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Abstract. In this paper by using a g-translation operator, we give an analog of Titchmarsh’s theorem and
Younis’s theorem for q-Bessel Fourier transform satisfying q-Bessel-Lipschitz and q-Bessel-Dini-Lipschitz
conditions in the space Ega(R"‘), where 1 < p < 2.
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1 Introduction

In the recent mathematical literature one finds many articles which deal with the theory
of q-Fourier analysis associated with the g-Hankel transform. This theory was elaborated
first by Koornwinder and R.F.Swarttouw [13] and then by Fitouhi and Al [7]. They were in-
terested in gq-analogue of different integral transformations. In connection with q-difference
Bessel operator and with the basic Bessel functions, they introduced several generalized g-
Fourier transform. So, it is natural to look for the g-analogue of some well-known classical
theorems.

Titchmarsh ([15], Theorem 84) characterized the set of functions in LP(R), 1 < p < 2,
satisfying the g-Bessel-Lipschitz condition by means of an asymptotic estimate growth of
the norm of their Fourier transform, namly we have

Theorem 1.1 [15] Let f belong to LP(R), 1 < p < 2, such that

/+Oo|f(55+h)—f(l”—h)|pd$=0(hap), 0<a<1l ash—0.
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Then, its Fourier transform F(f) belong to L°(R) for

b b
< < —
p+ap—1 6_])—1

On the other hand, Younis in ([16], Theorem 3.3) studied the same phenomena for the wider
Dini-Lipschitz class as well as for some other allied classes of functions. More precisely

Theorem 1.2 [16] Let f € LP(R) with 1 < p < 2, such that

</+oof(gg+h)—f(gg)|1?dx>p :O<(10§a1)”>’ h—00<a<l v>0.
. I

Then F(f) € LP(R) for

a1 <PV =5
and
1
B<%

where F(f) stands for the Fourier transform of f.

The main aim of this paper is to generalize these theorems for the q-Bessel Fourier transform
setting by means of the g-translation operator.

In recent years, these two results have been generalized in several different versions and
for several different types of transform (for exemple, see [2,3,8,14]).

2 Preliminaries and auxiliary results

In the first we collect some definitions, notations and properties of the g-shifted factori-
als, the g-hypergeometric functions, the Jackson’s g-derivative and the Jackson’s g-integrals
(see [10,12]). Throughout this paper, we assume that 0 < ¢ < 1 and o > —%. we denote
by

+
Ry ={¢",n € Z}.

Let x € C, the g-shifted factorials are defined by

n—1 e’}
(=1, (@qn=]]A-2¢").n=12 ., (z¢.=][0Q-2
k=0 k=0
and for a € C and n € N we also denote
1—g¢° (4 )n
al, = s nly = —————.
The g-derivative of a function f is here defined by
f(x) = flaz)
D,f(r)=—————= ifx#0
q ( ) (1 _ Q)-’IT

D, f(0) = f'(0) provided f'(0) exists.
We also consider

D f(x) = ¢ 'Dyf (¢ ).
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Foralls € Rand z € R;r, we have
Dy’ = [s]gx*! Q2.1)

and
D;xs = qil[s]qaz‘s*l = —[—s]qajsfl. (2.2)

In [11], the g-Jackson integrals from 0 to a, from a to b, from 0 to +o0o and from —oo to
+o0 are defined by

a +oo
/0 @)z = (1 — 9a’S ¢ flag"),
n=0

/abf(x)dqa; = /Ob f(x)dgx — /Oa f(@)dyz,

+o0 o
| r@da=a-0 3 @@,
+o00 too
@ =(1=q) Y a"[f(¢") + f(=q").

The g-analogue of the integration theorem by a change of variable can be stated as
follows
b A %
/ g <T> A2atlg N = p2ot? / gt n  vr e R} (23)
a

3)e

The g-integration by part formulas associated with D, and D; are given by

b b
/ 9(x)Dy f (x)dgz = [f(b)g(b) — f(a)g(a)] —/ f(qr)Dog()dgx.  (24)

b b
/ o(q~ 2)D; f()dyz = (g B)gla™ D) — f(g ' a)g(q " a)] - / f(@) D g(x)dga.

(2.5)
Note that for any function f we can write
f = f et f o
where f. and f, are respectively, the even and the odd parts of f defined by
)+ f(—=x r)— f(—x
PP LCIRS (G2 RV (R ()

Now, we briefly collect the pertinent definitions and facts relevant for q-Bessel Fourier
transform (see [5,7,9,13]).
In [1] the normalized third Jackson g-Bessel function of order « is defined by

+oo 2n

T 1)gn(n+1)

ja($,q2> = § (_1)n q2(a+ )q ° )
Fq2(a+n+1)qu(n+1) 14¢

n=0

(2.6)

where I, is the g-gamma function defined for x € Rt‘; by

q= m(l —q)' "
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The formula (6) with a simple calculation implies that

1= jalz; ¢ 1 2
lim ]a($7q ) — q %0’
=0 x? [+ 1],z \g+1

hence, there exists C' > 0 and n > 0 satisfying
2| <= |1 - ja(z,¢%)| > Ca*. 2.7)

The function z — j,(Az, ¢%) is a solution of the following g-differential equation
Aq,oaf(x) = —)\2f($)
where A, . is the g-Bessel operator
1
Agal (@) = —5 [flg72) = (1+¢*) f(2) + ¢**f(qz)].

For 1 < p < oo we denote by £} ,, the space of functions defined on R;r such that

“+o00 9 ) %
1l = ( [ 1@ dqx) |
exist.

We denote by Cq,O(}R;“) the space of functions defined on R(‘; tending to 0 as x —
oo and continuous at 0 equipped with the topology of uniform convergence. The space
Cq0(R;) is complete with respect to the norm

I/

g0 = sup [f(2)].
mGR;‘[

The g-Bessel Fourier transform F; , is defined by [5,7,13]

+o0
Fraf (@) = Cya /0 F()jalet, )24 d,t Vr € RY

where

1 (q2a+2§ q2)oo
1—q (¢*¢*)
From [5] we have the following result

Cq,oc =

Proposition 2.1 The g-Bessel Fourier transform satisfies
i) If f € L], then Fyof € Cqo and we have

G
IFg.afllgoo < Bgall fllg1.a (2.8)
where
By - (=% 0o (0" ¢*)ox
R (4% 4%) o
ii) For all function f € L}
Foof =1 (2.9)

iiit) For all function f € ﬁZ,a
| F ,af||q,2,a = Hf”q,?,a- (2.10)
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Proposition 2.2 Let f € L} o where p > 1, then Fy o f € L’g:a. Also if 1 < p < 2, then

24
H-Fq,aqu,p’,a < Btia Hf”q,p,a (2.11)

1, 1 _
wherep+p, 1

Proof. This is an immediate consequence of formulas (2.8), (2.10), the Riesz-Thorin the-
orem and the inversion formula (2.9).

The g-translation operator is given as follow

+o0o
Tef ) = Coa [ Fual)Oalut, ¢*)ialat, )Pt
Let us now introduce
Qo = {q €]0,1[, T2, is positive for all x € R}

the set of the positivity of T7*,. We recall that 77" is called positive if 73", > 0 for f > 0.
In a recent paper [6] it was proved that if —1 < a < o’ then Q,, C Q. As a consequence:

- if 0 < arthen Q4 =]0, 1[.
- if =1 < a < 0then |0, go[C Q.1 CQacl01[, q~043.

—-if-1 < a< —% then @, C ()_1. (we don’t have the information if this subset is
2
empty or not).

Proposition 2.3 For any function f € Eia we have
Faa T8 )A) = ja(Ax, @) Faaf(N) forall A, z € R} (2.12)

For f € Eg,a, 1 < p < 2, we define the finite differences of the first order and step
h>0,h e R} by

Agnf () =T f(x) — fz) = (T3, — 1) f ()
where I is the unit operator in £ 4.
Lemma 2.1 For any function f € L} 4, 1 < p < 2, we have

/

7p7a‘

—+o00
/O 11— Wb )P | Faaf VP AP A < Co| Agn fI2

Proof. By formula (2.12) we have
Fo.a(Agnf)N) = Foo(Tgnf = )N
= Fq7a<T£hf)()‘) - ]:q,a(f)(/\)
= oM, 63 Faa(F)A) = Fralf)(N)
= (ja()‘h> q2) - 1) ]:q,a(f)(A)'

Using formula (2.11) we obtain our result.
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Lemma 2.2 For any function f defined on R}, we have

D, [ | f(t)dqt} = sule) @.13)

and

of | [ | = st @14

x x
where x —— [ / f (t)dqt} and v — [ / f (t)dqt} are respectively, the odd and the
a Io) a

€
T

even part of © — {/ f(t)dqt].

a

Proof. See Lemma 3.2 in [4].

3 Main results

Before giving our main result, we define, first, the g-Bessel-Lipschitz class.

Definition 3.1 Ler 0 < 6 < 1. A function f € L, 1 < p < 2 is said to be in the
q-Bessel-Lipschitz class, denoted q-BLip(0, p, &) if

|Agnfllgpe = Oh®) ash — 0.

Theorem 3.1 For f € L4, where 1 < p < 2. If f in g-BLip(8,p, ), then Fyo(f) €
.CQOC(R(‘;) where

2 2
PP <=L
2p 4+ 2a(p—1) + op — 2 p—1

/ 1
Proof. If 3 = p’ we have by the formula (2.11) that 7, »(f) € £} ». And for o > —3
0<d<1weget

op
1 >1
+20z+2
—-1/2 2 / -1
P a+ 24 op >p
P 200+ 2 P
2a+2)(p—1)+dp 1
>7
p(2a + 2) P’
p(2a +2) ) p
= =p =——
Gat)p—1 1o PP =,
2pa+ 2p / p
= <B=p=—"—,
2p+2a(p—1)+op—2 p=r p—1

then the theorem is proved in the case where = p/.
In what follows we assume that 8 < p’ and f € ¢-BLip(d, p, ), then we have

|Agnfllgpa = O(h°) ash — 0.
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The Lemma 2.1 yields
oo Y% "1y 2041 /
/0 11— ja (M, )P | Foa (NP NPT A < Crll Agn f 11 p.a
< CohY
fo< A< %, then 0 < Ah < 7 and inequality (2.7) implies that

11— ja(Ah, ¢%)| = CAZh2.

Therefore )
/ 2N | Fy (£ AL A
0 , %
< [ 1 da N IFpa NP AP,
0
1 oo . / / a
<& / 11— ja (A, @) | Faa(F) NP APF L dgA
0
= O(h%"").
Then
n
| 1F DO A = 0 (162) ash— 0.
0
Thus

X
| 1B OOP N A = 0 (X ) s X — o
0

Let
X
P = [ NF (NP, G
1

Taking into account the Holder inequality yields

X ) B/p' X
o(X) < ( | R rxr@a“)qu) ( / qu)
-0 <X (- x p/”_'ﬁ)

0 <X25—6B+1—5,> '

®'-8)/v

Let us now estimate the next integral

X
/1 Faal YO,

This integral is split into two

X
| Fua OO A = 1+ B
1

where
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h= [ [FualDOF] AP

and

n- [ (Bl DO R

Estimate the summands /; and I, from above. It follows from formula (3.1) and Lemma
2.2 that

B
7

Dyo(N) = NP [ ()] (3:2)

)
[
and

atl) 5 _
Dy peN) = q Mg AT 1R a(Da VP (3.3)

o

Using the formula (2.1), the g-integration by parts formula (2.4) and (3.2), we get

n- " [FualHOIF] pEa

X —28—(20+1) B +20+1
_ /1 A PHELD ()

X

—28—(2a+1) 5 +2a —28—(2a+1) 5 +2a
_ - 2-CatD) 52 o (X) — po(1) — 20 (gD, (/\ 26— (20-+1) 5 +2 +1> d

1
= XTPTCHTERE G (X) — (1) = [(20+ 1)(1 - B/p) — 28],

X 2a—28—(2a+1)2
x/ Go(qA)NZT 2Rt g X (3.4)
1

Furthemore, it follows from (2.2), the g-integration by parts formula (2.5), (2.3) and (3.3)
that

b= [ [FualtnOP] i
1qX
= [ 0 [Faa@ ] a7 A

X 28 (2a+1) L 42041
—/ (g7n) et Df ge(\)dgh
q

—28—(2a41) 2 124 ax —28—(2a41) 2 124
_ W RatIaa e _/ e (ND <)\ 26— (20+1) 5 +2 +1> do\
q

— xR ) () — (1) + [28 — (20 + 1)(1 - BIp)l,

qX —98—(2a B
X/ (pe()\))\m 26— (2 H)p’dq/\
q
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— — (2 ﬁ (63
= X RO (X) — pe(1) + [28 - (2a+ 1)(1 - B/p)],
X
g~ (A= (20+1)(1=8/p") / Pe(qA)AZ2 20~k g
1
— — (2 ﬁ (6%
= xRt (X) — 0o (1) - [2a +1)(1 - B/p') - 28],
X B
<[ g g, G-
1

Hence, combining the formula (3.4) and (3.5), we conclude that

X
/1 [FaalH)PIAPdgA
— — (2 B «
= xRyt G () — (20 +1)(1 - B/p) - 28],
X B
x /1 PN g\
—2B— (2 B @ - el
0 (X 26— (204+1) S +20-+2-58+6 (2 )) —[2a+1)(1 - 8/p') - 28],
X B
X /1 PN 2R g

_0 Xzﬁ(2a+1)§+2a+25,3+,8(”;1)>

X 4 21 4 90— 28— (2041) L
L0 </ A\ 5,3+,g<pp )+2 28—(2 H)P’dq)\>
1

_0 X25(2a+1)§+2a+25,3+,8(”;1)>

and this is bounded as X — oo if
1
—25—(2a+1)£,+2a+2—5ﬁ+5<p+> <0,
p

that is
2pa + 2p

>
b 2p 4+ 2a(p — 1) + op — 2

and this ends the proof.

In the rest of this paper, we give our second main result which is a generalization of Younis’s
theorem 1.2.
For this objective, we need to define the g-Bessel-Dini-Lipschitz class.

Definition 3.2 Ler 0 < 6 < 1, v > 0. A function f € LY o, 1< p < 2 is said to be in the
q-Bessel-Dini-Lipschitz class, denoted D-q-BLip(6,~,p, «) if

ho
A a=0|7+—55] ash—0.
” q,hf”q,n ((lOg i)f}/)
Theorem 3.2 Let f € L}, whis 1 < p < 2. If f belong to D-q-BLip(4,~,p, @), then
Fq.alf) belong to Eg,a (R;r), where
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1
P and [ > —.
Y

2 2
po+ 2p <B<p =
2p+2a(p—1)+op—2 p—1

/ 1
Proof. If 3 = p’. From formula (2.11) we have that F, o(f) € £} +. And for o > —5
0<6<1weget

/

op
200+ 2
<:>p—1 <2a+2+(5p’> >p—1
P 200 42 P
(2a+2)(p—1) +dp _ 1
p(2a + 2) o’
p(2a +2) </B:p/:7
(200 +2)(p—1) +dp p—1
2pa 4 2p
2p+2a(p—1)+op—2

1+ >1

<p=p=-"0
p—1

So, we asume that 5 < p’ and f € D-q-BLip(d, v, p, cv).
By analogy with the proof of Theorem 3.1, we can establish the following result

b , B6=2p'
[ a0 () wsh—o

0 log % )'yp/
Thus
X (2—d)p’
/ / X
/ NP Fqa DN AP dA =0 | ———— | ash—0.
0 (log X)7P
Set

X
o) = [ IRF (NP,

We us the Holder inequality we obtain

5
26-00+1-2

Let us estimate the next integral

X
AIHMﬂOWkW“%X
We write
X
[ Faa OO A = 1+ B
1
where

X
n= [ [IFaalDOP] AR+,
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and
X
b= [ [IFaaDOE] R dA
Similary as in the proof of Theorem 3.1 we have
—28—(2a ﬁ, lot
I = X7 G () - 0o(1) = [(20+ 1)(1 - B/p) - 28,
X 8
x / Go(qA) A2 2072ty g (3.6)
1
and
—26—(2a ﬁ, le'
I = X TR () — 6e(1) - [(20+ 1)(1 = B/p) — 28],
X 20—28—(2a+1) 2
X ©e(gA)A P dg . 3.7
1

Combining (3.6) and (3.7) we conclude that
X7257(2a+1)§+2a+275,8+5<pTJf1>

(log X )77

X
/1 Fral O A = 0

and this is bounded as X — oo if
1
—25—(2a+1)5+2a+2—5ﬁ+ﬁ(p;> <0 and —y8 < —1.

Hence

2 2
patep <B<p=—-0.
2p+2a(p— 1)+ op —2 p—1

Then, the theorem is proved.
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