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Abstract. We study the quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type
ut = ∆u−χ∇·(u∇υ)+ξ∇·(u∇ω) with nonlinear production 0 = ∆υ−βυ+αus, 0 = ∆ω−δω+γur ,
subject to the homogeneous Neumann boundary conditions in a bounded domain Ω ⊂ RN (N ≥ 3) with
smooth boundary. It is proved that for every α, β, δ, γ, χ, ξ > 0 and s ≥ 2

N , r > N−2
N s, there exists

ξ∗ > 0 such that if ξ > ξ∗ and any sufficiently regular initial datum u0(x) ≥ 0, then the model has a
unique global classical solution (u, υ, ω), which is bounded in Ω × (0,∞).

Keywords. Boundedness, chemotaxis, nonlinear production.

Mathematics Subject Classification (2010): 35A01, 35B40, 35K55, 35Q92, 92C17

1 Introduction and preliminaries

We consider the following attraction-repulsion chemotaxis system (parabolic-elliptic sys-
tem) with nonlinear production

ut = ∆u− χ∇ · (u∇υ) + ξ∇ · (u∇ω) in Ω × (0, Tmax),
0 = ∆υ − βυ + αus, in Ω × (0, Tmax),
0 = ∆ω − δω + γur, in Ω × (0, Tmax),
∂u
∂ν = ∂υ

∂ν = ∂ω
∂ν = 0, on ∂Ω × (0, Tmax),

u(x, 0) = u0 (x) , x ∈ Ω,

(1.1)

where Ω is a smooth bounded domain in RN (N ≥ 3), the paramets α, β, δ, γ, χ, ξ, s,
r > 0, ∂

∂ν denotes the derivative with respect to the outer normal of ∂Ω, the scalar function
u = u(x, t) denotes the cell density, υ = υ(x, t) and ω = ω(x, t) measure the concentra-
tion of an attractive signal and the concentration of a repulsive signal, respectively. Here the
positive parameters χ and ξ are the chemotactic coefficients, α, β as well as γ and δ are
chemical production and degradation rates. It is mentioned that, instead of the linear pro-
duction u, the nonlinear production uν , ν > 0 was used to model the aggregation patterns

? Corresponding author

R. Ayazoglu
Faculty of Education, Bayburt University, Bayburt, Turkey
Institute of Mathematics and Mechanics, Baku, Azerbaijan
E-mail: rabilmashiyev@gmail.com



14 Boundedness in a attraction-repulsion chemotaxis system ...

formed by some bacterial chemotxis (refer to Chapter 5 in [13] and [3], [14]-[16]). Corre-
spondingly, here the productions of signals vand win the model are both nonlinear with the
forms of αus and γur. It will be observed that this would substantially affect the behavior
of solutions.

Chemotaxis describes oriented movement of cells along the concentration gradient of
a chemical signal produced by the cells. A well-known chemotaxis model was initially
proposed by Keller and Segel [11] and has been extensively studied in the past four decades
from various perspectives (see [6]-[10], [20]-[21], [23]-[26] and references therein).

A more complete scenario is obtained when, in addition, an external source D (u, υ, ω)
influences the kinetics of the cells by providing and dissipating density; the corresponding
mathematical formulation reads{

ut = ∇ · (A (u, υ, ω)∇u+B (u, υ, ω)∇υ + C (u, υ, ω)∇ω) +D (u, υ, ω) ,
τυt = ∆υ + E (u, υ, ω) ,
τωt = ∆ω + F (u, υ, ω) .

Confining our attention to the linear diffusion caseA (u, υ, ω) ≡ 1, and fixingB (u, υ, ω) =
−χ∇u, C (u, υ, ω) = ξ∇u with χ, ξ > 0, D (u, υ, ω) ≡ 0 and τ = 0, production rates
E (u, υ, ω) = −βυ + αus, F (u, υ, ω) = −δω + γur with α, β, δ, γ > 0, we have that
the sign of ξγ − χα (positive repulsion prevails over attraction, negative attraction prevails
over repulsion) establishes whether system (1.1) has unbounded solutions or all solutions
are bounded: see the significant contribution [19] and [4], [5], [12] for some details on the
issue.

In [19], the authors proved that the system (1.1) (when r = 1 and s = 1) is globally well-
posed in high dimensions if repulsion prevails over attraction in the sense that ξγ−χα > 0.
Also, Tao and Wang proved that for any N ≥ 2 and ξγ − χα > 0 with u0(x) ∈ W 1,∞(Ω)
is a non-negative function, there exists a unique triple (u, υ, ω) of non-negative bounded
functions belonging to C0(Ω× [0,∞))∩C2,1(Ω× (0,∞)), which solves (1.1) classically.
In [22], when zero-flux boundary conditions were fixed, Viglialoro obtained the results
which all excluding chemotactic collapse scenarios under certain correlations between the
attraction and repulsive effects describing the model. To be precise, for every α, β, γ, δ,
χ > 0, and r > s ≥ 1 (resp. s > r ≥ 1), there exists ξ∗ > 0 (resp. ξ∗ > 0) such
that if ξ > ξ∗ (resp. ξ ≥ ξ∗), any sufficiently regular initial datum u0(x) ≥ 0 (resp.
u0(x) ≥ 0 enjoying some smallness assumptions) produces a unique classical solution
(u, υ, ω) to problem (1.1) which is global, i.e. Tmax = ∞, and such that u, υ and ω are
uniformly bounded. Conversely, the same conclusion holds true for every α, β, γ, δ, χ,
ξ > 0, 0 < s < 1, r = 1 and any sufficiently regular u0(x) ≥ 0.

In this study, we obtain results on the improvement of the r and s exponents in the
nonlinear production.

The main result in this paper can be stated as follows.

Theorem 1.1 Let Ω ⊂ RN (N ≥ 3) be a bounded domain with smooth boundary. Assume
that α, β, δ, γ, χ, ξ > 0 and

s ≥ 2

N
, r >

N − 2

N
s.

Let 0 ≤ u0(x) ∈ C0
(
Ω
)

be any nontrivial initial datum. Then there exists ξ∗ > 0 such
that, if ξ > ξ∗, problem (1.1) admits a unique solution (u, υ, ω) of nonnegative and bounded
functions in the class

C0(Ω × [0,∞)) ∩ C2,1(Ω × (0,∞))× C2,0(Ω × (0,∞))× C2,0(Ω × (0,∞)).

Remark 1.1 In our this paper, the conditions r > s ≥ 1 (resp. s > r ≥ 1) in [22] extend
as conditions s ≥ 2

N , r >
N−2
N s. Namely, in Theorem 1.1 we improve the current results

in [22].
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For simplicity, we denote ‖u‖Lp(Ω) := ‖u‖p, ‖u‖W 1,p(Ω) := ‖u‖1,p = ‖u‖p + ‖∇u‖p,
‖u‖W 2,p(Ω) := ‖u‖2,p = ‖u‖p + ‖∆u‖p (1 ≤ p ≤ ∞).

The local solvability to problem (1.1) for sufficiently smooth initial data can be ad-
dressed by methods involving standard parabolic regularity theory in a suitable fixed point
framework. In fact, one can thereby also derive a sufficient condition for extensibility of a
given local-in-time solution. Details of the proof can be founded in [2], [9].

Lemma 1.1 LetΩ be a bounded and smooth domain in RN ,N ≥ 3. Assumeα, β, δ, γ, χ, ξ >
0 and let 0 ≤ u0(x) ∈ C0

(
Ω
)

be any nontrivial initial datum. Then, problem (1.1) admits
a unique classical solution (u, υ, ω) of nonnegative functions, precisely in the class

C0(Ω × [0, Tmax))∩C2,1(Ω × (0, Tmax))×C2,0(Ω × (0, Tmax))×C2,0(Ω × (0, Tmax)).

Here Tmax ∈ (0,∞], denoting the maximal existence time, is such that (dichotomy crite-
rion) either Tmax = ∞ (global-in-time classical solution) or if Tmax < ∞ (local-in-time
classical solution) then necessarily

lim
t→Tmax

‖u (·, t)‖∞ =∞.

Moreover, ∫
Ω
u (·, x) = m :=

∫
Ω
u0 > 0 (1.2)

for all t ∈ (0, Tmax).

We need the well-known Gagliardo-Nirenberg interpolation inequality.

Lemma 1.2 (see [17]). Let Ω be a bounded Lipschitz domain in RN , and p, q, r, s ≥ 1,
j,m ∈ N0 and δ ∈

[
j
m , 1

]
satisfying

1

p
=

j

m
+

(
1

r
− m

N

)
δ +

1− δ
q

.

Then there are positive constants C1 and C2 such that for all functions ϕ ∈ Lq (Ω) with
∇ϕ ∈ Lr (Ω), ϕ ∈ Ls (Ω),∥∥Djϕ

∥∥
p
≤ C1 ‖Dmϕ‖δr ‖ν‖

1−δ
q + C2 ‖ϕ‖s .

Lemma 1.3 (see [22]). Let γ0 > 1 and l, L, C > 0 fulfill the strict inequality

C <

(
lγ0

Lγ0

) 1
γ0−1

(
γ0 − 1

γ0

)
.

Then there exists φ∗ > 0 such that solutions of the initial problem{
φ′(t) ≤ −lφ (t) + Lφγ0 (t) for all t > 0,

φ (0) ≤ φ∗,

satisfy φ (t) ≤ φ∗ for all t ∈ (0,∞).
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Lemma 1.4 (see [22]). Let Ω ⊂ RN , N ≥ 2, be a bounded and smooth domain. Then we
have these estimates:

(i) For any p > 1 and 0 < θ0 =
p
2
− 1

2
p
2
+ 1
N
− 1

2

< 1, there is a constant c∗ > 0 such that all

functions 0 ≤ ψ ∈ L1(Ω) with m :=
∫
Ω ψ and ∇ψ

p
2 ∈ L2(Ω), fulfill∫

Ω
ψp ≤ 4 (p− 1)

p

∫
Ω

∣∣∣∇ψ p
2

∣∣∣2 + c∗.

(ii) For any arbitrary reals ε1 > 0, s ≥ 1 and p > Ns
2 ≥ 1, there exist computable

and m-independent constants d1(ε1), c1 > 0 such that all functions 0 ≤ ψ ∈ Lp(Ω) with
m :=

∫
Ω ψ and∇ψ

p
2 ∈ L2(Ω), comply with

∫
Ω
ψp+s ≤ ε1

∫
Ω

∣∣∣∇ψ p
2

∣∣∣2 + d1(ε1)

(∫
Ω
ψp
) 2p+2s−Ns

2p−Ns
+ c1m

p+s.

Lemma 1.5 (see [18]). Under the assumptions of Lemma 1 .1 , the solution of (1.1) satisfies∫
Ω
υ (·, t)l +

∫
Ω
ω (·, t)l ≤ C0 for all t ∈ (0, Tmax),

where C0 > 0 and l ∈
[
1, N

(N−2)+

)
.

2 Proof of Theorem 1.1

In this section, we prove the problem (1.1) possesses a unique global-in-time and bounded
classical solution. We should at first establish that for any p > 1, there exists C > 0 such
that

‖u (·, t)‖p ≤ C

for all t ∈ (0, Tmax).
Multiplying the first equation in (1.1) by up−1 for any p > max {1, s− r}, integrating

by parts can calculate that

1

p

d

dt

∫
Ω
up ≤ − (p− 1)

∫
Ω
up−2 |∇u|2 + (p− 1)χ

∫
Ω
up−1∇u · ∇υ

− (p− 1) ξ

∫
Ω
up−1∇u · ∇ω

: = I1 + I2 + I3 (2.1)

for all t ∈ (0, Tmax). We estimate the terms I1 + I2 + I3. We rewrite the first term I1 as

I1 = − (p− 1)

∫
Ω
up−2 |∇u|2 = −4 (p− 1)

p2

∫
Ω

∣∣∣∇u p2 ∣∣∣2 . (2.2)
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We next deal with the second term I2 and third term I3. As to the former, integration by
parts and the second equation in (1.1) lead to

I2 = (p− 1)χ

∫
Ω
up−1∇u · ∇υ

= (p− 1)χ

∫
Ω
∇
[∫ u

0
sp−1ds

]
· ∇υ

= − (p− 1)χ

∫
Ω

[∫ u

0
sp−1ds

]
∆υ

= − (p− 1)χ

∫
Ω

[∫ u

0
sp−1ds

]
(βυ − αus)

≤ (p− 1)χα

p

∫
Ω
up+s (2.3)

since υ ≥ 0. Similarly, we have

I3 = − (p− 1) ξ

∫
Ω
up−1∇u · ∇ω

= (p− 1) ξ

∫
Ω

[∫ u

0
sp−1ds

]
∆ω

= (p− 1) ξδ

∫
Ω

[∫ u

0
sp−1ds

]
ω

− (p− 1) ξγ

∫
Ω

[∫ u

0
sp−1ds

]
ur

=
(p− 1) ξδ

p

∫
Ω
upω − (p− 1) ξγ

p

∫
Ω
up+r

≤ (p− 1) ξδ

p

∫
Ω
upω − (p− 1) ξγ

p

∫
Ω
up+r (2.4)

for all t ∈ (0, Tmax). Substituting (2.2)− (2.4) into (2.1), we derive

1

p

d

dt

∫
Ω
up ≤ −4 (p− 1)

p2

∫
Ω

∣∣∣∇u p2 ∣∣∣2 + (p− 1)χα

p

∫
Ω
up+s

+
(p− 1) ξδ

p

∫
Ω
upω − (p− 1) ξγ

p

∫
Ω
up+r (2.5)

for all t ∈ (0, Tmax). By using Young inequality we get

(p− 1) ξδ

p

∫
Ω
upω ≤ (p− 1) ξγ

2p

∫
Ω
up+r + C1

∫
Ω
ω
p+r
r (2.6)

for some C1 > 0. We estimate the term
∫
Ω ω

p+r
r . Noting that ω solves the following linear

elliptic equations {
−∆ω + α1ω = α2u

s, x ∈ Ω,
∂ω
∂ν = 0, x ∈ ∂Ω

for all t ∈ (0, Tmax) and α1, α2 > 0. Thus applying the Agmon-Douglis-Nirenberg Lp
estimates on linear elliptic equations with the homogeneous Neumann boundary condition,
we conclude that there exists C0 > 0 depending only on p and Ω such that

‖ω (·, t)‖2,p ≤ C0 ‖us (·, t)‖p ,
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for all t ∈ (0, Tmax). For any p > max {1, s− r}, we can find µ0 ∈
[
1, N

(N−2)+

)
. Con-

sequently, an application of the Gagliardo-Nirenberg inequality with Lemma 1.5, there are
C2, C3, C4 > 0 such that

C1

∫
Ω
ω
p+r
r = C1 ‖ω‖

p+r
r
p+r
r

≤ C2

(
‖∆ω‖

p+r
r
θ1

p+r
s

‖ω‖
p+r
r

(1−θ1)
µ0 + ‖ω‖

p+r
r

µ0

)
≤ C3

(
‖∆ω‖

p+r
r
θ1

p+r
s

+ 1

)
≤ C4

(
‖us‖

p+r
r
θ1

p+r
s

+ 1

)
= C4

(
‖u‖

s(p+r)
r

θ1
p+r + 1

)
, (2.7)

for all t ∈ (0, Tmax), where θ1 =
1
µ0
− r
p+r

1
µ0

+ 2
N
− s
p+r

∈ (0, 1). Due to r > N−2
N s, implies that

s (p+ r)

r
.

N−2
N − r

p+r

1− s
p+r

=
p+ r
r
s

.

N−2
N − r

p+r

1− s
p+r

< p+ r. (2.8)

Therefore, from (2.7) with the inequality (2.8), we get

C1

∫
Ω
ω
p+r
r ≤ C4

∫
Ω
up+r + C4. (2.9)

From (2.5) , (2.6) and (2.9), we obtain

1

p

d

dt

∫
Ω
up ≤ −4 (p− 1)

p2

∫
Ω

∣∣∣∇u p2 ∣∣∣2 + (p− 1)χα

p

∫
Ω
up+s

+

(
C4 −

(p− 1) ξγ

2p

)∫
Ω
up+r + C4. (2.10)

On the other hand, there exists a constant ξ∗ > 0 such that ξ > ξ∗ = 2pC4

γ(p−1) in the inequality
(2.10), we have

d

dt

∫
Ω
up ≤ −4 (p− 1)

p

∫
Ω

∣∣∣∇u p2 ∣∣∣2 + (p− 1)χα

∫
Ω
up+s + pC4. (2.11)

Hence, from (2.11) and Lemma 1.4 (i), we get

d

dt

∫
Ω
up ≤ −2 (p− 1)

p

∫
Ω

∣∣∣∇u p2 ∣∣∣2 + (p− 1)χα

∫
Ω
up+s − 1

2

∫
Ω
up + C5
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with C5 = pC4 +
c∗
2 . We estimate the term

∫
Ω u

p+s. Let p > Ns
2 with s ≥ 2

N . Now using
the Gagliardo-Nirenberg inequality with (1.2), we have

(p− 1)χα

∫
Ω
up+s = (p− 1)χα

∥∥∥u p2∥∥∥ 2(p+s)
p

2(p+s)
p

≤ C̃

(∥∥∥∇u p2∥∥∥θ2
2

∥∥∥u p2∥∥∥1−θ2
2

+
∥∥∥u p2∥∥∥

2
p

) 2(p+s)
p

≤ C̃1

(∥∥∥∇u p2∥∥∥ 2(p+s)
p

θ2

2

∥∥∥u p2∥∥∥ 2(p+s)
p

(1−θ2)

2
+mp+s

)

= C̃1

(∥∥∥∇u p2∥∥∥ 2(p+s)
p

θ2

2
‖u‖(p+s)(1−θ2)p +mp+s

)
,

for some C̃, C̃1 > 0 and since p > Ns
2 ⇒ p > (N − 2) s2 with s ≥ 2

N and θ2 = Ns
2(p+s) ∈

(0, 1). Next, an application of the Young inequality we have

(p− 1)χα

∫
Ω
up+s ≤ C̃1

(∥∥∥∇u p2∥∥∥2 p+sp Ns
2(p+s)

2
‖u‖

(p+s)
(
1− Ns

2(p+s)

)
p +mp+s

)

= C̃1

(∥∥∥∇u p2∥∥∥2Ns2p

2
‖u‖

2p+2s−Ns
2

p +mp+s

)
≤ ε

∫
Ω

∣∣∣∇u p2 ∣∣∣2 + C̃

(∫
Ω
up
) 2p+2s−Ns

2p−Ns
+ C̃1m

p+s, (2.12)

for some ε > 0, C̃ = C (ε) > 0. Hence, from (2.11), (2.12) and Lemma 1.4 (ii), we
deduce that

d

dt

∫
Ω
up ≤

(
ε− 2 (p− 1)

p

)∫
Ω

∣∣∣∇u p2 ∣∣∣2 + C̃

(∫
Ω
up
) 2p+2s−Ns

2p−Ns

−1

2

∫
Ω
up + C6

with C6 = C5 + C̃1m
p+s. Taking ε = 2(p−1)

p , we obtain

d

dt

∫
Ω
up ≤ C̃

(∫
Ω
up
) 2p+2s−Ns

2p−Ns
− 1

2

∫
Ω
up + C6

for all t ∈ (0, Tmax). Finally, by using Lemma 1.3 with φ (t) :=
∫
Ω u

p and γ0 := 2p+2s−Ns
2p−Ns >

1, we get

φ′ (t) ≤ C̃φ
2p+2s−Ns

2p−Ns (t)− 1

2
φ (t) + C6

for all t ∈ (0, Tmax). Because of this, there exists C > 0 such that ‖u (·, t)‖p ≤ C for all
t ∈ (0, Tmax).

Proof of Theorem 1.1. Let p > max{sN, rN, 1}. By the elliptic Lp-estimate to the
two elliptic equations in (1.1), we get

‖υ(·, t)‖2, p
s
< C and ‖ω(·, t)‖2, p

r
< C for all t ∈ (0, Tmax) ,
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and hence

‖υ(·, t)‖C1(Ω) < C and ‖ω(·, t)‖C1(Ω) < C for all t ∈ (0, Tmax)

by the Sobolev imbedding theorem. Now the Moser iteration technique [1], [20] ensures

‖u(·, t)‖∞ ≤ C for all t ∈ (0, Tmax) .

This concludes by Lemma 1.1 that Tmax =∞. The proof of Theorem 1.1 is completed.
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