
Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci.
Mathematics, 44 (4), 50-66 (2024).
https://doi.org/10.30546/2617-7900.44.4.2024.050

Approximate solution of some classes of hypersingular integral
equations of the second kind

Elnur H. Khalilov?

Received: 11.05.2024 / Revised: 30.07.2024 / Accepted: 12.08.2024

Abstract. In this work, using regularization method, we reduce the hypersingular integral equations of
the exterior Neumann boundary value problem and the impedance exterior boundary value problem for
the Helmholtz equation to the weakly singular integral equations. Then, after having constructed quadra-
ture formulas for one class of curvilinear integrals, we replace the considered integral equations with the
system of algebraic equations. We prove that the obtained systems of algebraic equations are uniquely
solvable and the solutions of these systems converge to the solutions of the considered hypersingular
integral equations.
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1 Introduction and problem statement

As is known, in special cases (when the considered domain is a circle, a square etc.) it is
possible to find an exact solution of the exterior boundary value problems for the Helmholtz
equation in two-dimensional space. But, in many cases it is impossible to find an exact
solution of the exterior boundary value problems for the Helmholtz equation. This generates
interest for studying approximate solution of these problems. One of the methods to solve
exterior boundary value problems for the Helmholtz equation is to reduce it to an integral
equation of the second kind. Note that the main advantage of applying the integral equations
method to exterior boundary value problems is that this method allows reducing the problem
for an unbounded domain to the one for a bounded domain of lesser dimension.

Let D ⊂ R2 be a bounded domain with twice continuously differentiable boundary L,
and f , g and λ be the given continuous functions on L. Consider the following boundary
value problems for the Helmholtz equation:

Exterior Neumann boundary value problem. Find a function

u ∈ C2
(
R2\D̄

)
∩ C

(
R2\D

)
,
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which has a normal derivative in the sense of uniform convergence, i.e. the limit

∂u (x)

∂ν (x)
= lim

h→0
h>0

(ν (x) , gradu (x+ hν (x))) , x ∈ L,

exists uniformly inL, satisfies the Helmholtz equation∆u+k2u = 0 in R2\D̄, Sommerfeld
radiation condition(

x

|x|
, gradu (x)

)
− i ku (x) = o

(
1

|x|1/2

)
, x→∞,

uniformly in all directions x/|x| and the boundary condition

∂u(x)

∂v(x)
= f(x) on L,

where ν (x) is an outer unit normal at the point x ∈ L, ∆ is a Laplace operator, and k is a
wave number with Imk ≥ 0.

Impedance exterior boundary value problem. Find a function

u ∈ C2
(
R2\D̄

)
∩ C

(
R2\D

)
,

which has a normal derivative in the sense of uniform convergence, satisfies the Helmholtz
equation in R2\D̄, Sommerfeld radiation condition at infinity and the boundary condition

∂u (x)

∂ν (x)
+ λ (x) u (x) = g (x) on L,

where Im
(
k̄ λ (x)

)
≥ 0, x ∈ L.

Let the function u (x) be a solution of the exterior Neumann boundary value problem
for the Helmholtz equation. It was shown in [3, p. 103] that the unknown boundary values
ψ (x) = u (x) , x ∈ L satisfy the second kind integral boundary condition

ψ −Kψ = −Sf (1.1)

and the hypersingular integral equation of the first kind

Tψ = f + K̃f, (1.2)

where
(Sϕ) (x) = 2

∫
L
Φk (x, y) ϕ (y) dly, x ∈ L,

(Kϕ) (x) = 2

∫
L

∂Φk (x, y)

∂ν (y)
ϕ (y) dly, x ∈ L,(

K̃ϕ
)

(x) = 2

∫
L

∂Φk (x, y)

∂ν (x)
ϕ (y) dly, x ∈ L,

(Tϕ) (x) = 2
∂

∂ν (x)

(∫
L

∂Φk (x, y)

∂ν (y)
ϕ (y) dly

)
, x ∈ L,

Φ(x, y) is a fundamental solution of the Helmholtz equation, i.e.

Φk (x, y) =

{
1
2π ln 1

|x−y| for k = 0,
i
4H

(1)
0 (k |x− y|) for k 6= 0,
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H
(1)
0 is a zero degree Hankel function of the first kind defined by the formula H(1)

0 (z) =
= J0 (z) + iN0 (z),

J0 (z) =

∞∑
m=0

(−1)m

(m!)2

(z
2

)2m
is a Bessel function of zero degree,

N0 (z) =
2

π

(
ln
z

2
+ C

)
J0 (z) +

∞∑
m=1

(
m∑
l=1

1

l

)
(−1)m+1

(m!)2

(z
2

)2m
is a Neumann function of zero degree, and C = 0.57721... is an Euler’s constant.

Lyapunov’s counterexample shows ([4, p. 89–90]) that the derivative of the double-layer
potential with continuous density, in general, does not exist. Consequently, the operator T
is not defined in the space C(L) of all functions continuous on the curve L with the norm
‖ϕ‖∞ = max

x∈L
|ϕ (x)|. Besides, in spite of solvability of the integral equations (1.1) and

(1.2), the equation (1.1) has a unique solution if and only if the wave number k does not
coincide with the eigenvalue of the interior Dirichlet problem, and the equation (1.2) has a
unique solution if and only if the wave number k does not coincide with the eigenvalue of
the interior Neumann problem. But, it was shown in [3, p. 103] that if the function u (x)
has a normal derivative in the sense of uniform convergence, then the hypersingular integral
equation of the second kind

ψ −Kψ − iη Tψ = −Sf − iη
(
f + K̃f

)
, (1.3)

obtained from the linear combinations of the equations (1.1) and (1.2), is uniquely solvable
in N (L), the linear space of of all continuous functions ψ, whose double-layer potential
with the density ψ has continuous normal derivatives on both sides of L, where η 6= 0
is an arbitrary real number with η Rek ≥ 0. Note that the exterior Neumann boundary
value problem for the Helmholtz equation can be reduced to various integral equations,
whose approximate solutions have been studied in [1, 5, 12, 18]. The equation (1.3) has
an advantage that its solution is a boundary value of the solution of the exterior Neumann
boundary value problem on L. Besides, the function

u (x) =

∫
L

{
ψ (y)

∂Φk (x, y)

∂ν (y)
− f (y) Φk (x, y)

}
dly, x ∈ R2\D̄,

is a solution of the exterior Neumann boundary value problem if ψ ∈ N (L) is a solution
of the hypersingular integral equation (1.3). Also, it should be noted that the solution of the
equation (1.3) is a solution of the equation of the zero field method obtained by Waterman
[17] for acoustic wave scattering.

Further, in [3, p. 98] it was shown that the combination of the simple-layer and double-
layer potentials

u (x) =

∫
L

{
Φk (x, y) + i η

∂Φk (x, y)

∂ν (y)

}
ϕ (y) dly, x ∈ R2\D̄,

where η 6= 0 is an arbitrary real number with η Rek ≥ 0, is a solution of the impedance
exterior boundary value problem for the Helmholtz equation if the density ϕ is a solution
of the hypersingular integral equation

(1− i η λ) ϕ−
(
K̃ + i η T + i η λK + λS

)
ϕ = −2 g. (1.4)
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Note that in [11], the justification of the collocation method for the hypersingular in-
tegral equation of the exterior Neumann boundary value problem has been given, and in
[7], the justification of the collocation method for the hypersingular integral equation of the
impedance exterior boundary value problem for the Helmholtz equation has been provided
in three-dimensional space. But, it is known that the fundamental solution of the Helmholtz
equation in three-dimensional space has the form

Φk(x, y) =
exp (ik |x− y|)

4π |x− y|
, x, y ∈ R3, x 6= y,

and therefore, the integral operators appearing in the equations (1.3) and (1.4) differ strictly
from those appearing in the integral equations of the exterior Neumann boundary value
problem and impedance exterior boundary value problem for the Helmholtz equation in
three-dimensional space.

Note that in [13], the approximate solution methods for one class of hypersingular inte-
gral equations of the exterior Neumann boundary value problem for the Helmholtz equation
have been studied. In that work, after discretization, the author obtains hypersingular inte-
gral equations with simpler kernels. And in our work, we explore the approximate solution
methods for the hypersingular integral equations (1.3) and (1.4) by reducing them to the
weakly singular integral equation, which allows to find the solution of the obtained equa-
tions in a larger space and to impose weaker conditions on the given function f .

2 Justification of collocation method for hypersingular integral equation (1.3).

As the operator T is unbounded in the space N (L) ([3, p. 62]), let’s perform a regularization
of the equation (1.3). Let the wave number k0 not coincide with the eigenvalues of the
interior Dirichlet or Neumann problems (for this, it suffices to choose any value of k0 with
Imk0 > 0). In the sequel, we will assign zero index to our notations if the parameter k,
involved in the operators S, K̃ and T , is equal to k0. As the operator

A0 = −S0
(
I − K̃0

)−1 (
I + K̃0

)−1
: C (L)→ N (L)

is an inverse operator to T0 : N (L)→ C (L) ([3, p. 93]), the equation (1.3) can be rewritten
in the following equivalent form:

ψ +Aψ = Bf. (2.1)

The last equation is considered in the space C (L), where I is a unit operator in C (L),

Aψ =
1

i η
A0 (K + i η (T − T0)− I) ψ,

Bf =
1

i η
A0

(
S + iη

(
I + K̃

))
f.

It should be noted that the operators S, K and T − T0 are compact in the space C (L)
(see [3, p. 61-62]), and, therefore, the operator A is also compact in C (L) (see [3, p. 93]).
But despite the invertibility of the operators I + K̃0 and I − K̃0, the explicit forms of the

inverse operators
(
I + K̃0

)−1
and

(
I − K̃0

)−1
are unknown. Consequently, the explicit

forms of the operators A and B are also unknown.
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Remark 2.1 In [13], the solution of the equation obtained after discretization is considered
in the space C1,α (L), and the given function f satisfies the condition f ∈ C0,β (L), where
C0,β (L) is a Hölder space with index β, and C1,α (L) is a space of continuously differ-
entiable functions whose derivative satisfies the Hölder condition with exponent α, with
0 < α ≤ β < 1. As we see, the solution of the equation (2.1) is considered in the space
C (L) and f ∈ C (L). This is one of the advantages of our method.

To justify the collocation method, let’s first construct the quadrature formulas for (Aψ)(x)
and (Bf) (x) , x ∈ L. Assume that the curve L is defined by the parametric equation
x (t) = (x1 (t) , x2 (t)) , t ∈ [a, b]. Let’s divide the interval [a, b] into n > 2M0 (b− a) /d

equal parts: tp = a+ (b−a) p
n , p = 0, n, where

M0 = max
t∈[a,b]

√
(x′1 (t))2 + (x′2 (t))2 < +∞

([14, p. 560]) and d is a standard radius ([16, p. 400]). As control points, we consider x (τp),
p = 1, n, where τp = a + (b−a) (2p−1)

2n . Then the curve L is divided into elementary parts:

L =
n⋃
p=1

Lp, where Lp = {x (t) : tp−1 ≤ t ≤ tp}.

It is known ([2]) that
(1) ∀p ∈ {1, 2, ..., n}: rp(n) ∼ Rp(n), where

rp (n) = min {|x (τp)− x (tp−1)| , |x (tp)− x (τp)|} ,

Rp (n) = max {|x (τp)− x (tp−1)| , |x (tp)− x (τp)|} ,
and a (n) ∼ b (n) means

C1 ≤
a (n)

b (n)
≤ C2,

where C1 and C2 are positive constants independent of n;
(2) ∀p ∈ {1, 2, ..., n} : Rp (n) ≤ d/2;
(3) ∀p, j ∈ {1, 2, ..., n} : rj (n) ∼ rp (n);
(4) r (n) ∼ R (n) ∼ 1

n , where R (n) = max
p=1, n

Rp (n), r (n) = min
p=1, n

rp (n).

In the sequel, we will call this kind of division a division of the curve L into “regular”
elementary parts.

Let Ld (x) and Γd (x) be parts of the curve L and tangent line Γ (x) at the point
x ∈ L, respectively, contained inside the circle Bd (x) of radius d with centre at the point
x. Besides, let ỹ ∈ Γ (x) be a projection of the point y ∈ L. Then

|x− ỹ| ≤ |x− y| ≤ C1 (L) |x− ỹ| and mesLd (x) ≤ C2 (L)mesΓd (x) ,

where C1 (L) and C2 (L) are positive constants, depending only on L (if L is a circumfer-
ence, then C1 (L) =

√
2 and C2 (L) = 2).

Proceeding as in the proof of Lemma 2.1 of [8], we can prove the validity of the follow-
ing lemma.

Lemma 2.1 There exist the constants C ′0 > 0 and C ′1 > 0, independent of n, such that the
inequalities

C ′0 |y − x (τp)| ≤ |x (τj)− x (τp)| ≤ C ′1 |y − x (τp)|
hold for ∀p, j ∈ {1, 2, ..., n} , j 6= p, and ∀y ∈ Lj .
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Let
Φnk(x, y) =

i

4
H

(1)
0,n (k |x− y|) , x, y ∈ L, x 6= y,

where

H
(1)
0,n (z) = J0,n (z) + iN0,n (z) , J0,n (z) =

n∑
m=0

(−1)m

(m!)2

(z
2

)2m
and

N0,n (z) =
2

π

(
ln
z

2
+ C

)
J0,n (z) +

n∑
m=1

(
m∑
l=1

1

l

)
(−1)m+1

(m!)2

(z
2

)2m
.

It was proved in [9] and [10] that the expressions

(Snf) (x (τp))

=
2 (b− a)

n

n∑
j=1
j 6=p

Φnk (x (τp) , x (τj))

√
(x′1 (τj))

2 + (x′2 (τj))
2f (x (τj)) , (2.2)

(Knψ) (x (τp))

=
2 (b− a)

n

n∑
j=1
j 6=p

∂Φnk (x (τp) , x (τj))

∂ν (x (τj))

√
(x′1 (τj))

2 + (x′2 (τj))
2 ψ (x (τj)) , (2.3)

(
K̃nf

)
(x (τp))

=
2 (b− a)

n

n∑
j=1
j 6=p

∂Φnk (x (τp) , x (τj))

∂ν (x (τp))

√
(x′1 (τj))

2 + (x′2 (τj))
2 f (x (τj)) (2.4)

and
((T − T0)n ψ) (x (τp))

=
2 (b− a)

n

n∑
j=1
j 6=p

∂

∂ν (x (τp))

(
∂Φnk (x (τp) , x (τj))

∂ν (x (τj))
−
∂Φnk0 (x (τp) , x (τj))

∂ν (x (τj))

)

×
√

(x′1 (τj))
2 + (x′2 (τj))

2 ψ (x (τj)) (2.5)

are the quadrature formulas for the integrals (Sf) (x), (Kψ) (x),
(
K̃f
)

(x) and

((T − T0)ψ) (x) at the control points x (τp) , p = 1, n, respectively, with

max
p=1, n

|(Sf) (x (τp))− (Snf) (x (τp))| ≤M1
(
ω (f, 1/n) + ‖f‖∞

lnn

n

)
,

max
p=1, n

|(Kψ) (x (τp))− (Knψ) (x (τp))| ≤M
(
ω (ψ, 1/n) + ‖ψ‖∞

lnn

n

)
,

max
p=1, n

∣∣∣(K̃f) (x (τp))−
(
K̃nf

)
(x (τp))

∣∣∣ ≤M (
ω (f, 1/n) + ‖f‖∞

lnn

n

)
1 Hereinafter M denotes a positive constant which can be different in different inequalities.
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and
max
p=1, n

|((T − T0)ψ) (x (τp))− ((T − T0)n ψ) (x (τp))|

≤M
(
ω (ψ, 1/n) + ‖ψ‖∞

lnn

n

)
,

where ω (ϕ, δ) denotes the modulus of continuity of the function ϕ ∈ C (L), i.e.

ω (ϕ, δ) = max
|x−y|≤δ
x, y∈L

|ϕ(x)− ϕ(y)| , δ > 0.

Using the quadrature formulas (2.2), (2.3), (2.4) and (2.5), we obtain the expressions

(Cnψ) (x (τp)) =
n∑
j=1

cpj ψ (x (τj)) (2.6)

and

(Gnf) (x (τp)) =

n∑
j=1

gpj f (x (τj))

are the quadrature formulas for the integrals

(Cψ) (x) = (Kψ) (x) + i η ((T − T0) ψ) (x)− ψ (x)

and
(Gf) (x) = (Sf) (x) + i η

(
K̃f
)

(x) + i η f (x) ,

at the control points x (τp) , p = 1, n, respectively, and the following estimates hold:

max
p=1, n

|(Cψ) (x (τp))− (Cnψ) (x (τp))| ≤M
(
ω (ψ, 1/n) + ‖ψ‖∞

lnn

n

)
,

max
p=1, n

|(Gf) (x (τp))− (Gnf) (x (τp))| ≤M
(
ω (f, 1/n) + ‖f‖∞

lnn

n

)
,

where
cpp = −1 for p = 1, n,

cpj =
2 (b− a)

n

(
i η

∂

∂ν (x (τp))

(
∂
(
Φnk (x (τp) , x (τj))− Φnk0 (x (τp) , x (τj))

)
∂ν (x (τj))

)

+
∂Φnk (x (τp) , x (τj))

∂ν (x (τj))

) √
(x′1 (τj))

2 + (x′2 (τj))
2 for p , j = 1 , n, p 6= j,

and
gpp = iη for p = 1 , n,

gpj =
2 (b− a)

n

(
Φnk (x (τp) , x (τj)) + i η

∂Φnk (x (τp) , x (τj))

∂ν (x (τp))

)
×
√

(x′1 (τj))
2 + (x′2 (τj))

2 for p , j = 1 , n, p 6= j.

Denote by In the unit matrix of order n, and by Cn the space of n–dimensional vec-
tors zn = (zn1 , z

n
2 , . . . , z

n
n)T, znl ∈ C, l = 1, n , with the norm ‖zn‖ = max

l=1,n
|znl |,
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where “aT” means the transposition of the vector a. Consider the n−dimensional matrix
K̃n

0 =
(
k̃0pj

)n
p,j=1

with the elements

k̃0pj =

{
0 for p = j,
2(b−a)
n

∂Φnk0
(x(τp), x(τj))

∂ν(x(τp))

√
(x′1 (τj))

2 + (x′2 (τj))
2 for p 6= j.

Proceeding as in [6], it is not difficult to prove the following two lemmas.

Lemma 2.2 If Imk0 > 0, then there exists an inverse matrix
(
In + K̃n

0

)−1
such that

M1 = sup
n

∥∥∥∥(In + K̃n
0

)−1∥∥∥∥ < +∞

and

max
l=1,n

∣∣∣∣∣∣
((

I + K̃0

)−1
g

)
(x (τl))−

n∑
j=1

k̃+lj g (x (τl))

∣∣∣∣∣∣
≤M

(
ω (g, 1/n) + ‖g‖∞

lnn

n

)
,

where g ∈ C (L), and k̃+lj is an element of the matrix
(
In + K̃n

0

)−1
in the l−th row and

j−th column.

Lemma 2.3 If Imk0 > 0, then there exists an inverse matrix
(
In − K̃n

0

)−1
such that

M2 = sup
n

∥∥∥∥(In − K̃n
0

)−1∥∥∥∥ < +∞

and

max
l=1,n

∣∣∣∣∣∣
((

I − K̃0

)−1
g

)
(x (τl))−

n∑
j=1

k̃−lj g (x (τl))

∣∣∣∣∣∣
≤M

(
ω (g, 1/n) + ‖g‖∞

lnn

n

)
,

where g ∈ C (L), and k̃−lj is an element of the matrix
(
In − K̃n

0

)−1
in the l−th row and

j−th column.

Let

f0pj =

{
0 for p = j,
2(b−a)
n Φnk0 (x (τp) , x (τj))

√
(x′1 (τj))

2 + (x′2 (τj))
2 for p 6= j,

(2.7)

and

alj = − 1

i η

n∑
p=1

(
f0lp

(
n∑

m=1

k̃−pm

(
n∑
t=1

k̃+mt ctj

)))
, l, j = 1 , n.
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Theorem 2.1 The expression

(Anψ) (x (τl)) =

n∑
j=1

alj ψ (x (τj)) (2.8)

is a quadrature formula for (Aψ) (x) at the points x (τl) , l = 1, n, with

max
l=1, n

| (Aψ)x (τl)− (Anψ)x (τl) | ≤M
(
ω (ψ, 1/n) + ‖ψ‖∞

lnn

n

)
.

Proof. As

(Anψ)x (τl) = − 1

i η

n∑
j=1

f0lj
 n∑
p=1

k̃−j p

(
n∑

m=1

k̃+pm

(
n∑
t=1

cmt ψ (x(τt))

)) ,

the representation
(Aψ) (x (τl))− (Anψ) (x (τl))

= − 1

i η

(
S0

(
I − K̃0

)−1 (
I + K̃0

)−1
Cψ

)
(x (τl))

−
n∑
j=1

f0lj

((
I − K̃0

)−1 (
I + K̃0

)−1
Cψ

)
(x (τj))

− 1

i η

n∑
j=1

f0lj

[((
I − K̃0

)−1 (
I + K̃0

)−1
Cψ

)
(x (τj))

−
n∑
p=1

k̃−j p

((
I + K̃0

)−1
Cψ

)
(x (τp))

]

− 1

i η

n∑
j=1

f0lj

 n∑
p=1

k̃−jp

[((
I + K̃0

)−1
Cψ

)
(x (τp))−

n∑
m=1

k̃+pm (Cψ) (x (τm))

]
− 1

i η

n∑
j=1

f0lj

 n∑
p=1

k̃−jp

(
n∑

m=1

k̃+pm

[
(Cψ) (x (τm))−

n∑
t=1

cmt ψ (x (τt))

])
is true. Then, taking into account the error estimates for the quadrature formulas (2.2), (2.6)
and Lemmas 2.2 and 2.3, we have

| (Aψ) (x (τl))− (Anψ) (x (τl)) |

≤M
[ ∥∥∥∥(I − K̃0

)−1 (
I + K̃0

)−1
Cψ

∥∥∥∥
∞

lnn

n
+

+ω

((
I − K̃0

)−1 (
I + K̃0

)−1
Cψ, 1/n

) ]
+M

[∥∥∥∥(I + K̃0

)−1
Cψ

∥∥∥∥
∞

lnn

n
+ ω

((
I + K̃0

)−1
Cψ, 1/n

)] n∑
j=1

∣∣f0lj∣∣
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+M

[
‖Cψ‖∞

lnn

n
+ ω (Cψ, 1/n)

] n∑
j=1

∣∣f0lj∣∣ n∑
p=1

∣∣∣k̃−jp∣∣∣


+M

[
‖ψ‖∞

lnn

n
+ ω (ψ, 1/n)

]

×
n∑
j=1

∣∣f0lj∣∣ n∑
p=1

(∣∣∣k̃−jp∣∣∣ n∑
m=1

∣∣∣k̃+pm∣∣∣
) . (2.9)

By the inequalities

ω (K ψ , 1/n) ≤M ‖ψ‖∞
lnn

n
,

ω ((T − T0) ψ , 1/n) ≤M ‖ψ‖∞
lnn

n
,

we have

ω (Cψ , 1/n) ≤ ω (Kψ, 1/n) + |η| ω ((T − T0)ψ, 1/n) + ω (ψ, 1/n)

≤ ω (ψ, 1/n) +M ‖ψ‖∞
lnn

n
.

It is known ([3, p. 81]) that for every g ∈ C (L) the equation

ρ+ K̃0ρ = g

has a unique solution ρ∗ ∈ C (L). Then we obtain

ω

((
I + K̃0

)−1
g, 1/n

)
= ω (ρ∗, 1/n)

= ω
(
g − K̃0ρ∗, 1/n

)
≤ ω (g, 1/n) + ω

(
K̃0ρ∗, 1/n

)
≤ ω(g, 1/n) +M ‖ρ∗‖∞

lnn

n
= ω (g, 1/n) +M

∥∥∥∥(I + K̃0

)−1
g

∥∥∥∥
∞

lnn

n

≤ ω (g, 1/n) +M

∥∥∥∥(I + K̃0

)−1∥∥∥∥ ‖g‖∞ lnn

n
.

Similarly we can show that

ω

((
I − K̃0

)−1
f , 1/n

)
≤ ω (f, 1/n) +M ‖f‖∞

lnn

n
.

Hence we derive a chain of inequalities

ω

((
I − K̃0

)−1 (
I + K̃0

)−1
Cψ, 1/n

)
≤

≤ ω
((

I + K̃0

)−1
Cψ, 1/n

)
+M

∥∥∥∥(I + K̃0

)−1
Cψ

∥∥∥∥
∞

lnn

n
≤

≤ ω (Cψ, 1/n) +M ‖Cψ‖∞
lnn

n
+M

∥∥∥∥(I + K̃0

)−1
Cψ

∥∥∥∥
∞

lnn

n
≤
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≤M
(
ω (ψ, 1/n) + ‖ψ‖∞

lnn

n

)
.

Proceeding as in [9], it is easy to show that the expression
n∑
j=1

∣∣∣f0lj∣∣∣ is a quadrature

formula for the integral

2

∫
L
|Φk0 (x, y)| dly

at the points x (τl) , l = 1, n, with

max
l=1, n

∣∣∣∣∣∣ 2
∫
L
|Φk0 (x (τl) , y)| dly −

n∑
j=1

∣∣f0lj∣∣
∣∣∣∣∣∣ ≤M lnn

n
.

Consequently,

max
l=1, n

n∑
j=1

∣∣f0lj∣∣ ≤ 2 max
x∈L

∫
L
|Φk0 (x, y)| dly +M

lnn

n
. (2.10)

Besides, Lemmas 2.2 and 2.3 imply the inequalities

max
j=1,n

n∑
p=1

∣∣∣k̃+j p∣∣∣ ≤M1, max
j=1,n

n∑
p=1

∣∣∣k̃−j p∣∣∣ ≤M2. (2.11)

So, considering the above obtained inequalities in (2.9), we get the validity of the theo-
rem.

Similarly we can prove the following one:

Theorem 2.2 The expression

(Bnf) (x (τl)) =
n∑
j=1

bl j f (x (τj)) (2.12)

is a quadrature formula for (Bf) (x) at the points x (τl) , l = 1, n, with

max
l=1, n

| (Bf)x (τl)− (Bnf)x (τl) | ≤M
(
ω (f, 1/n) + ‖ f‖∞

lnn

n

)
,

where

blj = − 1

i η

n∑
p=1

(
f0lp

(
n∑

m=1

k̃−pm

(
n∑
t=1

k̃+mt gtj

)))
, l, j = 1, n.

Now let’s give the justification of the collocation method for the equation (2.1). Using
the quadrature formulas (2.8) and (2.12), we replace the equation (2.1) with the system of
algebraic equations with respect to znl , approximate values of ψ (x (τl)) , l = 1, n, stated
as

(In +An) zn = Bnfn, (2.13)
where An = (alj)

n
l,j=1, Bn = (blj)

n
l,j=1, fn = pnf , and pn : C (L) → Cn is a linear

bounded operator defined by the formula

pnf = (f (x (τ1)) , f (x (τ2)) , . . . , f (x (τn)) )T

and called a simple restriction operator.
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Theorem 2.3 The equations (2.1) and (2.13) have the unique solutions ψ∗ ∈ C (L) and
zn∗ ∈ Cn , respectively, with ‖ zn∗ − pnψ∗‖ → 0 as n → ∞ and the convergence rate
estimate

‖ zn∗ − pnψ∗‖ ≤M
(
ω (f, 1/n) +

lnn

n

)
.

Proof. Note that here we will use Vainikko’s convergence theorem for linear operator equa-
tions ([15]), and we will use notations, definitions and statements from [15]. Let’s ver-
ify the fulfilment of conditions of Theorem 4.2 of [15]. It was shown in [3, p.104] that
Ker (I +A) = { 0 }. Obviously, the operators In + An are Fredholm operators of in-
dex 0 and the system of simple restriction operators P = {pn} is a connecting system for
the spaces C (L) and Cn ([15, p. 676]). Then, by Definition 1.1 of [15] and Theorem 2.2,

we obtain Bnfn
P→ Bf . Now let’s show that In + An

PP→ I + A. Taking into account the
way the curve L has been divided into “regular” elementary parts and Lemma 2.1, it is not
difficult to show that the expression

Fn (x (τm)) =
n∑
t=1
t6=m

|cmt|

is a quadrature formula for the weakly singular integral

F (x) = 2

∫
L

∣∣∣∣ ∂Φk (x, y)

∂ν (y)
+ iη

∂

∂ν (x)

(
∂ (Φk (x, y)− Φk0 (x, y))

∂ν (y)

) ∣∣∣∣ dly, x ∈ L,

at the points x (τm) , m = 1, n, with

max
m=1, n

|F (x (τm))− Fn (x (τm))| ≤M lnn

n
.

Consequently,

max
m=1,n

n∑
t=1

|cmt| = 1 + max
m=1,n

Fn (x (τm)) ≤

≤ 1 + max
m=1, n

|F (x (τm))− Fn (x (τm))|+ max
x∈L

F (x) ≤M. (2.14)

Taking into account the inequalities (2.10), (2.11) and (2.14), we arrive at the estimate

‖An zn‖ = max
l=1,n

∣∣∣∣∣∣
n∑
j=1

alj z
n
j

∣∣∣∣∣∣ ≤M ‖zn‖ , ∀ zn ∈ Cn.
Let ψn

P→ψ. Then, by Theorem 2.1, we obtain

‖ (In +An)ψn − pn ((I +A)ψ) ‖ ≤ ‖ψn − pnψ ‖+M ‖ψn − pnψ ‖+

+ ‖An (pnψ) − pn (Aψ)‖ → 0 as n→∞.

Consequently, by Definition 2.1 of [15] we have In +An
PP→ I +A.

As In → I stably by Definition 3.2 of [15], then, by Proposition 3.5 and Definition 3.3
of [15], it remains to verify the compactness condition, which, due to Proposition 1.1 of
[15], is equivalent to the following condition: ∀ {zn}, zn ∈ Cn, ‖zn‖ ≤ M , there exists a
relatively compact sequence {Anzn} ⊂ C (L) such that

‖An zn − pn ( Anz
n) ‖ → 0 as n→∞.
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As {Anzn}, we choose the sequence

(Anz
n) (x) =

n∑
j=1

aj (x) znj , x ∈ L,

where

aj (x) = − 1

i η

n∑
p=1

(
f0p (x)

(
n∑

m=1

k̃−pm

(
n∑
t=1

k̃+mt ctj

)))
, j = 1 , n,

f0p (x) = 2

∫
Lp

Φk0 (x, y) dly, x ∈ L, p = 1 , n.

Taking into account the way the curve L has been divided into “regular” elementary
parts and Lemma 2.1, we have

n∑
p=1

∣∣ f0lp − f0p (x (τl))
∣∣ ≤ 2

n∑
p=1
p 6=l

∫
Lp

|Φk0 (x (τl) , y)− Φk0 (x (τl) , x (τp))| dly+

+2

∫
Ll

|Φk0 (x (τl) , y)| dly ≤M
lnn

n
, l = 1 , n. (2.15)

Further, it is obvious that
n∑
p=1

∣∣ f0p (x)
∣∣ ≤ 2

∫
L
|Φk0 (x, y)| dly ≤M. (2.16)

As

(Anz
n) (x) = − 1

i η

n∑
j=1

f0j (x)

 n∑
p=1

k̃−jp

(
n∑

m=1

k̃+pm

(
n∑
t=1

cmt z
n
t

)) ,

taking into account the condition ‖zn‖ ≤ M and the inequalities (2.11), (2.14) and (2.15),
we obtain

‖An zn − pn ( Anz
n) ‖ → 0 as n→∞.

Consider arbitrary points x′, x′′ ∈ L such that |x′ − x′′| = δ < d/2. Then, taking into
account the inequalities (2.11), (2.14) and proceeding as in [10], we can show that

∣∣ (Anzn)
(
x′
)
− (Anz

n)
(
x′′
) ∣∣ ≤M ‖zn‖ n∑

j=1

∣∣f0j (x′)− f0j (x′′)∣∣ ≤
≤M ‖zn‖

∫
L

∣∣Φk0 (x′, y)− Φk0 (x′′, y)∣∣ dly ≤M ‖zn‖ ∫
Lδ/2(x

′)

∣∣Φk0 (x′, y) ∣∣ dly+
+M ‖zn‖

∫
Lδ/2(x

′′)

∣∣Φk0 (x′′, y)∣∣ dly +M ‖zn‖
∫
Lδ/2(x

′)

∣∣Φk0 (x′′, y)∣∣ dly+
+M ‖zn‖

∫
Lδ/2(x

′′)

∣∣Φk0 (x′, y)∣∣ dly+
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+M ‖zn‖
∫
L\(Lδ/2 (x′)∪Lδ/2 (x′′))

∣∣Φk0 (x′, y)− Φk0 (x′′, y)∣∣ dly ≤
≤M ‖zn‖ δ |ln δ| , (2.17)

and, consequently, {Anzn} ⊂ C (L).
Relative compactness of the sequence {Anzn} follows from the Arzela theorem. In

fact, the uniform boundedness follows directly from the inequalities (2.11), (2.14), (2.16)
and the condition ‖zn‖ ≤ M , and the equicontinuity follows from the estimate (2.17).
Then, applying Theorem 4.2 of [15], we see that the equations (2.1) and (2.13) have unique
solutions ψ∗ ∈ C (L) and zn∗ ∈ Cn, respectively, with

m3δn ≤ ‖ zn∗ − pnψ∗‖ ≤ M3δn,

where
m3 = 1/ sup

n
‖ In +An‖ > 0,M3 = sup

n

∥∥∥ (In +An)−1
∥∥∥ <∞,

δn = ‖ (In +An) (pnψ∗)−Bnfn ‖ .
By Theorems 2.1 and 2.2, we obtain

δn = max
l=1,n

∣∣∣∣∣∣ψ∗ (x (τl)) +
n∑
j=1

alj ψ∗ (x (τj))−
n∑
j=1

blj f (x (τj))

∣∣∣∣∣∣ =

= max
l=1,n

∣∣∣∣∣∣
(Bf) (x (τl))−

n∑
j=1

blj f (x (τj))

+

+

 n∑
j=1

alj ψ∗ (x (τj))− (Aψ∗) (x (τj))

∣∣∣∣∣∣ ≤
≤M

(
ω (f, 1/n) + ω (ψ∗, 1/n) + (‖f‖∞ + ‖ψ∗‖∞)

lnn

n

)
.

As ψ∗ = (I +A)−1Bf , we have

‖ψ∗‖∞ ≤
∥∥∥ (I +A)−1

∥∥∥ ‖B‖ ‖f‖∞ .
Besides, by the estimate

ω (F0ρ, 1/n) ≤M ‖ρ‖∞
lnn

n
,

we have

ω (Bf, 1/n) ≤M ‖f‖∞
lnn

n
, ω (Aψ∗, 1/n) ≤M ‖f‖∞

lnn

n
.

Consequently,
ω (ψ∗, 1/n) = ω (Bf −Aψ∗, 1/n) ≤

≤ ω (Bf, 1/n) + ω (Aψ∗, 1/n) ≤M ‖f‖∞
lnn

n
,

which completes the proof of the theorem.
Remark 2.2 As seen, if f ∈ C (L) \Cβ (L), then the method proposed in [13] does not
allow to treat the solution of the integral equation obtained after discretization of the initial
equation. Moreover, if f ∈ Cβ (L), then the convergence rate of this method is ω (f, 1/n)+
lnn
n ≈ 1

nβ
, while in [13] the convergence rate of the method is lnn

nβ−α
, i.e. in this case

the convergence rate of our method is higher than the one of the method in [13], where
0 < α ≤ β < 1.
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3 Justification of collocation method for hypersingular integral equation (1.4).

Let’s first perform a regularization of the equation (1.4). Let the wave number k0 not coin-
cide with the eigenvalues of the interior Dirichlet or Neumann problems (for this, it suffices
to choose any value of k0 with Imk0 > 0). We will assign zero index to our notations if
the parameter k, involved in the operators S, K̃ and T , is equal to k0. As the operator

A0 = −S0
(
I − K̃0

)−1 (
I + K̃0

)−1
is an inverse operator to T0, the equation (1.4) can be rewritten in the following equivalent
form ([3, p. 98]):

ϕ+ Ã ϕ = B̃g. (3.1)

The last equation is considered in the space C (L), where

Ãϕ = − 1

i η
A0

[
(1− i η λ) I −

(
K̃ + i η (T − T0) + i η λK + λS

) ]
ϕ,

B̃g =
2

i η
A0g.

To justify the collocation method, let’s first construct the quadrature formulas for the
integrals

(
Ãϕ
)

(x) and
(
B̃g
)

(x),x ∈ L. Let’s divide L into “regular” elementary parts

L =
n⋃
j=1

Lj . Taking into account the quadrature formulas (2.2), (2.3), (2.4) and (2.5) con-

structed for the integrals S,K, K̃ and T−T0, respectively, and the error estimates for them,
it is not difficult to show that the expression(

C̃nϕ
)

(x (τl)) =
n∑
j=1

c̃lj ϕ (x (τj))

is a quadrature formula for the integral(
C̃ϕ
)

(x) = (1− i η λ (x)) ϕ (x)−

−
((
K̃ϕ
)

(x) + i η ((T − T0)ϕ) (x) + i η λ (x) (Kϕ) (x) + λ (x) (Sϕ) (x)
)

at the control points x (τl) , l = 1, n, where

c̃ll = 1− i η λ (x (τl)) for l = 1, n,

c̃lj = −2 (b− a)

n

√
(x′1 (τj))

2 + (x′2 (τj))
2

(
∂Φnk (x (τl) , x (τj))

∂ν (x (τl))
+

+iη
∂

∂ν (x (τl))

(
∂
(
Φnk (x (τl) , x (τj))− Φnk0 (x (τl) , x (τj))

)
∂ν (x (τj))

)
+

+i η λ (x (τl))
∂Φnk (x (τl) , x (τj))

∂ν (x (τj))
+ λ (x (τl)) Φ

n
k (x (τl) , x (τj))

)
for l, j = 1, n, l 6= j, with

max
l=1, n

∣∣∣ (C̃ϕ) (x (τl))−
(
C̃nϕ

)
(x (τl))

∣∣∣ ≤M (
ω (ϕ, 1/n) + ‖ϕ‖∞

lnn

n

)
.
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Let the elements f0lj , l, j = 1, n, be defined by the formula (2.7), k̃−lj be an element of

the matrix
(
In − K̃n

0

)−1
in the l−th row and j−th column, k̃+lj be an element of the matrix(

In + K̃n
0

)−1
in the l−th row and j−th column, and

ãlj =
1

i η

n∑
p=1

(
f0lp

(
n∑

m=1

k̃−pm

(
n∑
t=1

k̃+mt c̃tj

)))
, l , j = 1 , n,

b̃lj = − 2

i η

n∑
p=1

(
f0lp

(
n∑

m=1

k̃−pm k̃
+
mj

))
, l , j = 1 , n.

Proceeding as in the proof of Theorem 2.1, we can show that the expressions

(
B̃ng

)
(x (τl)) =

n∑
j=1

b̃l j g (x (τj)) (3.2)

and (
Ãnϕ

)
(x (τl)) =

n∑
j=1

ãl j ϕ (x (τj)) (3.3)

are the quadrature formulas for
(
B̃g
)

(x) and
(
Ãϕ
)

(x) at the points x (τl), l = 1, n,
respectively, with

max
l=1, n

∣∣∣ (B̃g) (x (τl))−
(
B̃ng

)
(x (τl))

∣∣∣ ≤M (
ω (g, 1/n) + ‖ g ‖∞

lnn

n

)
,

max
l=1, n

∣∣∣ (Ãϕ) (x (τl))−
(
Ãnϕ

)
(x (τl))

∣∣∣ ≤
≤M

(
ω (ϕ, 1/n) + ‖ϕ ‖∞ ω (λ, 1/n) + ‖ϕ ‖∞

lnn

n

)
.

Using the quadrature formulas (3.2) and (3.3), we replace the equation (3.1) with the
system of algebraic equations with respect to znl , approximate values of ϕ (x (τl)) , l = 1, n,
stated as (

In + Ãn
)
zn = B̃ngn, (3.4)

where Ãn = (ãlj)
n
l,j=1, B̃n =

(
b̃lj

)n
l,j=1

and gn = png.

Proceeding as in the proof of Theorem 2.3, we can show the validity of the main result
of this section:

Theorem 3.1 The equations (3.1) and (3.4) have the unique solutions ϕ∗ ∈ C (L) and
zn∗ ∈ Cn, respectively, with ‖ zn∗ − pnϕ∗‖ → 0 as n → ∞ and the convergence rate
estimate

‖ zn∗ − pnϕ∗‖ ≤M
(
ω (g, 1/n) + ω (λ, 1/n) +

lnn

n

)
.
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