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Abstract. In this paper we consider the anisotropic maximal commutator Md
b and the commutator of the

anisotropic maximal operator [b,Md] on the Lorentz spaces Lp,q(Rn). We obtain necessary and sufficient
conditions for the boundedness of the operators Md

b and [b,Md] on Lp,q(Rn) when b belongs to the
bounded mean oscillation space BMO(Rn), whereby some new characterizations for certain subclasses
of BMO(Rn) are obtained.
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1 Introduction

The aim of this paper is to study anisotropic maximal commutator operator Md
b and

commutator of anisotropic maximal operator [b,Md] in the Lorentz spaces Lp,q(Rn). We
give necessary and sufficient conditions for the boundedness of the anisotropic maximal
commutator operator Md

b and commutator of anisotropic maximal operator [b,Md] on the
Lorentz spaces Lp,q(Rn). We obtain some new characterizations for certain subclasses of
the bounded mean oscillation space BMO(Rn).

Let Rn be the n-dimension Euclidean space with the norm |x| for each x ∈ Rn and
Sn−1 denote the unit sphere on Rn. For x ∈ Rn and r > 0, let E(x, r) denote the open
ball centered at x of radius r and

{E(x, r) denote the set Rn\E(x, r). Let d = (d1, . . . , dn),
di ≥ 1, i = 1, . . . , n, |d| =

∑n
i=1 di and tdx ≡

(
td1x1, . . . , t

dnxn
)
. By [5,9], the function

F (x, ρ) =
∑n

i=1 x
2
i ρ
−2di , considered for any fixed x ∈ Rn, is a decreasing one with respect

to ρ > 0 and the equation F (x, ρ) = 1 is uniquely solvable. This unique solution will be
denoted by ρ(x). It is a simple matter to check that ρ(x − y) defines a distance between
any two points x, y ∈ Rn. Thus Rn, endowed with the metric ρ, defines a homogeneous
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metric space (see [5,7,9]). The balls with respect to ρ, centered at x of radius r, are just the
ellipsoids

Ed(x, r) =
{
y ∈ Rn :

(y1 − x1)
2

r2d1
+ · · ·+ (yn − xn)2

r2dn
< 1

}
,

with the Lebesgue measure |Ed(x, r)| = vnr
|d|, where vn is the volume of the unit ball in

Rn. Let alsoΠd(x, r) = {y ∈ Rn : max1≤i≤n |xi−yi|1/di < r} denote the parallelopiped,
{Ed(x, r) = Rn \ Ed(x, r) be the complement of Ed(0, r). If d = 1 ≡ (1, . . . , 1), then
clearly ρ(x) = |x| and E1(x, r) = B(x, r). Note that in the standard parabolic case d =
(1, . . . , 1, 2) we have

ρ(x) =

√
|x′|2 +

√
|x′|4 + x2

n

2
, x = (x′, xn).

For f ∈ L1
loc(Rn), the anisotropic maximal operator M is defined by

Mdf(x) = sup
r>0
|E(x, r)|−1

∫
E(x,r)

|f(y)|dy,

where |E(x, r)| is the Lebesgue measure of the ellipsoid E(x, r). If d = 1, then M ≡ Md

is the classical Hardy-Littlewood maximal operator.
The study of anisotropic maximal operators is one of the most important topics in har-

monic analysis. These significant non-linear operators, whose behavior are very informative
in particular in differentiation theory, provided the understanding and the inspiration for the
development of the general class of singular and potential operators (see, for instance [11]).

The anisotropic maximal commutator generated by the operator Md and b ∈ L1
loc(Rn)

is defined by

Md
b f(x) = sup

r>0
|E(x, r)|−1

∫
E(x,r)

|b(x)− b(y)| |f(y)| dy.

The commutator generated by the operator Md and a suitable function b is defined by

[b,Md]f(x) = b(x)Mdf(x)−Md(bf)(x).

Obviously, the operators Md
b and [b,Md] essentially differ from each other since Md

b is
positive and sublinear and [b,Md] is neither positive nor sublinear.

The operators M , Md
b and [b,Md] play an important role in real and harmonic anal-

ysis and applications (see, for instance [1–3,10,14–16,18]). The nonlinear commutator of
Hardy-Littlewood maximal function [b,M ] can be used in studying the product of a function
in H1 and a function in BMO [6]. The boundedness of the anisotropic maximal operator
Md on Lp(Rn) is one of the most fundamental results in harmonic analysis. It has been
extended to a range of other function spaces, and to many variations of the standard max-
imal operator. The commutator estimates play an important role in studying the regularity
of solutions of elliptic, parabolic and ultraparabolic partial differential equations of second
order, and their boundedness can be used to characterize certain function spaces (see, for
instance [8,11]).

This paper is organized as follows. In Section 2 we give some definitions and auxiliary
results. In Section 3 we obtain necessary and sufficient conditions for the boundedness of the
anisotropic maximal commutator Md

b on the Lorentz spaces Lp,q(Rn). In Section 4 we find
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necessary and sufficient conditions for the boundedness of the commutator of anisotropic
maximal operator [b,Md] on Lp,q(Rn).

By A . B we mean that A ≤ CB with some positive constant C independent of
appropriate quantities. If A . B and B . A, we write A ≈ B and say that A and B are
equivalent.

2 Definition and some basic properties

We start with the definition of Lorentz spaces. Lorentz spaces are introduced by Lorentz
in the 1950. These spaces are Banach spaces and generalizations of the more familiar Lp

spaces, also they are appear to be useful in the general interpolation theory.
Suppose that f is a measurable function on Rn, then we define

f∗(t) = inf{s > 0 : df (s) ≤ t},

where

df (s) := |{x ∈ Rn : |f(x)| > s}|, ∀s > 0.

Definition 2.1 [4] The Lorentz space Lp,q ≡ Lp,q(Rn), 0 < p, q ≤ ∞ is the collection of
all measurable functions f on Rn such the quantity

‖f‖Lp,q := ‖t
1
p
− 1

q f∗(t)‖Lq(0,∞) (2.1)

is finite. Clearly Lp,p ≡ Lp and Lp,ı ≡ WLp. The functional ‖ · ‖Lp,q is a norm if and only
if either 1 ≤ q ≤ p or p = q =∞.

Lemma 2.1 [4] Let 1 < p, p′, q, q′ < ∞, 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1. Suppose that

f ∈ Lp,q(Rn) and f ∈ Lp′,q′(Rn). Then

‖fg‖L1(Rn) ≤ 2‖f‖Lp,q(Rn) ‖g‖Lp′,q′ (Rn).

The following result completely characterizes the boundedness ofMd on Lorentz spaces.

Lemma 2.2 [4] Let 1 ≤ p, q ≤ ∞.
(i) If 1 < p ≤ ∞, then the operator Md is bounded on the Lorentz spaces Lp,q(Rn).
(ii) If p = 1, then the operator Md is bounded from L1,q(Rn) to WL1(Rn).

3 The boundedness of the anisotropic maximal commutator operator Md
b on

Lp,q(Rn) Lorentz spaces

In this section we find necessary and sufficient conditions for the boundedness of the
anisotropic maximal commutator Md

b on the Lorentz spaces Lp,q(Rn).

Definition 3.1 We define the bounded mean oscillation space BMO(Rn) as the set of all
locally integrable functions f with finite norm

‖f‖∗ = sup
x∈Rn,t>0

|E(x, t)|−1

∫
E(x,t)

|f(y)− fE(x,t)|dy <∞,

where fE(x,t) = |E(x, t)|−1
∫
E(x,t) f(y)dy.
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Lemma 3.1 ([2, Corollary 1.11]) If b ∈ BMO(Rn), then there exists a positive constant
C such that

Md
b f(x) ≤ C‖b‖∗Md

(
Mdf

)
(x) (3.1)

for almost every x ∈ Rn and for all f ∈ L1
loc(Rn).

The following theorem is the first of our main results.

Theorem 3.1 Let p, q ∈ (1,∞). The following assertions are equivalent:
(i) b ∈ BMO(Rn).
(ii) The operator Md

b is bounded on Lp,q(Rn).
(iii) There exist a constant C > 0 such that

sup
E

∥∥(b(·)− bE)χE

∥∥
Lp,q(Rn)

‖χE‖Lp,q(Rn)
≤ C. (3.2)

(iv) There exist a constant C > 0 such that

sup
E

∥∥(b(·)− bE)χE

∥∥
L1(Rn)

|E|
≤ C. (3.3)

Proof. (i)⇒ (ii). Suppose that b ∈ BMO(Rn). Combining Lemmas 2.2 and 3.1, we get

‖Md
b f‖Lp,q . ‖b‖∗‖Md

(
Mdf

)
‖Lp,q

. ‖b‖∗‖Mdf‖Lp,q

. ‖b‖∗‖f‖Lp,q .

(ii) ⇒ (i). Assume that Md
b is bounded on Lp,q(Rn). Let E = E(x, r) be a fixed

ellipsoid. We consider f = χE . It is easy to compute that

‖χE‖Lp,q ≈ r
|d|
p . (3.4)

On the other hand, for all x ∈ B we have∣∣b(x)− bE ∣∣ ≤ 1

|E|

∫
E
|b(x)− b(y)|dy

=
1

|E|

∫
E
|b(x)− b(y)|χE(y)dy

≤Md
b (χE)(x).

Since Md
b is bounded on Lp,q(Rn), then by (3.4) we obtain

‖
(
b− bE

)
χE‖Lp,q

‖χE‖Lp,q
≤
‖Md

b (χE)‖Lp,q

‖χE‖Lp,q
.
‖χE‖Lp,q

‖χE‖Lp,q
= 1, (3.5)

which implies that (3.2) holds since the ball B ⊂ Rn is arbitrary.
(iii)⇒ (iv). Assume that (3.2) holds, we will prove (3.3). For any fixed ellipsoid E , by

Lemma 2.1 and (3.2), (3.4), it is easy to see

1

|E|

∫
E
|b(x)− b(y)|dy .

1

|E|
‖
(
b− bE

)
χE‖Lp,q ‖χE‖Lp′,r′

.
‖
(
b− bE

)
χE‖Lp,q

‖χE‖Lp,q

. 1.
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(iv)⇒ (i). For any fixed ellipsoid E , we have

1

|E|

∫
E
|b(x)− bE |dy =

‖
(
b− bE

)
χE‖L1

|E|

≤ sup
E

‖
(
b− bE

)
χE‖L1

|E|
. 1,

which implies that b ∈ BMO(Rn). Thus the proof of Theorem 3.1 is completed.

4 The boundedness of the commutator of anisotropic maximal operator [b,Md] on
the Lorentz spaces Lp,q(Rn)

In this section we find necessary and sufficient conditions for the boundedness of the
commutator of the anisotropic maximal operator [b,Md] on the Lorentz spaces Lp,q(Rn).

Let b be a function defined on Rn and denote

b−(x) :=

{
0 , if b(x) ≥ 0

|b(x)|, if b(x) < 0

and b+(x) := |b(x)| − b−(x). Obviously, b+(x)− b−(x) = b(x).
The following relations between [b,Md] and Md

b are valid :
Let b be any non-negative locally integrable function. Then for all f ∈ L1

loc(Rn) and
x ∈ Rn the following inequality is valid∣∣[b,Md]f(x)

∣∣ = ∣∣b(x)Mdf(x)−Md(bf)(x)
∣∣

=
∣∣Md(b(x)f)(x)−Md(bf)(x)

∣∣
≤Md(|b(x)− b|f)(x)
=Md

b f(x).

If b is any locally integrable function on Rn, then

|[b,Md]f(x)| ≤Md
b f(x) + 2b−(x)Mdf(x), x ∈ Rn (4.1)

holds for all f ∈ L1
loc(Rn) (see, for example [12,18]).

Obviously, the Md
b and [b,Md] operators are essentially different from each other be-

cause Md
b is positive and sublinear and [b,Md] is neither positive nor sublinear.

Let E = E(x, r) be a fixed ellipsoid. Denote by Md
Ef the local maximal function of f :

Md
Ef(x) := sup

E ′3x: E ′⊂E

1

|E ′|

∫
E ′
|f(y)| dy, x ∈ Rn.

Applying Theorem 3.1, we obtain the following result which is the second of our main
results.

Theorem 4.1 Let p, q ∈ (1,∞). The following assertions are equivalent:
(i) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(ii) The operator [b,Md] is bounded on Lp,q(Rn).
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(iii) There exist a constant C > 0 such that

sup
E

∥∥(b(·)−Md
E (b)(·)

)
χE

∥∥
Lp,q(Rn)

‖χE‖Lp,q(Rn)
≤ C. (4.2)

(iv) There exist a constant C > 0 such that

sup
E

∥∥(b(·)−Md
E (b)(·)

)
χE

∥∥
L1(Rn)

|E|
≤ C. (4.3)

Proof. (i) ⇒ (ii). Suppose that b ∈ BMO(Rn) and b− ∈ L∞(Rn). Combining Lemma
2.2 and Theorem 3.1, and inequality (4.1), we get

‖[b,Md]f‖Lp,q ≤ ‖Md
Ef + 2b−Mdf‖Lp,q

≤ ‖Md
Ef‖Lp,q + ‖b−‖L∞ ‖Mdf‖Lp,q

.
(
‖b‖∗ + ‖b−‖L∞

)
‖f‖Lp,q .

Thus, we obtain that [b,Md] is bounded on Lp,q(Rn).
(ii)⇒ (iii). Assume that [b,Md] is bounded on Lp,q(Rn). Since

Md(bχE)χE =Md
E (b) and Md(χE)χE = χE ,

we have

|Md
E (b)− bχE | = |Md(bχE)χE − bMd(χE)χE |

≤ |Md(bχE)− bMd(χE)| = |[b,Md]χE |.

Hence
‖Md
E (b)− bχE‖Lp,q(Rn) ≤ ‖[b,Md]χE‖Lp,q(Rn).

Thus we get

‖
(
b−Md

E (b)
)
χE‖Lp,q

‖χE‖Lp,q
≤ ‖[b,M

d](χE)‖Lp,q

‖χE‖Lp,q
.
‖χE‖Lp,q

‖χE‖Lp,q
= 1,

which deduces that (iii).
(iii)⇒ (iv). Assume that (4.2) holds, then for any fixed ellipsoid E , by Lemma 2.1, we

conclude that

1

|E|

∫
E
|b(x)−Md

E (b)(x)|dx .
1

|E|
‖
(
b−Md

E (b)
)
χE‖Lp,q ‖χE‖Lp′,r′

.
‖
(
b−Md

E (b)
)
χE‖Lp,q

‖χE‖Lp,q

. 1.

(iv)⇒ (i). Assume that (4.3) holds, we will prove b ∈ BMO(Rn) and b− ∈ L∞(Rn).
Denote by

E := {x ∈ E : b(x) ≤ bE}, F := {x ∈ E : b(x) > bE}.

Since ∫
E
|b(t)− bE | dt =

∫
F
|b(t)− bE | dt,
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in view of the inequality b(x) ≤ bE ≤Md
E (b), x ∈ E, we get

1

|E|

∫
E
|b− bE | =

2

|E|

∫
E
|b− bE |

≤ 2

|E|

∫
E
|b−Md

E (b)|

≤ 2

|E|

∫
E
|b−Md

E (b)| . c.

Consequently, b ∈ BMO(Rn).
In order to show that b− ∈ L∞(Rn), note that Md

E (b) ≥ |b|. Hence

0 ≤ b− = |b| − b+ ≤Md
E (b)− b+ + b− =Md

E (b)− b.

Thus
(b−)E ≤ c,

and by the Lebesgue Differentiation theorem we get that

0 ≤ b−(x) = lim
|E|→0

1

|E|

∫
E
b−(y)dy ≤ c for a.e. x ∈ Rn.

Remark 4.1 Note that in the case of d = 1 ≡ (1, . . . , 1) from Theorem 3.1 we get [13,
Theorem 3.1] and Theorem 4.1 we get [13, Theorem 4.2].
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