An analog of Titchmarsh's and Younis's theorems for the q -Bessel Fourier transform in the space $\mathcal{L}^p_{q,\alpha}(\mathbb{R}^+)$

A. Mahfoud? , M. El Hamma, R.Daher

Received: 02.11.2023 / Revised: 28.05.2024 / Accepted: 17.08.2024

Abstract. *In this paper by using a q-translation operator, we give an analog of Titchmarsh's theorem and Younis's theorem for q-Bessel Fourier transform satisfying q-Bessel-Lipschitz and q-Bessel-Dini-Lipschitz conditions in the space* $\mathcal{L}_{q,\alpha}^p(\mathbb{R}^+)$ *, where* $1 < p \leq 2$ *.*

Keywords. q-Bessel operator, q-Bessel Fourier transform, q-translation operator, q-Bessel-Lipschitz class, q-Bessel-Dini-Lipschitz class

Mathematics Subject Classification (2010): Primary 33D15, 47A05, 42A38.

1 Introduction

In the recent mathematical literature one finds many articles which deal with the theory of q-Fourier analysis associated with the q-Hankel transform. This theory was elaborated first by Koornwinder and R.F.Swarttouw [13] and then by Fitouhi and Al [7]. They were interested in q-analogue of different integral transformations. In connection with q-difference Bessel operator and with the basic Bessel functions, they introduced several generalized q-Fourier transform. So, it is natural to look for the q-analogue of some well-known classical theorems.

Titchmarsh ([15], Theorem 84) characterized the set of functions in $L^p(\mathbb{R})$, $1 < p \leq 2$, satisfying the q-Bessel-Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transform, namly we have

Theorem 1.1 [15] Let f belong to $L^p(\mathbb{R})$, $1 < p \le 2$, such that

$$
\int_{-\infty}^{+\infty} |f(x+h) - f(x-h)|^p dx = O(h^{\alpha p}), \quad 0 < \alpha \le 1 \quad \text{as } h \longrightarrow 0.
$$

* Corresponding author

Z ⁺[∞]

A. Mahfoud

Laboratory: Fundamental and applied Mathematics (LMFA), Department of Mathematics and Informatics Faculty of Sciences Ain Chock, University of Hassan II, B.P 5366 Maarif , Casablanca, Morocco E-mail: m elhamma@yahoo.fr

R.Daher

Laboratory: Fundamental and applied Mathematics (LMFA), Department of Mathematics and Informatics Faculty of Sciences Ain Chock, University of Hassan II, B.P 5366 Maarif , Casablanca, Morocco E-mail: rajdaher024@gmail.com

Laboratory: Fundamental and applied Mathematics (LMFA), Department of Mathematics and Informatics Faculty of Sciences Ain Chock, University of Hassan II, B.P 5366 Maarif , Casablanca, Morocco E-mail: mahfoudayoub00@gmail.com

M. El Hamma

Then, its Fourier transform $\mathcal{F}(f)$ *belong to* $L^{\beta}(\mathbb{R})$ *for*

$$
\frac{p}{p + \alpha p - 1} < \beta \le \frac{p}{p - 1}.
$$

On the other hand, Younis in ([16], Theorem 3.3) studied the same phenomena for the wider Dini-Lipschitz class as well as for some other allied classes of functions. More precisely

Theorem 1.2 [16] Let $f \in L^p(\mathbb{R})$ with $1 < p \leq 2$, such that

$$
\left(\int_{-\infty}^{+\infty} |f(x+h) - f(x)|^p dx\right)^{\frac{1}{p}} = O\left(\frac{h^{\alpha}}{\left(\log \frac{1}{h}\right)^{\gamma}}\right), \ h \longrightarrow 0, 0 < \alpha \le 1, \ \gamma > 0.
$$

Then $\mathcal{F}(f) \in L^{\beta}(\mathbb{R})$ *for*

$$
\frac{p}{p+\alpha p-1}\leq \beta
$$

and

$$
\frac{1}{\beta}<\gamma,
$$

where $\mathcal{F}(f)$ *stands for the Fourier transform of f.*

The main aim of this paper is to generalize these theorems for the q-Bessel Fourier transform setting by means of the q-translation operator.

In recent years, these two results have been generalized in several different versions and for several different types of transform (for exemple, see [2, 3, 8, 14]).

2 Preliminaries and auxiliary results

In the first we collect some definitions, notations and properties of the q-shifted factorials, the q-hypergeometric functions, the Jackson's q-derivative and the Jackson's q-integrals (see [10, 12]). Throughout this paper, we assume that $0 < q < 1$ and $\alpha > -\frac{1}{2}$ $\frac{1}{2}$. we denote by

$$
\mathbb{R}_q^+ = \{q^n, n \in \mathbb{Z}\}.
$$

Let $x \in \mathbb{C}$, the q-shifted factorials are defined by

$$
(x;q)_0 = 1
$$
, $(x;q)_n = \prod_{k=0}^{n-1} (1 - xq^k)$, $n = 1, 2, ..., (x;q)_n = \prod_{k=0}^{\infty} (1 - xq^k)$

and for $a \in \mathbb{C}$ and $n \in \mathbb{N}$ we also denote

$$
[a]_q = \frac{1 - q^a}{1 - q} , \qquad [n]_q! = \frac{(q; q)_n}{(1 - q)^n}.
$$

The q-derivative of a function f is here defined by

$$
\mathcal{D}_q f(x) = \frac{f(x) - f(qx)}{(1 - q)x} \quad \text{if } x \neq 0
$$

 $\mathcal{D}_q f(0) = f'(0)$ provided $f'(0)$ exists.

We also consider

$$
\mathcal{D}_q^+ f(x) = q^{-1} \mathcal{D}_q f(q^{-1}x).
$$

For all $s \in \mathbb{R}$ and $x \in \mathbb{R}^+_q$, we have

$$
\mathcal{D}_q x^s = [s]_q x^{s-1} \tag{2.1}
$$

and

$$
\mathcal{D}_q^+ x^s = q^{-1} [s]_q x^{s-1} = -[-s]_q x^{s-1}.
$$
\n(2.2)

In [11], the q-Jackson integrals from 0 to a, from a to b, from 0 to $+\infty$ and from $-\infty$ to $+\infty$ are defined by

$$
\int_0^a f(x)d_qx = (1-q)a \sum_{n=0}^{+\infty} q^n f(aq^n),
$$

$$
\int_a^b f(x)d_qx = \int_0^b f(x)d_qx - \int_0^a f(x)d_qx,
$$

$$
\int_0^{+\infty} f(x)d_qx = (1-q) \sum_{n=-\infty}^{+\infty} q^n f(q^n),
$$

$$
\int_{-\infty}^{+\infty} f(x)d_qx = (1-q) \sum_{n=-\infty}^{+\infty} q^n [f(q^n) + f(-q^n)].
$$

The q-analogue of the integration theorem by a change of variable can be stated as follows

$$
\int_{a}^{b} g\left(\frac{\lambda}{r}\right) \lambda^{2\alpha+1} d_{q} \lambda = r^{2\alpha+2} \int_{\frac{a}{r}}^{\frac{b}{r}} g(t) t^{2\alpha+1} d_{q} \lambda \qquad \forall r \in \mathbb{R}_{q}^{+}.
$$
 (2.3)

The q-integration by part formulas associated with \mathcal{D}_q and \mathcal{D}_q^+ are given by

$$
\int_{a}^{b} g(x)\mathcal{D}_{q}f(x)d_{q}x = [f(b)g(b) - f(a)g(a)] - \int_{a}^{b} f(qx)\mathcal{D}_{q}g(x)d_{q}x.
$$
 (2.4)

$$
\int_{a}^{b} g(q^{-1}x) \mathcal{D}_{q}^{+} f(x) d_{q} x = \left[f(q^{-1}b) g(q^{-1}b) - f(q^{-1}a) g(q^{-1}a) \right] - \int_{a}^{b} f(x) \mathcal{D}_{q}^{+} g(x) d_{q} x. \tag{2.5}
$$

Note that for any function f we can write

$$
f = f_e + f_o
$$

where f_e and f_o are respectively, the even and the odd parts of f defined by

$$
f_e = \frac{f(x) + f(-x)}{2}
$$
 and $f_o = \frac{f(x) - f(-x)}{2}$

Now, we briefly collect the pertinent definitions and facts relevant for q-Bessel Fourier transform (see [5, 7, 9, 13]).

In [1] the normalized third Jackson q-Bessel function of order α is defined by

$$
j_{\alpha}(x,q^2) = \sum_{n=0}^{+\infty} (-1)^n \frac{\Gamma_{q^2}(\alpha+1)q^{n(n+1)}}{\Gamma_{q^2}(\alpha+n+1)\Gamma_{q^2}(n+1)} \left(\frac{x}{1+q}\right)^{2n},\tag{2.6}
$$

where Γ_q is the q-gamma function defined for $x \in \mathbb{R}^+_q$ by

$$
\Gamma_q = \frac{(q, q)_{\infty}}{(q^x, q)_{\infty}} (1 - q)^{1 - x}.
$$

The formula (6) with a simple calculation implies that

$$
\lim_{x \to 0} \frac{1 - j_{\alpha}(x; q^2)}{x^2} = \frac{1}{[\alpha + 1]_{q^2}} \left(\frac{q}{q+1}\right)^2 \neq 0,
$$

hence, there exists $C > 0$ and $\eta > 0$ satisfying

$$
|x| \le \eta \Longrightarrow |1 - j_{\alpha}(x, q^2)| \ge Cx^2. \tag{2.7}
$$

.

The function $x \mapsto j_\alpha(\lambda x, q^2)$ is a solution of the following q-differential equation

$$
A_{q,\alpha}f(x) = -\lambda^2 f(x)
$$

where $\Lambda_{q,\alpha}$ is the q-Bessel operator

$$
A_{q,\alpha}f(x) = \frac{1}{x^2} \left[f(q^{-1}x) - (1+q^{2\alpha})f(x) + q^{2\alpha}f(qx) \right].
$$

For $1 \leq p < \infty$ we denote by $\mathcal{L}^p_{q,\alpha}$ the space of functions defined on \mathbb{R}^+_q such that

$$
||f||_{q,p,\alpha} = \left(\int_0^{+\infty} |f(x)|^p x^{2\alpha+1} d_q x\right)^{\frac{1}{p}}
$$

exist.

We denote by $C_{q,0}(\mathbb{R}^+_q)$ the space of functions defined on \mathbb{R}^+_q tending to 0 as $x \longrightarrow$ ∞ and continuous at 0 equipped with the topology of uniform convergence. The space $C_{q,0}(\mathbb{R}^+_q)$ is complete with respect to the norm

$$
||f||_{q,\infty} = \sup_{x \in \mathbb{R}_q^+} |f(x)|.
$$

The q-Bessel Fourier transform $\mathcal{F}_{q,\alpha}$ is defined by [5,7,13]

$$
\mathcal{F}_{q,\alpha}f(x) = C_{q,\alpha} \int_0^{+\infty} f(t)j_{\alpha}(xt, q^2) t^{2\alpha+1} d_qt \quad \forall x \in \mathbb{R}_q^+
$$

where

$$
C_{q,\alpha} = \frac{1}{1-q} \frac{(q^{2\alpha+2}; q^2)_{\infty}}{(q^2; q^2)_{\infty}}.
$$

From [5] we have the following result

Proposition 2.1 *The q-Bessel Fourier transform satisfies*

i) If $f \in \mathcal{L}_{q,\alpha}^1$, then $\mathcal{F}_{q,\alpha} f \in C_{q,0}$ and we have

$$
\|\mathcal{F}_{q,\alpha}f\|_{q,\infty} \le B_{q,\alpha} \|f\|_{q,1,\alpha} \tag{2.8}
$$

where

$$
B_{q,\alpha} = \frac{1}{1-q} \frac{(-q^2;q^2)_{\infty}(-q^{2\alpha+2};q^2)_{\infty}}{(q^2;q^2)_{\infty}}.
$$

ii) For all function $f \in \mathcal{L}_{q,\alpha}^p$

$$
\mathcal{F}_{q,\alpha}^2 f = f. \tag{2.9}
$$

iii) For all function $f \in \mathcal{L}^2_{q,\alpha}$

$$
\|\mathcal{F}_{q,\alpha}f\|_{q,2,\alpha} = \|f\|_{q,2,\alpha}.\tag{2.10}
$$

Proposition 2.2 Let $f \in \mathcal{L}^p_{q,\alpha}$ where $p \geq 1$, then $\mathcal{F}_{q,\alpha} f \in \mathcal{L}^{p'}_{q,\alpha}$. Also if $1 \leq p \leq 2$, then

$$
\|\mathcal{F}_{q,\alpha}f\|_{q,p',\alpha} \le B_{q,\alpha}^{\frac{2}{p}-1} \|f\|_{q,p,\alpha} \tag{2.11}
$$

where $\frac{1}{p} + \frac{1}{p'}$ $\frac{1}{p'}=1$

Proof. This is an immediate consequence of formulas (2.8) , (2.10) , the Riesz-Thorin theorem and the inversion formula (2.9) .

The q-translation operator is given as follow

$$
T_{q,x}^{\alpha}f(y) = C_{q,\alpha} \int_0^{+\infty} \mathcal{F}_{q,\alpha}(f)(t) j_{\alpha}(yt, q^2) j_{\alpha}(xt, q^2) t^{2\alpha+1} d_qt.
$$

Let us now introduce

$$
Q_{\alpha} = \left\{ q \in \left] 0, 1 \right[,\ T_{q,x}^{\alpha} \text{ is positive for all } x \in \mathbb{R}_q^+ \right\}
$$

the set of the positivity of $T_{q,x}^{\alpha}$. We recall that $T_{q,x}^{\alpha}$ is called positive if $T_{q,x}^{\alpha} \ge 0$ for $f \ge 0$. In a recent paper [6] it was proved that if $-1 < \alpha < \alpha'$ then $Q_{\alpha} \subset Q_{\alpha'}$. As a consequence:

- if $0 \le \alpha$ then $Q_{\alpha} =]0,1[$.
- $-$ if $-\frac{1}{2} < \alpha < 0$ then $]0, q_0[$ ⊂ $Q_{-\frac{1}{2}} \subset Q_{\alpha} \subset]0, 1[$, q $\simeq 0.43$.
- $-$ if $-1 < \alpha < -\frac{1}{2}$ $\frac{1}{2}$ then $Q_{\alpha} \subset Q_{-\frac{1}{2}}$. (we don't have the information if this subset is empty or not).

Proposition 2.3 *For any function* $f \in \mathcal{L}^2_{q,\alpha}$ *we have*

$$
\mathcal{F}_{q,\alpha}(T_{q,x}^{\alpha}f)(\lambda) = j_{\alpha}(\lambda x, q^2) \mathcal{F}_{q,\alpha}f(\lambda) \quad \text{for all } \lambda, x \in \mathbb{R}_q^+.
$$
 (2.12)

For $f \in \mathcal{L}_{q,\alpha}^p$, $1 < p \leq 2$, we define the finite differences of the first order and step $h > 0, h \in \mathbb{R}^+_q$ by

$$
\Delta_{q,h}f(x) = T_{q,h}^{\alpha}f(x) - f(x) = (T_{q,h}^{\alpha} - I)f(x)
$$

where *I* is the unit operator in $\mathcal{L}_{q,\alpha}^p$.

Lemma 2.1 *For any function* $f \in \mathcal{L}_{q,\alpha}^p$, $1 < p \leq 2$, we have

$$
\int_0^{+\infty} |1 - j_{\alpha}(\lambda h, q^2)|^{p'} |\mathcal{F}_{q,\alpha}f(\lambda)|^{p'} |\lambda|^{2\alpha+1} d_q\lambda \leq C_1 ||\Delta_{q,h}f||_{q,p,\alpha}^{p'}.
$$

Proof. By formula (2.12) we have

$$
\mathcal{F}_{q,\alpha}(\Delta_{q,h}f)(\lambda) = \mathcal{F}_{q,\alpha}(T_{q,h}^{\alpha}f - f)(\lambda)
$$

\n
$$
= \mathcal{F}_{q,\alpha}(T_{q,h}^{\alpha}f)(\lambda) - \mathcal{F}_{q,\alpha}(f)(\lambda)
$$

\n
$$
= j_{\alpha}(\lambda h, q^2) \mathcal{F}_{q,\alpha}(f)(\lambda) - \mathcal{F}_{q,\alpha}(f)(\lambda)
$$

\n
$$
= (j_{\alpha}(\lambda h, q^2) - 1) \mathcal{F}_{q,\alpha}(f)(\lambda).
$$

Using formula (2.11) we obtain our result.

Lemma 2.2 For any function f defined on \mathbb{R}^+_q , we have

$$
\mathcal{D}_q \left[\int_a^x f(t) d_q t \right]_o = f_e(x) \tag{2.13}
$$

and

$$
\mathcal{D}_q^+ \left[\int_a^x f(t) d_q t \right]_e = q^{-1} f_o(q^{-1} x) \tag{2.14}
$$

where $x \mapsto \left[\int_0^x \right]$ a $f(t)d_qt\bigg]$ o *and* $x \mapsto \left[\int_0^x \right]$ a $f(t)d_qt\bigg]$ e *are respectively, the odd and the even part of* $x \mapsto \left[\int_0^x \right]$ a $f(t)d_qt\Big].$

Proof. See Lemma 3.2 in [4].

3 Main results

Before giving our main result, we define, first, the q-Bessel-Lipschitz class.

Definition 3.1 Let $0 < \delta < 1$. A function $f \in \mathcal{L}_{q,\alpha}^p$, $1 < p \leq 2$ is said to be in the *q-Bessel-Lipschitz class, denoted q-BLip*(δ, p, α) *if*

$$
\|\Delta_{q,h}f\|_{q,p,\alpha} = O(h^{\delta}) \quad \text{as } h \longrightarrow 0.
$$

Theorem 3.1 *For* $f \in \mathcal{L}_{q,\alpha}^p$ *where* $1 < p \leq 2$ *. If* f *in q-BLip*(δ, p, α)*, then* $\mathcal{F}_{q,\alpha}(f) \in$ ${\cal L}^\beta_{q,\alpha}(\mathbb{R}^+_q)$ where

$$
\frac{2p\alpha+2p}{2p+2\alpha(p-1)+\delta p-2}<\beta\leq p'=\frac{p}{p-1}.
$$

Proof. If $\beta = p'$ we have by the formula (2.11) that $\mathcal{F}_{q,\alpha}(f) \in \mathcal{L}_{q,\alpha}^{p'}$. And for $\alpha > -\frac{1}{2}$ $\frac{1}{2}$ $0 < \delta < 1$ we get

$$
1 + \frac{\delta p'}{2\alpha + 2} > 1
$$

\n
$$
\iff \frac{p - 1}{p} \left(\frac{2\alpha + 2 + \delta p'}{2\alpha + 2} \right) > \frac{p - 1}{p}
$$

\n
$$
\iff \frac{(2\alpha + 2)(p - 1) + \delta p}{p(2\alpha + 2)} > \frac{1}{p'}
$$

\n
$$
\iff \frac{p(2\alpha + 2)}{(2\alpha + 2)(p - 1) + \delta p} < \beta = p' = \frac{p}{p - 1}
$$

\n
$$
\iff \frac{2p\alpha + 2p}{2p + 2\alpha(p - 1) + \delta p - 2} < \beta = p' = \frac{p}{p - 1},
$$

then the theorem is proved in the case where $\beta = p'$.

In what follows we assume that $\beta < p'$ and $f \in q$ - $BLip(\delta, p, \alpha)$, then we have

$$
\|\Delta_{q,h}f\|_{q,p,\alpha} = O(h^{\delta}) \text{ as } h \longrightarrow 0.
$$

The Lemma 2.1 yields

$$
\int_0^{+\infty} |1 - j_\alpha(\lambda h, q^2)|^{p'} |\mathcal{F}_{q,\alpha}(f)(\lambda)|^{p'} |\lambda|^{2\alpha+1} d_q\lambda \le C_1 ||\Delta_{q,h} f||_{q,p,\alpha}^{p'}
$$

$$
\le C_2 h^{\delta p'}.
$$

If $0 < \lambda < \frac{\eta}{h}$, then $0 < \lambda h < \eta$ and inequality (2.7) implies that

$$
|1 - j_{\alpha}(\lambda h, q^2)| \ge C\lambda^2 h^2.
$$

Therefore

$$
\begin{split} &\int_0^{\frac{n}{h}}h^{2p'}\lambda^{2p'}|\mathcal{F}_{q,\alpha}(f)(\lambda)|^{p'}|\lambda|^{2\alpha+1}d_q\lambda\\ &\leq \frac{1}{C^{p'}}\int_0^{\frac{n}{h}}|1-j_\alpha(\lambda h,q^2)|^{p'}|\mathcal{F}_{q,\alpha}(f)(\lambda)|^{p'}|\lambda|^{2\alpha+1}d_q\lambda\\ &\leq \frac{1}{C^{p'}}\int_0^{+\infty}|1-j_\alpha(\lambda h,q^2)|^{p'}|\mathcal{F}_{q,\alpha}(f)(\lambda)|^{p'}|\lambda|^{2\alpha+1}d_q\lambda\\ &=O(h^{\delta p'}). \end{split}
$$

Then

$$
\int_0^{\frac{n}{h}} \lambda^{2p'} |\mathcal{F}_{q,\alpha}(f)(\lambda)|^{p'} |\lambda|^{2\alpha+1} d_q\lambda = O\left(h^{(\delta-2)p'}\right) \quad \text{as } h \longrightarrow 0.
$$

Thus

$$
\int_0^X \lambda^{2p'} |\mathcal{F}_{q,\alpha}(f)(\lambda)|^{p'} |\lambda|^{2\alpha+1} d_q\lambda = O\left(X^{(2-\delta)p'}\right) \quad \text{as } X \longrightarrow +\infty.
$$

Let

$$
\varphi(X) = \int_1^X |\lambda^2 \mathcal{F}_{q,\alpha}(f)(\lambda)|^\beta |\lambda|^{(2\alpha+1)\beta/p'} d_q \lambda. \tag{3.1}
$$

Taking into account the Hölder inequality yields

$$
\varphi(X) \le \left(\int_1^X |\lambda^2 \mathcal{F}_{q,\alpha}(f)(\lambda)|^{p'} |\lambda|^{(2\alpha+1)} d_q \lambda\right)^{\beta/p'} \left(\int_1^X d_q \lambda\right)^{(p'-\beta)/p'}
$$

= $O\left(X^{(2-\delta)p'\times \frac{\beta}{p'}} X^{\frac{p'-\beta}{p'}}\right)$
= $O\left(X^{2\beta-\delta\beta+1-\frac{\beta}{p'}}\right).$

Let us now estimate the next integral

$$
\int_1^X |\mathcal{F}_{q,\alpha}(f)(\lambda)|^\beta |\lambda|^{2\alpha+1} d_q\lambda.
$$

This integral is split into two

$$
\int_1^X |\mathcal{F}_{q,\alpha}(f)(\lambda)|^\beta |\lambda|^{2\alpha+1} d_q\lambda = I_1 + I_2,
$$

where

$$
I_1 = \int_1^X \left[|\mathcal{F}_{q,\alpha}(f)(\lambda)|^\beta \right]_e |\lambda|^{2\alpha+1} d_q\lambda
$$

and

$$
I_2 = \int_1^X \left[|\mathcal{F}_{q,\alpha}(f)(\lambda)|^\beta \right]_o |\lambda|^{2\alpha+1} d_q\lambda.
$$

Estimate the summands I_1 and I_2 from above. It follows from formula (3.1) and Lemma 2.2 that

$$
\mathcal{D}_{q}\varphi_o(\lambda) = |\lambda|^{2\beta + (2\alpha + 1)\frac{\beta}{p'}} \left[|\mathcal{F}_{q,\alpha}(f)(\lambda)|^{\beta} \right]_e, \tag{3.2}
$$

and

$$
\mathcal{D}_q^+ \varphi_e(\lambda) = q^{-1} |q^{-1} \lambda|^{2\beta + (2\alpha + 1)\frac{\beta}{p'}} \left[|\mathcal{F}_{q,\alpha}(f)(q^{-1} \lambda)|^\beta \right]_o.
$$
 (3.3)

Using the formula (2.1) , the q-integration by parts formula (2.4) and (3.2) , we get

$$
I_{1} = \int_{1}^{X} \left[|\mathcal{F}_{q,\alpha}(f)(\lambda)|^{\beta} \right]_{e} |\lambda|^{2\alpha+1} d_{q} \lambda
$$

\n
$$
= \int_{1}^{X} \lambda^{-2\beta-(2\alpha+1)\frac{\beta}{p'}+2\alpha+1} \mathcal{D}_{q} \varphi_{o}(\lambda) d_{q} \lambda
$$

\n
$$
= X^{-2\beta-(2\alpha+1)\frac{\beta}{p'}+2\alpha+1} \varphi_{o}(X) - \varphi_{o}(1) - \int_{1}^{X} \varphi_{o}(q\lambda) \mathcal{D}_{q} \left(\lambda^{-2\beta-(2\alpha+1)\frac{\beta}{p'}+2\alpha+1} \right) d_{q} \lambda
$$

\n
$$
= X^{-2\beta-(2\alpha+1)\frac{\beta}{p'}+2\alpha+1} \varphi_{o}(X) - \varphi_{o}(1) - \left[(2\alpha+1)(1-\beta/p') - 2\beta \right]_{q}
$$

\n
$$
\times \int_{1}^{X} \varphi_{o}(q\lambda) \lambda^{2\alpha-2\beta-(2\alpha+1)\frac{\beta}{p'}} d_{q} \lambda.
$$
 (3.4)

Furthemore, it follows from (2.2) , the q-integration by parts formula (2.5) , (2.3) and (3.3) that

$$
I_2 = \int_1^X \left[|\mathcal{F}_{q,\alpha}(f)(\lambda)|^\beta \right]_o |\lambda|^{2\alpha+1} d_q \lambda
$$

\n
$$
= \int_q^{qX} q^{-1} \left[|\mathcal{F}_{q,\alpha}(f)(q^{-1}\lambda)|^\beta \right]_o |q^{-1}\lambda|^{2\alpha+1} d_q \lambda
$$

\n
$$
= \int_q^{qX} (q^{-1}\lambda)^{-2\beta-(2\alpha+1)\frac{\beta}{p'}+2\alpha+1} \mathcal{D}_q^+ \varphi_e(\lambda) d_q \lambda
$$

\n
$$
= X^{-2\beta-(2\alpha+1)\frac{\beta}{p'}+2\alpha+1} \varphi_e(X) - \varphi_e(1) - \int_q^{qX} \varphi_e(\lambda) \mathcal{D}_q^+ \left(\lambda^{-2\beta-(2\alpha+1)\frac{\beta}{p'}+2\alpha+1} \right) d_q \lambda
$$

\n
$$
= X^{-2\beta-(2\alpha+1)\frac{\beta}{p'}+2\alpha+1} \varphi_e(X) - \varphi_e(1) + [2\beta - (2\alpha+1)(1-\beta/p')]_q
$$

\n
$$
\times \int_q^{qX} \varphi_e(\lambda) \lambda^{2\alpha-2\beta-(2\alpha+1)\frac{\beta}{p'}} d_q \lambda
$$

$$
= X^{-2\beta - (2\alpha+1)\frac{\beta}{p'} + 2\alpha+1} \varphi_e(X) - \varphi_e(1) + \left[2\beta - (2\alpha+1)(1-\beta/p')\right]_q
$$

\n
$$
q^{-(2\beta - (2\alpha+1)(1-\beta/p'))} \times \int_1^X \varphi_e(q\lambda)\lambda^{2\alpha - 2\beta - (2\alpha+1)\frac{\beta}{p'}} d_q\lambda
$$

\n
$$
= X^{-2\beta - (2\alpha+1)\frac{\beta}{p'} + 2\alpha+1} \varphi_e(X) - \varphi_e(1) - \left[(2\alpha+1)(1-\beta/p') - 2\beta \right]_q
$$

\n
$$
\times \int_1^X \varphi_e(q\lambda)\lambda^{2\alpha - 2\beta - (2\alpha+1)\frac{\beta}{p'}} d_q\lambda.
$$
 (3.5)

Hence, combining the formula (3.4) and (3.5), we conclude that

$$
\int_{1}^{X} |\mathcal{F}_{q,\alpha}(f)(\lambda)|^{\beta} |\lambda|^{2\alpha+1} d_{q} \lambda
$$
\n
$$
= X^{-2\beta - (2\alpha+1)\frac{\beta}{p'} + 2\alpha+1} \varphi(X) - [(2\alpha+1)(1-\beta/p') - 2\beta]_q
$$
\n
$$
\times \int_{1}^{X} \varphi(q\lambda) \lambda^{2\alpha-2\beta-(2\alpha+1)\frac{\beta}{p'}} d_{q} \lambda
$$
\n
$$
= O\left(X^{-2\beta - (2\alpha+1)\frac{\beta}{p'} + 2\alpha+2-\delta\beta+\beta\left(\frac{p+1}{p}\right)}\right) - [(2\alpha+1)(1-\beta/p') - 2\beta]_q
$$
\n
$$
\times \int_{1}^{X} \varphi(q\lambda) \lambda^{2\alpha-2\beta-(2\alpha+1)\frac{\beta}{p'}} d_{q} \lambda
$$
\n
$$
= O\left(X^{-2\beta-(2\alpha+1)\frac{\beta}{p'} + 2\alpha+2-\delta\beta+\beta\left(\frac{p+1}{p}\right)}\right)
$$
\n
$$
+ O\left(\int_{1}^{X} \lambda^{1-\delta\beta+\beta\left(\frac{p+1}{p}\right)+2\alpha-2\beta-(2\alpha+1)\frac{\beta}{p'}} d_{q} \lambda\right)
$$
\n
$$
= O\left(X^{-2\beta-(2\alpha+1)\frac{\beta}{p'} + 2\alpha+2-\delta\beta+\beta\left(\frac{p+1}{p}\right)}\right)
$$

and this is bounded as $X \longrightarrow \infty$ if

$$
-2\beta - (2\alpha + 1)\frac{\beta}{p'} + 2\alpha + 2 - \delta\beta + \beta\left(\frac{p+1}{p}\right) < 0,
$$

that is

$$
\beta > \frac{2p\alpha + 2p}{2p + 2\alpha(p-1) + \delta p - 2}
$$

and this ends the proof.

In the rest of this paper, we give our second main result which is a generalization of Younis's theorem 1.2.

For this objective, we need to define the q-Bessel-Dini-Lipschitz class.

Definition 3.2 Let $0 < \delta < 1$, $\gamma > 0$. A function $f \in \mathcal{L}_{q,\alpha}^p$, $1 < p \leq 2$ is said to be in the *q-Bessel-Dini-Lipschitz class, denoted* D*-*q*-*BLip(δ, γ, p, α) *if*

$$
\|\Delta_{q,h}f\|_{q,p,\alpha} = O\left(\frac{h^{\delta}}{(\log\frac{1}{h})^{\gamma}}\right) \text{ as } h \longrightarrow 0.
$$

Theorem 3.2 Let $f \in \mathcal{L}_{q,\alpha}^p$ whis $1 \lt p \leq 2$. If f belong to D-q-BLip($\delta, \gamma, p, \alpha$), then $\mathcal{F}_{q,\alpha}(f)$ belong to $\mathcal{L}^{\beta}_{q,\alpha}(\mathbb{R}^+_q)$, where

$$
\frac{2p\alpha+2p}{2p+2\alpha(p-1)+\delta p-2} < \beta \le p' = \frac{p}{p-1} \quad \text{and} \quad \beta > \frac{1}{\gamma}.
$$

Proof. If $\beta = p'$. From formula (2.11) we have that $\mathcal{F}_{q,\alpha}(f) \in \mathcal{L}_{q,\alpha}^{p'}$. And for $\alpha > -\frac{1}{2}$ $\frac{1}{2}$ $0 < \delta < 1$ we get

$$
1 + \frac{\delta p'}{2\alpha + 2} > 1
$$

\n
$$
\iff \frac{p-1}{p} \left(\frac{2\alpha + 2 + \delta p'}{2\alpha + 2} \right) > \frac{p-1}{p}
$$

\n
$$
\iff \frac{(2\alpha + 2)(p-1) + \delta p}{p(2\alpha + 2)} > \frac{1}{p'}
$$

\n
$$
\iff \frac{p(2\alpha + 2)}{(2\alpha + 2)(p-1) + \delta p} < \beta = p' = \frac{p}{p-1}
$$

\n
$$
\iff \frac{2p\alpha + 2p}{2p + 2\alpha(p-1) + \delta p - 2} < \beta = p' = \frac{p}{p-1}.
$$

So, we asume that $\beta < p'$ and $f \in D$ -q-BLip $(\delta, \gamma, p, \alpha)$. By analogy with the proof of Theorem 3.1, we can establish the following result

$$
\int_0^{\eta/h} \lambda^{2p'} |\mathcal{F}_{q,\alpha}(f)(\lambda)|^{p'} |\lambda|^{2\alpha+1} d_q\lambda = O\left(\frac{h^{(\delta-2)p'}}{\left(\log\frac{1}{h}\right)^{\gamma p'}}\right) \quad \text{as } h \longrightarrow 0.
$$

Thus

$$
\int_0^X \lambda^{2p'} |\mathcal{F}_{q,\alpha}(f)(\lambda)|^{p'} |\lambda|^{2\alpha+1} d_q\lambda = O\left(\frac{X^{(2-\delta)p'}}{(\log X)^{\gamma p'}}\right) \quad \text{as } h \longrightarrow 0.
$$

Set

$$
\varphi(x) = \int_1^X |\lambda^2 \mathcal{F}_{q,\alpha}(f)(\lambda)|^\beta |\lambda|^{(2\alpha+1)\beta/p'} d_q\lambda.
$$

We us the Hölder inequality we obtain

$$
\varphi(X) = O\left(\frac{X^{2\beta - \delta\beta + 1 - \frac{\beta}{p'}}}{(\log X)^{\gamma\beta}}\right) \quad \text{as } X \longrightarrow \infty.
$$

Let us estimate the next integral

$$
\int_1^X |\mathcal{F}_{q,\alpha}(f)(\lambda)|^\beta |\lambda|^{2\alpha+1} d_q\lambda.
$$

We write

$$
\int_1^X |\mathcal{F}_{q,\alpha}(f)(\lambda)|^\beta |\lambda|^{2\alpha+1} d_q\lambda = I_1 + I_2,
$$

where

$$
I_1 = \int_1^X \left[|\mathcal{F}_{q,\alpha}(f)(\lambda)|^{\beta} \right]_e |\lambda|^{2\alpha+1} d_q \lambda
$$

and

$$
I_2 = \int_1^X \left[|\mathcal{F}_{q,\alpha}(f)(\lambda)|^\beta \right]_o |\lambda|^{2\alpha+1} d_q\lambda.
$$

Similary as in the proof of Theorem 3.1 we have

$$
I_1 = X^{-2\beta - (2\alpha + 1)\frac{\beta}{p'} + 2\alpha + 1} \varphi_o(X) - \varphi_o(1) - \left[(2\alpha + 1)(1 - \beta/p') - 2\beta \right]_q
$$

$$
\times \int_1^X \varphi_o(q\lambda) \lambda^{2\alpha - 2\beta - (2\alpha + 1)\frac{\beta}{p'}} d_q \lambda \tag{3.6}
$$

and

$$
I_2 = X^{-2\beta - (2\alpha + 1)\frac{\beta}{p'} + 2\alpha + 1} \varphi_e(X) - \varphi_e(1) - \left[(2\alpha + 1)(1 - \beta/p') - 2\beta \right]_q
$$

$$
\times \int_1^X \varphi_e(q\lambda) \lambda^{2\alpha - 2\beta - (2\alpha + 1)\frac{\beta}{p'}} d_q \lambda. \tag{3.7}
$$

Combining (3.6) and (3.7) we conclude that

$$
\int_{1}^{X} |\mathcal{F}_{q,\alpha}(f)(\lambda)|^{\beta} |\lambda|^{2\alpha+1} d_{q}\lambda = O\left(\frac{X^{-2\beta-(2\alpha+1)\frac{\beta}{p'}+2\alpha+2-\delta\beta+\beta\left(\frac{p+1}{p}\right)}}{(\log X)^{\gamma\beta}}\right).
$$

and this is bounded as $X \rightarrow \infty$ if

$$
-2\beta - (2\alpha + 1)\frac{\beta}{p'} + 2\alpha + 2 - \delta\beta + \beta\left(\frac{p+1}{p}\right) < 0 \quad \text{and} \quad -\gamma\beta < -1.
$$

Hence

$$
\frac{2p\alpha+2p}{2p+2\alpha(p-1)+\delta p-2} < \beta \le p' = \frac{p}{p-1}.
$$

Then, the theorem is proved.

References

- 1. Bettaibi, N., Bettaieb, R.H.: *q-Analogue of the Dunkl transform on the real line*, Tamsui Oxf. J. Math. Sci. 25 (2), 117-207 (2007).
- 2. Daher, R., Djellab, N. and El Hamma, M.: *On some theorems of the Jacobi-Lipshitz class for the Jacobi transform*, Bulletin of the Transilvania University of Brasov, Series III: Mathematics and Computer Science, 1 (63)(2), 29-36 (2021).
- 3. Daher, R., El Hamma, M. and Akhlidj, A.: *Dini-Lipschitz functions for the Bessel transform*, Nonlinear studies, 24 (2), 297-301 (2017).
- 4. Daher, R., Tyr, O.: *Growth properties of the q-Dunkl transform in the space* $L_{q,\alpha}^{p}(\mathbb{R}_{q},|x|^{2\alpha+1}d_{q}x)$, Ramanujan J. 57 (1), 119-134 (2022).
- 5. Dhaoudi, L.: *On the q-Bessel Fourier transform*, Bulletin of Mathematical Analysis and Applications, 5 (2), 42-60 (2013).
- 6. Dhaouadi, L., Binous, W. and Fitouhi, A.: *Paley-Wiener theorem for the* q*-Bessel transform and associated q-sampling formula*, Expo. Math. 27 (1), Article 55-72 (2009).
- 7. Dhaouadi, L., Fitouhi, A. and El Kamel, J.: *Inequalities in* q*-Fourier Analysis*, Journal of Inequalities in Pure and Applied Mathematics, 7 (5), Article 171 (2006).
- 8. El Hamma, M. and Daher, R.: *On some theorems of the Dunkl-Lipschitz class for the Dunkl transform*, Lobachevskii J. Math. 40 (8), 1157-1163 (2019).
- 9. Fitouhi, A., Hamza, M. and Bouzeffour, F.: *The* q*-*j^α *Bessel function*, J. Appr. Theory, 115, 144-166 (2002).
- 10. Gasper, G., Rahman, M.: *Basic hypergeometric series*, Encycopedia of mathematics and its applications, 35. Cambridge University Press, Cambridge (1990).
- 11. Jackson, F.H.: *On a q-definite integrals*, Q. J. Pure Appl. Math. 41, 193-203 (1910).
- 12. Kac, V.G., Cheung, P.: *Quantum calculus*, Springer, New York (2002).
- 13. Koornwinder, T.H. and Swarttouw, R.F.: *On* q*-analogues of the Hankel and Fourier transform*, Trans. AMS. 333, 445-461 (1992).
- 14. Negzaoui, S.: *Lipschitz conditions in Lagurre Hypergroup*, Mediterr. J. Math (2017) 14:191 Doi 10.1007/s00009-017-0989-4.
- 15. Titchmarsh, E.C.: *Introduction to the theory of Fourier integrals*, Clarendon Press, Oxford, (1948).
- 16. Younis, M.S.: *Fourier transforms of Dini-Lipschitz functions*, J. Math. Math. Sci. 9 (2), 301-312 (1986).