 5.5 from [25] and one of the main
results of this paper.

Theorem 5.8. Let b € BMO¢ (R, )\ {const},p,q € [1,00),0 < a < 7y, wy € 2] and
wo € _Q;/

() Letl <p< %, and (2.19) holds, then the condition

_a hi\ 7
i (#3) 7 (14 (5) ) e sentent oo
2

s>r

is sufficient for the boundedness Mg’a from My, o (Ry) 10 Mg~ 0, (Ry) .
(ii) If w1 € @}, then the condition

(shg)awl(r) Swa(r), s>0 (5.16)

is necessary for the boundedness M, g,a from My, o (Ry) to Mg, (RS)
(i) Let 1 < p < g and (2.19) holds. If wy € &, safisfies the condition

s (s15)" (14 (7)) 005 (o05) et

2

for any v > 0, then the condition (5.15) is necessary and sufficient for the boundedness
b,

MG from M,y o, (Ry) 10 Mgy, (R4 ).

Proof. The first part of our theorem follows from Theorem 5.3 when k = 1.

We will prove the second part of this theorem. Note that ||| 5,0, is @ seminorm and
16l 5 Mog = 0is and only if b is a constant almost everywhere (see [31, §2]). Therefore,
it b € BMOg(R4)\ {const} then [|b]| 570, > 0. For any r > 0 there exists a point
xo € Hy C H, shuch that HAZ\hyb — ba, H > 0 but in other cases it is a constant .

Ly x(Ho

Letb € BMO¢(R4)\ {const} then by Holder’s inequality, we get

|42y = b,

Lq,x(Ho)

To
— / Ay |bm, (cha) — by, (cha)| sh* tdt
0

o : )
<lAN b—b sh?Mdt | = |Hpl?
—H chy Hy Ly x(Ho) / ’ 0|)\
0

Ag\hyb — bg,

Lq,)\(HO)

1
Thus HAé‘hyb—bHo L (H0) > |Ho|y ||b]| BMoO- Using inequality Ai‘hyl = 1 and

Lemma 2.4, we can write

(23)'

A)\

b,
chy MG XHO

Ly \(Ho) b,
: 1 S HMGOCXHO

A q
H chy HBMOG | Hol;

_1
H q
Lq,)\(HO) ‘ O‘A
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< wa (7o) '
Mp w1 w1 (T‘o)
The third statement of the theorem follows from the first and the second parts.

b
S wa(ro) ‘ M X,

~

< wa(r H
Moy ™~ 2(70) |xan,

53 Adams-Guliyev and Adams-Gunavan type results

In this section we characterize the boundedness of the operator Mg’a on generalized G-
Morrey spaces.

The following result is an analogue of Theorem 5.7 from [25].

Theorem 5.9. (Adams-Guliyev type results) Let 1 < p < ¢ < o0, 0 < a < 21

p?
b€ BMOg(Ry) and let p € (2] satisfy the conditions:

s\ — % shi\7Y

sup (shf) P14+ 2 oz, s) < ez, r), (5.17)

s>r 2 shg

S\ & sh§ ol r _ap
hi) 1 ; ,8) S ( h*) . 5.18
sup (sn3)" (14 (57) ) et < (o0 -
Then the operator Mga is bounded from My o (Ry)to M » (Ry).
a7

1
Proof. We get the statement of this theorem if we take into account w(z,7)? = p(z,r) in
Theorem 5.5.

The following theorem is an analogue of the Theorem 5.8 from [25] and this is one the
most important results of this paper.

Theorem 5.10. Let 1 <p<g<oo, 0<a< %, b€ BMOg(Ry) andw € 2

(i) If w(x,r) satisfies the condition (5.16), then condition (5.17) is sufficient for the
boundedness Mg’a from My, ., (Ry) to Mq Tl (Ry).

)

(ii) If w € ®;), then the condition

ap

(shg)aw(r) S (sh%)iﬁ (5.19)

is necessary for th boundedness M, g,a from My, , ., (Ry) to M 2 (Ry).
q777w
(iii) If w € P, satisfies the condition

S

§1>11r) (shg)a (1 + (2272")7) w(s) S (sh%)aw(r), (5.20)

2

for all r > 0, then the conditions (5.18) necessary and sufficient for the on of Mcbja from
Mprw (Ry) 1o Mq ot (R4).

)

Proof. The first part of the theorem follows from Theorem 5.6. We will prove the second
part of this theorem. Letb € BM O¢(R4)\ {const}, Hy = (0,r¢),z € Hy C H, = (0,r),

A
then HAchyb —bm, (o) > 0.

By Lemma 5.7
To\“ b
Ibllzaoc (sh7) " S MG X, (cha).
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Therefore, by Lemma 2.4 and relation (5.3) we have

To\ ¢ A b,« -2
R2)" S || A M Hol, "
(S 9 ~ chy*"* G XHO Lq,A(Ho)’ 0’)\
< 2| a0 < 2 < p_
Surlo)t M|, Swl0) i, Swrto)
a,v,w 9
or ar
(0% (0% —_
<sh%0> w(ro)k% Sle <sh%0> w(ro) S (sh%) o

for any rg > 0.
Since the last relation is true for every r € R, we are done.
The third statement of the theorem follows from first a second parts of the theorem.

The following result is an analogue of Theorem 5.9 in [25].
Theorem 5.11. (Adams-Gunavan type result). Let 1 < p < ¢ < 00, 0 < a < %,
b€ BMO¢g(R;) and w(x, ) satisfy condition (5.7) and

S

ey S5\ Y o )
(shg) w(z,r) + sup <1 | (iZﬁ) > (shg) w(z,s) Sw(x,r)e. (5.21)

s>r 2

Then Mé’a is bounded from M, , ., (Ry) to M (Ry).
a7y

D
w

Proof. Letl <p<¢g< oo, 0 <a< % and f € My, (Ry). We write f = fi + fo,
where f1 = fxnu, and fo = fX(g,)c. From (5.12) when k& = 1, we have

M f(cha) < (sh%)a ME f(chz)

s\a—2 shi\"7
o, (o15) 7 (1 (1) W 52
Then from (5.20) and (5.21) we get
Mg’af(chx) < (shg>a ML f(chzx)

5\« shi\"
Wl 151, s (s03) (14 (52) ) tons)

2
r\ o
S (shy) " MEF(eha) + Bl parog | Fllat, , ow(@:7)
(see proof of Theorem 4.5)

ya
q

< min {w(z, )5 M (cha), o, 7)) fllaty

< (MES(cha) )" 11 (5.23)

Taking in (5.7) wi(z, s) = w(x, s) (shg)fg , wo(z,7) = w(z,r) (sh%)fg and taking
into account (5.22), obtain
b
q

Loy <l

(ver)

M P

q,v,w 9

5 ||f”Mp,'y,w'

)./\/l P
q,v,w 4

r

q

1-2
S || s

Mp,'y,w



114 Boundedness of Gegenbauer fractional maximal commutator . ..

The following theorem is an alalogue of the Theorem 5.10 in [25].

Theorem 5.12. Let 1 < p < g < o0, 0 < a < 7,b € BMOg(Ry)\ {const} and
w € 2.

(1) If 1 < p < oo and w(s) satisfies the condition

gy —2 sh3\ 7
h=) " (1 2 <
up (5) 7 (14 (52) ) wrte0) Swnter). >0

then the condition

(shg)“w(r) + sup (1 + (222>7> (sh%)aw(s) <w(r)i,r>0

s>r 2

is sufficient for the boundedness Mg’a from My, ., (Ry) to M 2 (R4).
q”y7w
(ii) If w € ®,), then the condition
(6%
(shg) < w(r)g_l (5.24)

is necessary for the boundedness M, ga from M, ., (R}) to M L (Ry).

q7’y7w

(ili) Let 1 < p < oo If w € @, and satisfies the condition

s (5)" (14 (55 ) ) = (505) "t

2

for any v > 0, then the condition (5.23) is necessary and sufficient for the boundedness
Mgafrom My (Ry) t0 ./\/lq - (Ry).

)

Proof. The first part of the theorem follows from the Theorem 5.11.
We shall prove the second part. Let b € BMOg(R4)\ {const}, Hy = (0,rp) and

x € Hy C H, = (0,7), then HAZ\hyb — bHOH > (0. By Lemma 5.7
Ly, x(Ho
| 430 n (5h22) Wl o S MA X (ch).
n 0 L1,x(Ho) 2 ¢~ TG AHo

Therefore, by Lemma 2.4 and (5.3), we have

ro\* b,
(shy)" = e,

_1
Hyl, *
Lq,)\(HO) ‘ ’/\

o P
q

Sw(rg)a".

b,a
MG X, Mo

< w(rg)

< w(r
VI (r0)

q,7v,w 9

X,

Since this is true for every rg > 0, we are done. The third statement of the theorem
follows from the first and second parts of the theorem.

In the case, when w(z,r) = (shg)% ,0 < v < « from Theorem 5.12, we get the
following Adams type result for the G -fractional maximal commutator M, g:o‘.

Corollary 5.13. Let b € BMOg(R4)\{const}, 0 < a < 7,1 < p < ¢ < o©
0 < v <~ —ap. Then Mg’a is bounded from Ly, \ (Ry) to Ly (Ry) if and only if
condition (3.4) holds.
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