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Abstract. In this article, inspired by the work of Wang on some infinite summation formulas of Appell
functions in two variables and by the help of some famous summation theorems, is introduced some
new inverse pair symbolic operators with the multidimensional analogues. The properties of symbolic
operators are studied and the infinite summation formulas for the four multiple Lauricella’s functions are
obtained.
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1 Introduction and definitions

Hypergeometric functions in one and more variables occur naturally in a wide variety of
problems in applied mathematics, statistics, operations research, theoretical physics, and
engineering sciences. For instance, Srivastava and Kashyap [24] presented a number of in-
teresting applications of hypergeometric functions in queuing theory and related stochastic
processes. The work of Niukkanen [21] on the multiple hypergeometric functions is moti-
vated by various physical and quantum chemical applications of such functions. Especially,
many problems in gas dynamics lead to degenerate second-order partial differential equa-
tions, which are solvable in terms of multiple hypergeometric functions. Among examples,
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we can cite the problem of adiabatic flat-parallel gas flow without whirlwind, the flow prob-
lem of supersonic current from vessel with flat walls, and a number of other problems
connected with gas flow [14].

The success of the theory of hypergeometric functions in one variable has stimulated the
development of a corresponding theory in two and more variables. Appell [1] has defined
in 1880 four functions Fi (i = 1, 2, 3, 4), all of which are analogous of Gaussian hyper-
geometric functions F (a, b; c; z). A great merit in the further development of the theory
of the hypergeometric series in two variables belongs to Horn [19], who gave a general
definition and classification order of double hypergeometric series. He has investigated the
convergence of hypergeometric series of two variables and established the systems of par-
tial differential equations which they satisfy. Horn investigated in particular hypergeometric
series of second order and found some series, which are either expressible in terms of one
variable or are products of two hypergeometric series of one variable. According his investi-
gations, there are essentially 34 (14 complete and 20 confluent) convergent series of second
order.

Lauricella further generalized the four Applell series F1, F2, F3, F4 to the case of n vari-
ables and defined multiple hypergeometric series denoted by F (n)

A , F (n)
B , F (n)

C and F (n)
D .

These functions have important applications (see, [20, p. 114]). For instance, explicit fun-
damental solutions of a multidimensional singular elliptic equation are expressed in terms
of the Lauricella’s hypergeometric function F (n)

A [10], [11]. For a given multiple hyperge-
ometric function, it is useful to fund a decomposition formula, which would express the
multivariable hypergeometric function in terms of products of several simpler hypergeo-
metric functions, involving fewer variables. The familiar operator method of Burcnall and
Chaundy (see, [7], [8]) has been used by them rather extensively for finding decomposition
formulas for hypergeometric functions of two variables in terms of the classical Gaussian
hypergeometric function of one variable. In the papers [3], [4], [5], [6] interesting results
were obtained on the study of the double hypergeometric functions. Recently, in the work
[18], are obtained the formulas of analytic continuation for the Lauricella’s hypergeometric
functions in three variables.

Following the works [7], [8], Hasanov and Srivastava [16], [17] introduced operators
generalizing the Burcnall–Chaundy operators and found expansion formulas for many triple
hypergeometric functions, and they proved recurrent formulas when the dimension of hy-
pergeometric function exceeds three. However, due to the recurrence, additional difficul-
ties may arise in the applications of those decomposition formulas. Recently, in the works
[12], [13], [15], some new non-recurrence decomposition formulas for n-variable Lauri-
cella functions F (n)

A and F (n)
B are obtained and directly applied to the solving boundary

value problems for multidimensional singular elliptic equation.
In the present paper, inspired by the work [25] of Wang, we establish the infinite sum-

mation formulas for Lauricella functions in n variables F (n)
A , F (n)

B , F (n)
C and F

(n)
D .

The plan of our paper is as follows. In Section 2 we briefly give some preliminary in-
formation, which will be used later. In Section 3, we define inverse pair symbolic operators
Hx(a, b), H̄x(a, b) and their multidimensional analogues. In Sections 4 and 5, we write
the infinity summation formulas associated with one-dimensional and multi-dimensional
inverse pair operators, respectively.

2 Preliminaries

Throughout this work it is convenient to employ the Pochhammer symbol (λ)n defined by

(λ)n = λ(λ+ 1)...(λ+ n− 1), n = 1, 2, ...; (λ)0 ≡ 1
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for which the following equalities are true:

(1)n = n!, (λ)n = Γ (λ+ n)/Γ (λ), (λ)n+k = (λ)n(λ+ n)k,

where Γ (z) is a famous Euler’s gamma-function.
It is known that the Euler gamma-function Γ (a) has property [9, p. 17, Eq. (2)]

Γ (a+m) = Γ (a)(a)m.

Here (a)m is a Pochhammer symbol, for which the equality (a)m+n = (a)m(a+m)n and
its particular case (a)2m = (a)m(a+m)m are true [9, p. 67, Eq. (5)].

A function

F (a, b; c;x) =

∞∑
k=0

(a)k(b)k
(c)kk!

xk, c 6= 0,−1,−2, ... (2.1)

is known as the Gaussian hypergeometric function.
If Rec > Reb > 0, we have Euler’s formula [9, p. 114, Eq.(1) ]

F (a, b; c; z) =
Γ (c)

Γ (b)Γ (c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt. (2.2)

Here the right-hand side of (2.2) is a one-valued analytic function of the argument z within
the domain |arg(1− z)| < π. Therefore, the function (2.2) gives also analytic continuation
of F (a, b; c; z).

The integral representation (2.2) allows to derive the Boltz formula [9, p. 105, Eq. (3)]

F (a, b; c; z) = (1− z)−bF
(
c− a, b; c; z

z − 1

)
(2.3)

and get the value of the Gaussian function in unity (the summation formula) [9, p. 73, Eq.
(73)]

F (a, b; c; 1) =
Γ (c)Γ (c− a− b)
Γ (c− a)Γ (c− b)

, Re(c− a− b) > 0, c 6= 0,−1,−2, ... (2.4)

When we consider the properties of a hypergeometric function, it is very important to
study the infinite sums of this function. For example, the following formula shows that the
infinite sum of a hypergeometric function can give an elementary function [23, p. 413, Eq.
6.7.1(8)]

∞∑
k=0

(a)k(c− b)k
k!(c)k

zkF (a+ k, b; c+ k; z) = (1− z)−a. (2.5)

The double Appell hypergeometric functions are defined as follows [1]:

F1

(
a, b, b′; c;x, y

)
=

∞∑
m,n=0

(a)m+n(b)m (b′)n
(c)m+nm!n!

xmyn, (2.6)

F2

(
a, b, b′; c, c′;x, y

)
=

∞∑
m,n=0

(a)m+n(b)m (b′)n
(c)m (c′)nm!n!

xmyn, (2.7)

F3

(
a, a′, b, b′; c;x, y

)
=

∞∑
m,n=0

(a)m (a′)n (b)m (b′)n
(c)m+nm!n!

xmyn, (2.8)
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F4

(
a, b; c, c′;x, y

)
=

∞∑
m,n=0

(a)m+n(b)m+n

(c)m (c′)nm!n!
xmyn. (2.9)

We introduce the following notations:

a :=
(
a1, ..., an

)
, b :=

(
b1, ..., bn

)
, c :=

(
c1, ..., cn

)
; x :=

(
x1, ..., xn

)
,

(a)k :=
n∏

j=1

(aj)kj ; xk :=
n∏

j=1

x
kj
j ,

k := (k1, ..., kn) , |k| := k1 + ...+ kn, k1 ≥ 0, ..., kn ≥ 0; K! := k1!k2!...kn!,

l := (l1, ..., ln) , |l| := l1 + ...+ ln, l1 ≥ 0, ..., ln ≥ 0; L! := l1!l2!...ln!.

The Lauricella hypergeometric functions in three (real or complex) variables are defined
as following [2, p. 114]

F
(n)
A (a,b;c;x) =

∞∑
|k|=0

(a)|k| (b)k
K! (c)k

xk (|x1|+ ...+ |xn| < 1) , (2.10)

F
(n)
B (a,b; c;x) =

∞∑
|k|=0

(a)k (b)k
K!(c)|k|

xk, (|x1| < 1, ..., |xn| < 1) , (2.11)

F
(n)
C (a, b;c;x) =

∞∑
|k|=0

(a)|k|(b)|k|

K! (c)k
xk

(√
|x1|+ ...+

√
|xn| < 1

)
, (2.12)

F
(n)
D (a,b; c;x) =

∞∑
|k|=0

(a)|k| (b)k
K!(c)|k|

xk, (|x1| < 1, ..., |xn| < 1) . (2.13)

In all definitions (2.10)–(2.13), as usual, the denominator parameters c, c1, ..., cn are neither
zero nor a negative integer.

Clearly, we have

F
(2)
A = F2, F

(2)
B = F3, F

(2)
C = F4, F

(2)
D = F1, F

(1)
A = F

(1)
B = F

(1)
C = F

(1)
D ≡ F,

where F1, ..., F4 are the Appell series defined by (2.6)–(2.9) and F is Gaussian hypergeo-
metric function defined in (2.1).

Indeed, in all definitions (2.10)–(2.13) a number of variables is natural: n = 1, 2, ....
However, in our further studies, if n = 0, then we accept that

F
(0)
A = F

(0)
B = F

(0)
C = F

(0)
D ≡ 1.

The following summation formula [2, p. 117 ]

F
(n)
D (a,b; c;1, ..., 1) =

Γ (c)Γ (c− a−B)

Γ (c− a)Γ (c−B)
, Re(c− a−B) > 0 (2.14)

is valid, where B := b1 + ...+ bn.
It is easy to see that the formula (2.14) generalizes the famous Gaussian summation

formula (2.4).
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3 The inverse pair operators Hx(a, b) and H̄x(a, b)

Burchnall and Chaundy [7], [8] systematically presented a number of expansions for some
double hypergeometric functions in series of simpler hypergeometric functions. However,
the Burchnall–Chaundy method is limited to functions of two variables.

Developing the idea of Burchnall and Chaundy, we introduce the following mutually
inverse symbolic operators for n variables:

Hx (α, β) :=
Γ
(
α+ δ1 + ...+ δn

)
Γ (β)

Γ (α)Γ
(
β + δ1 + ...+ δn

) (3.1)

and

H̄x (α, β) :=
Γ (α)Γ

(
β + δ1 + ...+ δn

)
Γ (β)Γ

(
α+ δ1 + ...+ δn

) , (3.2)

where

x :=
(
x1, ..., xn

)
; δj = xj

∂

∂xj
, j = 1, ..., n.

In the one-dimensional case, these operators look like

Hxj (α, β) :=
Γ (α+ δj)Γ (β)

Γ (α)Γ (β + δj)
, j = 1, ..., n (3.3)

and

H̄xj (α, β) :=
Γ (α)Γ (β + δj)

Γ (β)Γ (α+ δj)
, j = 1, ..., n. (3.4)

Using the Gaussian formula (2.4) for F (a, b; c; 1) , we get

Hxj (α, β) =

∞∑
r=0

(β − α)r (−δj)r
(β)r r!

, j = 1, ..., n (3.5)

and

H̄xj (α, β) =
∞∑
r=0

(β − α)r (−δj)r
(1− α− δj)r r!

, j = 1, ..., n. (3.6)

Similarly, using the summation formula (2.14) for F (n)
D

(
a,b; c;1, ..., 1

)
, we get

Hx (α, β) =

∞∑
|k|=0

(β − α)|k|

K!(β)|k|

n∏
j=1

(−δj)kj (3.7)

and

H̄x (α, β) =
∞∑
|k|=0

(β − α)|k|

K!(1− α− δ)|k|

n∏
j=1

(−δj)kj . (3.8)

Note, that for every analytic function f (z) the following Poole’s formula [22, p. 26, Eq.
(33)] (

−z ∂
∂z

)
r

{f(z)} = (−1)rzr
dr

dzr
{f(z)} (3.9)

is valid.
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The companion to the Poole’s formula (3.9), the following operator identity [22, p. 93,
Eq. (7)] (

a+ z
∂

∂z

)
r

{f(z)} = z1−a
dr

dzr
{
za+r−1f (z)

}
(3.10)

is valid for every analytic function f (z).
The operator identities (3.9) and (3.10) can be proved by the mathematical induction

method.

4 The infinity summation formulas associated with one-dimensional inverse pair
operators

Consider the inverse pair operators Hxj (α, β) and H̄xj (α, β), defined in (3.3) and (3.4),
respectively (1 ≤ j ≤ n). A composition of these operators r times will be denoted by

Hr
xr

(ar, br) := Hx1 (a1, b1)Hx2 (a2, b2) ...Hxr (ar, br) ,

H̄r
xr

(ar, br) := H̄x1 (a1, b1) H̄x2 (a2, b2) ...H̄xr (ar, br) ,

where ar :=
(
a1, ..., ar

)
, br :=

(
b1, ..., br

)
and xr :=

(
x1, ..., xr

)
are vectors with r

components (1 ≤ r ≤ n).

Theorem 4.1 Let n be a number of the variables of Lauricella’s functions defined in (2.10)–
(2.13). If r is a natural number and 1 ≤ r ≤ n, then the following symbolic forms hold

F
(n)
A (a,b;c;x) = Hr

xr
(br,dr)F

(n)
A (a,dr,br+1,n;c;x) , (4.1)

F
(n)
A (a,b;c;x) = H̄r

xr
(dr,br)F

(n)
A (a,dr,br+1,n;c;x) , (4.2)

F
(n)
A (a,b;c;x) = Hr

xr
(br, cr) (1−Xr)

−a×

×F (n−r)
A

(
a,br+1,n; cr+1,n;

xr+1

1−Xr
, ...,

xn
1−Xr

)
; (4.3)

F
(n−r)
A

(
a,br+1,n;cr+1,n;

xr+1

1−Xr
, ...,

xn
1−Xr

)
=

= (1−Xr)
a H̄r

xr
(br, cr)F

(n)
A (a,b;c;x) ; (4.4)

F
(n)
B (a,b; c;x) = Hr

xr
(ar,dr)F

(n)
B (dr,ar+1,n; c;x) , (4.5)

F
(n)
B (a,b; c;x) = H̄r

xr
(dr,ar)F

(n)
B (dr,ar+1,n; c;x) ; (4.6)

F
(n)
C (a, b;c;x) = Hr

xr
(dr, cr)F

(n)
C (a, b;dr, cr+1,n;x) ; (4.7)

F
(n)
D (a,b; c;x) = Hr

xr
(br,dr)F

(n)
D (a,dr,br+1,n; c;x) , (4.8)

F
(n)
D (a,b; c;x) = H̄r

xr
(dr,br)F

(n)
D (a,dr,br+1,n; c;x) , (4.9)

where

br+1,n :=
(
br+1, ..., bn

)
, bn+1,n = ∅, cr+1,n :=

(
cr+1, ..., cn

)
, cn+1,n = ∅,

dr :=
(
d1, ..., dr

)
, Xr := x1 + ...+ xr, 1 ≤ r ≤ n.
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The symbolic forms (4.1)–(4.9) are used to obtain a large number of infinite summation
formulas of the multiple Lauricella’s hypergeometric functions. Namely, using the formulas
(3.5), (3.6) and applying them many times, by virtue of Poole’s formulas (3.9) and (3.10),
we get

F
(n)
A (a,b;c;x) =

∞∑
|kr|=0

(a)|kr|

r∏
j=1

[
(dj − bj)kj
kj ! (cj)kj

(−xj)kj
]
×

×F (n)
A (a+ |kr|,dr + kr,br+1,n; cr + kr, cr+1,n;x) , (4.10)

F
(n)
A (a,b;c;x) =

∞∑
|kr|=0

(a)|kr|

r∏
j=1

[
(bj − dj)kj
kj ! (cj)kj

x
kj
j

]
×

×F (n)
A (a+ |kr|,dr,br+1,n; cr + kr, cr+1,n;x) , (4.11)

F
(n)
A (a,b;c;x) = (1−Xr)

−a
∞∑
|kr|=0

(a)|kr|

r∏
j=1

[
(cj − bj)kj
kj ! (cj)kj

(
−xj

1−Xr

)kj
]
×

×F (n−r)
A

(
a+ |kr|,br+1,n; cr+1,n;

xr+1

1−Xr
, ...,

xn
1−Xr

)
; (4.12)

F
(n−r)
A

(
a,br+1,n; cr+1,n;

xr+1

1−Xr
, ...,

xn
1−Xr

)
= (1−Xr)

a×

×
∞∑
|kr|=0

(a)|kr|

r∏
j=1

[
(cj − bj)kj
kj ! (cj)kj

x
kj
j

]
· F (n)

A (a+ |kr|,b; cr + kr, cr+1,n;x) ; (4.13)

F
(n)
B (a,b;c;x) =

∞∑
|kr|=0

1

(c)|kr|

r∏
j=1

[
(dj − aj)kj (bj)kj

kj !
(−xj)kj

]
×

×F (n)
B (dr + kr,ar+1,n,br + kr,br+1,n; c+ |kr|; x) , (4.14)

F
(n)
B (a,b;c;x) =

∞∑
|kr|=0

1

(c)|kr|

r∏
j=1

[
(aj − dj)kj (bj)kj

kj !
x
kj
j

]
×

×F (n)
B (dr,ar+1,n,br + kr,br+1,n; c+ |kr|; x) , (4.15)

F
(n)
C (a, b;c;x) =

∞∑
|kr|=0

(a)|kr|(b)|kr|

r∏
j=1

[
(cj − dj)kj
kj ! (cj)kj

(−xj)kj
]
×

×F (n)
C (a+ |kr|, b+ |kr|; dr + kr, cr+1,n; x) ; (4.16)

F
(n)
D (a,b; c;x) =

∞∑
|kr|=0

(a)|kr|

(c)|kr|

r∏
j=1

[
(dj − bj)kj

kj !
(−xj)kj

]
×

×F (n)
D (a+ |kr|,dr + kr,br+1,n; c+ |kr|; x) , (4.17)

F
(n)
D (a,b; c;x) =

∞∑
|kr|=0

(a)|kr|

(c)|kr|

r∏
j=1

[
(bj − dj)kj

kj !
x
kj
j

]
×
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×F (n)
D (a+ |kr|,dr,br+1,n; c+ |kr|; x) . (4.18)

In all formulas (4.10)–(4.18), n and r are natural numbers and 1 ≤ r ≤ n.
If n = r in the equality (4.12), then we obtain a famous formula for the Lauricella’s

function F (n)
A [2, p. 116, Eq. (9)]:

F
(n)
A (a,b;c;x) = (1−Xn)−a F

(n)
A

(
a, c− b; c;

x1
Xn − 1

, ...,
xn

Xn − 1

)
. (4.19)

We note that the formula (4.19) is a natural generalization of the Boltz formula (2.3).
If n = r in the equality (4.13), then the infinity summation of the Lauricella’s function

F
(n)
A is an elementary function:

∞∑
|k|=0

(a)|k|

n∏
j=1

[
(cj − bj)kj
kj ! (cj)kj

x
kj
j

]
· F (n)

A (a+ |k|,b; c + k;x) = (1−Xn)−a . (4.20)

It is easy to see, that the equality (4.20) generalizes a famous infinity summation formula
for the Gaussian hypergeometric function (2.5).

5 The infinity summation formulas associated with multi-dimensional inverse pair
operators

In this section, we consider the multi-dimensional inverse pair operators defined in (3.1)
and (3.2).

Theorem 5.1 The following symbolic forms are valid:

F
(n)
A (a,b;c;x) = Hx (a, d)F

(n)
A (d,b;c;x) , (5.1)

F
(n)
A (a,b;c;x) = H̄x (d, a)F

(n)
A (d,b;c;x) ; (5.2)

F
(n)
B (a,b; c;x) = Hx (d, c)F

(n)
B (a,b; d;x) , (5.3)

F
(n)
B (a,b; c;x) = H̄x (c, d)F

(n)
B (a,b; d;x) ; (5.4)

F
(n)
C (a, b;c;x) = Hx (a, d)F

(n)
C (d, b;c;x) , (5.5)

F
(n)
C (a, b;c;x) = H̄x (d, a)F

(n)
C (d, b;c;x) , (5.6)

F
(n)
C (a, b;c;x) = Hx (a, d1)Hx (b, d2)F

(n)
C (d1, d2;c;x) , (5.7)

F
(n)
C (a, b;c;x) = H̄x (d1, a) H̄x (d2, b)F

(n)
C (d1, d2;c;x) ; (5.8)

F
(n)
D (a,b; c;x) = Hx (a, d)F

(n)
D (d,b; c;x) , (5.9)

F
(n)
D (a,b; c;x) = H̄x (d, a)F

(n)
D (d,b; c;x) , (5.10)
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F
(n)
D (a,b; c;x) = Hx (d, c)F

(n)
D (a,b; d;x) , (5.11)

F
(n)
D (a,b; c;x) = Hx (a, c)

n∏
j=1

(1− xj)−bj ; (5.12)

n∏
j=1

(1− xj)−bj = H̄x(a, c)F
(n)
D (a,b; c;x) . (5.13)

As can be seen from the theorem, each of F (n)
A and F (n)

B has two symbolic forms, and
each of F (n)

C and F (n)
D has four symbolic forms. The symbolic forms (5.1)–(5.13) are used to

obtain a large number of the infinity summation formulas of multiple Lauricella’s functions.
For this purpose, in addition to the formulas (3.7) and (3.8), we will also use the following
equalities:

Hx (a, d1)Hx (b, d2) =
∞∑

|k|+|l|=0

(d1 − a)|k| (d2 − b)|l| (b)|k|
K!L! (d1)|k| (d2)|k|+|l|

n∏
j=1

(−δj)kj+lj
, (5.14)

H̄x (d1, a) H̄x (d2, b) =

∞∑
|k|+|l|=0

(−1)|k| (a− d1)|k|
K!L! (b− d2)|k|

(
1− d1 − δ1 − ...− δn

)
|k|
×

×
(b− d2)|k|+|l| (b)|k|(

1− d2 − δ1 − ...− δn
)
|k|+|l|

n∏
j=1

(−δj)kj+lj
. (5.15)

Applying the formulas (3.7) and (3.8) twice, one can easily obtain the equalities (5.14)
and (5.15), respectively.

Therefore, we have the following infinity summation formulas:

F
(n)
A (a,b;c;x) =

∞∑
|k|=0

(−1)|k| (d− a)|k| (b)k

K!(c)k
xk

×F (n)
A (d+ |k|,b + k;c + k;x) , (5.16)

F
(n)
A (a,b;c;x) =

∞∑
|k|=0

(a− d)|k| (b)k

K!(c)k
xkF

(n)
A (d,b + k;c + k;x) ; (5.17)

F
(n)
B (a,b; c;x) =

∞∑
|k|=0

(−1)|k| (c− d)|k| (a)k (b)k

K! (d)|k| (c)|k|
xk

×F (n)
B (a + k,b + k; d+ |k|; x) , (5.18)

F
(n)
B (a,b; c;x) =

∞∑
|k|=0

(d− c)|k| (a)k (b)k

K! (d)|k| (c)|k|
xkF

(n)
B (a + k,b + k; d; x) ; (5.19)

F
(n)
C (a, b;c;x) =

∞∑
|k|=0

(−1)|k| (d− a)|k| (b)|k|

K!(c)k
xk
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×F (n)
C (d+ |k|, b+ |k|; c + k; x) , (5.20)

F
(n)
C (a, b;c;x) =

∞∑
|k|=0

(a− d)|k| (b)|k|

K!(c)k
xkF

(n)
C (d, b+ |k|; c + k; x) , (5.21)

F
(n)
C (a, b;c;x) =

∞∑
|k|+|l|=0

(−1)|k|+|l| (d1 − a)|k| (d2 − b)|l| (b)|k| (d1)|k|+|l|
K!L! (d1)|k| (c)k+l

xk+l×

×F (n)
C (d1 + |k|+ |l|, d2 + |k|+ |l|; c + k + l; x) , (5.22)

F
(n)
C (a, b;c;x) =

∞∑
|k|+|l|=0

(−1)|l| (a− d1)|k| (b− d2)|k|+|l| (b)|k|
K!L! (b− d2)|k| (c)k+l

xk+l

×F (n)
C (d1 + |l|, d2 + |l|; c + k + l; x) ; (5.23)

F
(n)
D (a,b; c;x) =

∞∑
|k|=0

(−1)|k| (d− a)|k| (b)k

K!(c)|k|
xk

×F (n)
D (d+ |k|,b + k; c+ |k|;x) , (5.24)

F
(n)
D (a,b; c;x) =

∞∑
|k|=0

(a− d)|k| (b)k

K!(c)|k|
xkF

(n)
D (d,b + k; c+ |k|;x) , (5.25)

F
(n)
D (a,b; c;x) =

∞∑
|k|=0

(−1)|k|(a)|k| (c− d)|k| (b)k

K!(d)|k| (c)|k|
xk

×F (n)
D (a+ |k|,b + k; d+ |k|;x) , (5.26)

F
(n)
D (a,b; c;x) =

n∏
j=1

[
(1− xj)−bj

]
· F (n)

D

(
c− a,b; c;

x1
x1 − 1

, ...,
xn

xn − 1

)
; (5.27)

n∏
j=1

[
(1− xj)−bj

]
=

∞∑
|k|=0

(c− a)|k| (b)k

K!(c)|k|
xkF

(n)
D (a,b + k; c+ |k|;x) . (5.28)

The infinity summation formulas (4.10)–(4.18) and (5.16)–(5.28) can be proved without
symbolic methods by comparing coefficients of equal powers of x1, x2, ..., xn on both sides.
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