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Abstract. In this paper, the nonlinear Kirchhoff-Love equation

0
wr = = [Hluyua) + By (ol ) we + Bz (Jluall®) uee + Bs (,6) usee | + Mue = F(u,uz) + f(2,)

associated with initial and Dirichlet boundary conditions is considered. Under suitable assumptions on
the functions f, B1, Ba, B3, F, H and the initial data, we prove the local existence and uniqueness of a
weak solution. We also establish a new blow-up result with a negative initial energy. On the other hand,
a sufficient condition is proved to obtain the exponential decay of weak solutions.
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1 Introduction

In this paper, we consider the following initial boundary value problem
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e~ [ ) + By () i+ B () s+ B (0] + A
=F(u,uyz) + f(z,t), x € 2=(0,1), 0 <t < T, o
u(0,t) = u(l,t) =0, (1.2)
u(,0) = dio(2), w(,0) = @ (), (1.3)

where A > 0 are constants and o, @1 € Hi N H?; f, By, Ba, B3, F, H are given functions

under suitable assumptions. In Eq. (1.1), the nonlinear terms B; (|]ux\|2> , Bo (|]ux\|2>
1
depend on the integral ||u||> = / u?(z,t)de.

0
This problem can be regarded as a Kirchhoff-Love type because it connects Kirchhoff
and Love equations. Eq. (1.1) has its origin in the model of Kirchhoff [6] which describes
small vibrations of an elastic string

Eh [
| py =2
phug <0+2L/0

here w is the lateral deflection, L is the length of the string, h is the cross-sectional area, F/
is Young’s modulus, p is the mass density, and F is the initial tension. Eq. (1.1) also arises
from the Love equation

ou

@(yv t)

2
dy) Ugz, (1.4)

Ut~ iy — 202w gy = 0, (1.5)

see V. Radochovai [15]. This equation describes the vertical oscillations of a rod, which was
established from Euler’s variational equation of an energy functional

T L
1 1
/ dt / [QF p (ui + pwuiy) = SF (Bug + ppwugun) | do, (16)
0 0

where w is the displacement, L is the length of the rod, F' is the area of cross-section, w is
the cross-section radius, E is the Young modulus of the material and p is the mass density.
To the best of our knowledge, many works related to those kinds of problems under
different hypotheses have been extensively studied by many authors, for example, we refer
to [1] - [5], [8] - [20], and references therein.
In [2], M.M. Cavalcanti et al. studied the existence of global solutions and exponential
decay for the following Kirchhoff-Carrier model with viscosity

82y 2 8 .
w—M(fQ\Vy] dg;) Ay — oAy = finQ = 2 x (0,+),
y=0onX; =17 x (0,+00),
0 0 (L.7)
2 9Y 9 (oy) _ —
M (fQ |Vy| da:) 5 T 5 (81/) gon Xy = Iy x (0,+00),
y(0) =" 2(0) = y'in 2,

ot
where M is a C! function, M ()\) > Ao > 0, VA > 0.
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In [14], Kosuke Ono investigated the global existence, decay properties, and blow-up of
solutions to the initial boundary value problem for the following nonlinear integrodifferen-
tial equations of hyperbolic type with nonlinear dissipative terms

L2
u' + M <HA2uH Au+|u/|Pu = f(u)in Q = 2 x [0, +00),

(1.8)
u(z,0) = uo(x), u'(z,0) = w1 (x), and u(z,t)[s0 = 0,
82
where (2 is a bounded domain in RY with smooth boundary 92, A = —A = Zjvz 1 5.2
o
J

is the Laplace operator with the domain D(A) = H?(£2) N H{(£2), ||-|| is the norm of H =
2
L2(£2), B > 0, M(r) is a nonnegative C''- function for r > 0 satisfying M (HAéuH ) =

2y
a-+b ’ A%uH ,witha,b>0,a+b>0,andy > 1, and f(u) is a nonlinear C''- function

satisfying |f(u)| < ki [u|**h, [f/(u)| < ko |u|®, with some constants ki, k; > 0 and
a>0.
In [19], Z. Yang, Z. Gong considered the viscoelastic equation

t
u(z,t) — M <||Vu|]§> Au(x,t) +/ g(t — s)Au(z, s)ds +ur = [P u  (1.9)
0

with suitable initial data and boundary conditions, where M (s) = 1 + bs” is a positive
C*- function (b > 0, > 0, s > 0), and |||, is the usual norm of L?({2). Under certain
assumptions on the kernel g and the initial data, the authors established a new blow-up result
for arbitrary positive initial energy, by using simple analysis techniques.

Recently, in [4], Z. Far et al. considered the problem of blow-up of solutions for a cou-
pled system of nonlinear Love-equations in 1-dimensional bounded domain with homoge-
neous Dirichlet boundary conditions and an internal infinite memory. Here, the nonexistence
of weak solutions with positive initial energy was proved by using a classical arguments.

In [17], Prob. (1.1) - (1.3) with B; = B (:r,t,u,HuHZ,HuxH2,HutHQ,HumHQ) i =

1,2, 3, was considered, where results related to the existence, blow-up and exponential de-

cay estimates were proved. In case B = B(z,t) and F = F(u,u,), H = H(u,u,) such

OF OF

that (F, —H) ( o0

when f(z,t) = 0 and the initial energy is negative. On the other hand, a sufficient condi-

tion was established, under the assumptions that the initial energy is positive and small, to
guarantee the global existence and exponential decay of weak solutions.

This paper is inspired by the results of [17], we shall establish a linear recurrent sequence

to prove that Prob. (1.1)-(1.3) has a solution. Furthermore, we shall consider blow-up and

decay properties of Prob. (1.1)-(1.3) with B; = B; (Hux(t)HQ) # Bi(x,t),1=1,2,asin
[17]. It consists of four sections.

In the Section 2, both existence and uniqueness of weak solutions for Prob. (1.1)-(1.3)
are stated in Theorem 2.2, in case F, H € C*(R?); By, By € CY(Ry), B3 € C*([0,1] x
[0,7]), with B;(y) > by > 0,Vy € Ry (i = 1,2), Bs(z,t) > bgs > 0, V(x,t) €
[0,1] > [0, T].

In Sections 3, 4, Prob. (1.1)-(1.3) is considered with (F, —H) = (%—{j, ng;). Here, Theo-
rem 3.1, Theorem 4.1 are proved to have a blow up result and the exponential decay of weak
solutions via using the Lyapunov functional. More precisely, in Section 3, with f(z,t) = 0
and a negative initial energy, the solution of (1.1)-(1.3) blows up in finite time. In Section

), the authors proved that the solution blows up in finite time
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4, we give a sufficient condition, where the initial energy is positive and small, any global
weak solution is exponentially decaying. By modifying the methods used in [17], the results
obtained here are more general than the results established in [17].

2 Existence of a weak solution

First, let (-, -) be either the scalar product in L? or the dual pairing of a continuous linear
functional and an element of a function space, ||-|| be the norm in L? and ||-||  be the norm
in the Banach space X. Let LP(0,7;X), 1 < p < oo, be the Banach space of the real
functions « : (0,7") — X measurable, with

T 1/p
ll o) = ( [ o dt) < ocforl < p < oo,

and
HuHLoo(O’Tgx) = esssup ||u(t)| y forp = oco.
0<t<T

Denote u(t) = u(z,t), W' (t) = w(t) = 24(z,t), u"'(t) = uy(t) = 8t2 $(x,t), ug(t) =
gg(l‘ t), um(t) = %( t). With F € CY(R?), F = F(u,v), we put D1F =
Do F = av

Now, we recall the following properties related to the usual spaces C([0,1]), H', and

Ou>

H} ={ve H' :v(1) =v(0) = 0}.

Lemma 2.1.
(i) The imbedding H' — C([0, 1)) is compact and

1/2
Illep < V2 (ol +llvall®) ™ foraiiv e H. @.1)

1/2
(i) On H}, v — ||vg|| and v — ||v]| g0 = (HUH2 + ||vx|\2) are equivalent norms.
Furthermore
[vlleqoy) < lvall forallv e H}. (2.2)
A weak solution u of Prob. (1.1)-(1.3) is defined in the following manner: Find u €

Wp ={ue L*(0,T; Hy N H?) : v/, u" € L™ (0,T; Hj N H*)}, such that u satisfies
the following variational equation

(W (8),w) + (M (ut) uo®) s wr) + By (ua(®)?) (wet) ) @3)

+ By (Jlua (8) ) (u (8), we) + (Ba e (8), w2) + Mu (8), w)
= (F (u(t), ug(t)) ,w) + (f(t), w),
forallw € Hy, ae., t € (0,T), together with the initial conditions
U(O) = ao, UI(O) = ’L~L1. (24)

Next, we make the following assumptions:
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(Hy) i, 4y € HE N H?;
(Hy) B; € CY(R.) and there exist the constants by, > 0,7 = 1,2
such that B;(y) > b, Yy > 0,
(Hs) Bs € CY([0,1] x Ry) and there exists a constant bz, > 0
such that Bs(x,t) > bss, V(z,t) € [0,1] x Ry;
(Hy) F,HeCl(R?);
(Hs) feCL(0,1] x R.).
Using the standard Faedo-Galerkin method, which is introduced by Lions in [7], we
can prove the following theorem, it implies that the problem (1.1)-(1.3) has a unique weak
solution.

Theorem 2.2. Let (Hy) — (Hs) hold. Then Prob. (1.1)-(1.3) has a unique local solution

ue L™ (0,T;HyNH?), v € L*(0,T; Hy N H?), " € L™ (0,T; Hy N H?)
(2.5)
for T' > 0 small enough.
Remark 2.1. In the base of the regularity obtained by (2.5), Prob. (1.1)-(1.3) has a
unique strong solution

3 Blow-up

In this section, we will consider problems (1.1)-(1.3) with f = 0. Under appropriate as-
sumptions, we show that the solution of this problem blows up in finite time.
First, we add the following assumption.
(Hs) Bi, By € C' (R, ) and there exist the positive
constants by, X1, b2, r such that
(i) Bi(y) > b1 > 0,Vy > 0,
(ii) yBi(y) < x1 L)y Bi(z)dz, Yy > 0,
(iii) 0 < Ba(y) < bs(1+y"),Vy > 0;
(H3) Bz € C'([0,1] x R.) and there exist the positive
constants bz, b3, o3 such that
(i) bz« < Bsz(z,t) < bi, Y(z,t) € [0,1] x Ry,
(il) —o3 < B(z,t) <0,V(x,t) € [0,1] x Ry;
(H,) There exist F € C?(R?;R) and the constants
p,q > 2;dy, d; > 0, such that
(1) %—f(u,v) = F(uv U)> %%(u,v) = —H(U,U),
(i) wF(u,v) — vH(u,v) > d1.F(u,v), for all (u,v) € R?
(i) F(u,v) > dy (Jul? + [v]P), for all (u,v) € R%

N -2 A
(Hs) 0<r< P22 4y > 2x1 with x1, 7, di, pasin (HQ, (i4), (m)) ,
(ﬁ4, (i), (i4i) ) and o3 > 0 (in (ﬁg, (zz))) is small enough.
We give the examples of the functions F, H satisfying (lﬁI 4) as below.

Example 3.1. F'(u,v) = (!u\q_z + % || > |U"B) u, H(u,v) = — (]v[p_z + |ul® ]v[ﬂ_2> v,

where «, 3, p, ¢ > 2 are the constants, with min{p, ¢, 45} > 2x1, and x; asin (ﬁg, (11)).
It is obvious that (H}) holds, because there exists a F € C?(R?; R) defined by F(u,v) =
1

1 1
= |vfP + = |ul® |U!5 + = |u|?, such that
p q

B
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oF oF
%(uvv) :F(u?v)v %(u,v) = —H(u,v),
ath

uF(u,v) — vH(u,v) = v’ + Jul® o] + [u)?

>d1 F(u,v) for all (u,v) € R?,
in which d; = min{p, ¢, « + 8} > 2x1;
1 1 1
F(u,v) == P + = |ul*[v]® + = |u]?
(u; v) ]3\ | 5\ * |v| q\ |
>dy ([vP + |u|?) for all (u,v) € R?,

with d; = min {1/p,1/q}.

Example 3.2.
2k p@kl*l 2k‘ q @kg*l
F(u,v) = |U‘Q—2 udk2 (u,v) + 4Rkl |v] (u,v)u " 2R2 lul? u (u,v)7
p  e+ut+o? g  e+u+o2
- 2k p @kl—l 2% q¢k2_1
H(u,v) = — |,U|P ZU@kl (u,v) _4h1 |U| v (U,U) _ zk2 |u] (uﬂ))vv
p  e+u+o? g e+u+0?

and @ (u,v) = In(e+u?+v?), where p, ¢ > 2; ki, ko > 1 are the constants, with
min{p,q} > 2x1.
The assumption (H,) holds, because there exists the function 7 € C?(R?;R) defined
by
1 1
.F(’LL,U) - - |v‘p stl (U,U) + - |u|q ¢k2 (’LL, U) )
p q

such that

uF (u,v) — vH(u,v)
= [u|? "2 (u,v) + [v[P ¥ (u,v)
2k, ol (“z + Uz) 11 (0, 0) + 2k Jul? (“z + ”2)
p et+us+v q et+u +v
> Juf? B (u,0) + [off &1 ()
>dy F(u,v) for all (u,v) € R?,

dr271 (y, v)

in which d; = min{p, ¢} > 2x1;

1 1
Fu,v) == [P &M (u,0) + ~ |u|? "2 (u, v)
p q

1 1 -
> |vlP + = |u|? > dy (JvP + |u|?) forall (u,v) € R?
p q

with d; = min {1/p,1/q} .
Put

2

1 1 [l 1
1O ==zl =5 [ Bwia - |[VEOn. G
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1
+/0 F (tp(z), Uog(x)) d.

Theorem 3.1. Let (Hy) — (Hs) hold. Then, for any i, i1 € Hy 0 H? such that H(0) >
0, the weak solution u = u(x,t) of Prob. (1.1)-(1.3) blows up in finite time.

Proof of Theorem 3.1. It consists of two steps.

Step 1. We prove that the Problem (1.1)-(1.3) has not a global weak solution.

Indeed, by contradiction, we assume that

ue€ CHRy; H* N HY), o € L°°0,T; H* N HY), VT > 0, (3.2)

is a global weak solution of Prob. (1.1)-(1.3). We define the energy associated with (1.1)-
(1.3) by

Ty, e 1 [l t)|>
E(t) =5 [[v'®)] +2/ Bi(z)dz (3.3)
2 H\/Bg / F (u(z,t), uzp(z,t)) dz,
and we put H(t) = —FE(t), Vt > 0. Multiplying (1.1) by u/(x,t) and integrating the

resulting equation over [0, 1], we have
2
() =M/ O + a1 Ba (Il (1)) (3.4)
e / / 2 >
~3 Bi(w,t) |uf(z, )| dz > 0.

0
It implies that

H(t)> H(0) >0, vVt >0, (3.5)
SO
O < H(0) < ) < fo ux(x t)) dx;
1 || (O fnugc I B (2)ds 4 - H\/? )H2 (3.6)
< fo ux(x, t)) dx, vt > 0.
Now, we define the functional
L(t) = H7(t) + W (), (3.7)
where
W (t) =(u'(t), u(t)) + (Bs(t)ug(t), ua(t)) + % lu(t)]* (3.8)

for € small enough and

11 1 U +2
rt } (3.9)

1
0<77§min{— ——, 1-
2 p' 2 ¢ D

In what follows, we show that, there exists a constant v > 0 such that

L'(t) = [H(E) + [u®)[$0 + Ol + [ O + [ @l + e @)?] . 3.10)
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Multiplying (1.1) by u(z, t) and integrating over [0, 1], it leads to

0 =[O ~ @ B (Jua0)?) + | VBs@w| @1

+ (By(H)ug (), ua(t)) + (F (u(t), ua(t)) , u(t))
— (M (u(t), uz(t)) , us (1))

Therefore
L'(t)y= (1 —n)H "(t)H'(t) + ¥'(t) > ¥’ (t). (3.12)

By (Hy), we obtain

(E (u(t), ux (1)), u(t)) — (H (u(t), ua(t)) , ua (1)) 2 dy Jo F (u(@, 1), up(w,1)) da;
Jo F(u(@, 1), up(z,t)) dz > dy (HU(tiHLq + [lua(t )H v);

Jo F (ula, 1), ug (2, 1)) d:c— H(t)+ 5\\u I+ f”““” I By (2)dz

3| VE@wO|

3.13)
On the other hand, by (Ho, ii), (Hs, ii), we get
5 5 llua (8117
~B1 (Ilua D) e 0)? >~ / Bi(2)dz. (.14
0
(Bt (0. us(0)] < [ B st
s%uux DI+ ZE @) v > 0
It implies from (3.11), (3.13), (3.14) that
2
() = 'O = Nl B (e (@) + |[v/Ba@i 1) (3.15)

+ (By(t)us (1), uz (t)) 4 (F (u(t), ug(t)) ,u(t)) — (H (u(t), uz(t)) , u(t))
ol - [ B a0
Z||u X1 ; z)az 3 || Uy
(51 PRGIE + H L (0| >+d1/ F (u(z, t), up(z,t)) dz
I <>||2
= [l (t) H2X1/0 By (2)dz + bas ||, (1)
1
_ <521 lua (£)|? + H H2> +d15/0 F(u(z,t), uzp(z,t)) de
s ()12
i1 - ) [H(t) b2 o)+ ;/0 Bi(2)dz + 5 H\/Bg(t)u;(t)‘r]

> (1 + %dl(l - 5)> o/ ()| + da (1 — 8) H (t)

_ [luz (Ol
T diody (Ju(®)1L, + e (®)I,) + Bdlu 8- xl} [ B
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=B+ [(1+ L -0)) b - 2] Jutiol”

forall 0 € (0,1), 01 > 0.
By di > 2x1, we have

1 01 1
I Sd(1—6) =1 Vbe — 2 = (2dy—x1 ) b1e >0,
5—>o+,11§11—>0+[<2 11-9) Xl) ! 2} <2 ! X1> 1+ >0

then, we can choose d, 61 € (0, 1) with ¢, d; are small enough such that

1 1)
<2d1(1 —8) — Xl) br, — 51 > 0. (3.16)
Hence, we deduce from (3.16) that
1 [z ()] 5
sa-0-x| [ B - ol (317
0

1 )
2| (500 -9 - x1 ) b = 5| lusto®
Then, if o3 > 0 satisfies

2
(1+d21(1—5)> bge — =3 > 0, (3.18)

then we deduce from (3.12), (3.15)-(3.18) that there exists a constant v > 0 such that (3.10)
holds.
From the formula of L(t) and (3.10), we can choose ¢ > 0 small enough such that

L(t) > L(0) > 0, ¥ > 0.
Using the inequality
5 7 o—1 5 o
(Zizlxi> <5771N" g, forallo > 1, and a, -+ w5 >0, (3.19)

it implies from (3.7)-(3.9) that

LY O () <Const | H(t) + |(u(t), u' (1))~ + [(Bs(t)ad (£), s (£)) |/

(3.20)
(D)2 1/0=m)
+ [Ju(®) A < / Bz(z)dz) ] .
0
Using Young’s inequality, we have
[au(t), ! () |7 < ) [ [ (1)) (3.21)

<5t u@®° + sty v/ )

<Const (Jlu.(0)]° + [/ (0]
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where 0 = 2/(1 — 2n). Similarly, we also get

1/(1— * — — 1/(1—
|(Bs(£) (£), un (0))] 7 < (05) Y i (0) |V (0| (3.22)

<Const (I + [, )
o (812
(/ BQ(Z)dZ)
0

s (£)]12 L/(=n)
< (52/ (1+2") dz)
0

= \1/(1— sl 1/(1=n)
< (02)"" "7 [laa ) + 1 e (0]

<Const (||ux(t)\|2/(1_’7) + Hum(t)”(%‘“)/(l—n)) _

1/(1—n)

Combining (3.20) - (3.22), it leads to
LY = (1) <Const [H(t) + | @) + |l @] + a2 O (3.23)
ol (B2 g (O] + e (8)| 2/
We note more a useful property as follows.

Lemma 3.2. Let 2 < r; < ¢, 2 < ry, 73 < min{p,q}, 2 < r4y < p. Then, for any
v E H&, we have

ol + o7 4 ol + lloa ™ < 4 (108, + ol + oal®) . 3.24)

Proof of Lemma 3.2 is not difficult, so we omit the details. (J

1 1 1 2 2
, 1= rt }(asin3.9)is
p

1
We note that the condition 0 < n < min< - — —, = — —
2 p2 ¢
equivalent to

Using (3.23) and Lemma 32 with 2 < r = 2/(1 —n) < ¢, 2 < ry = 0,13 =
2/(1—n) <min{p,q},2<rs=(2r+2)/(1 —n) < p, we obtain

L0 (8) < Const [H () + ||/ )] + [ (O + a1 + a0 + e (B,

(3.25)
for all ¢t > 0.
It follows from (3.10) and (3.25) that
L'(t) > ALY (1), vt >0, (3.26)
where ) is a positive constant. Integrating (3.26) over (0, t), it leads to
_ 1—n 1—-n _.0-
/=gy > =1 ,0<t< T, =——L~"0=1)). 3.27
Therefore lim L(t) = +oo. This is a contradiction with (3.25) and (3.2). Thus, the

t—T,.
Problem (1.1)-(1.3) has not a global weak solution. It implies that 75, < 400, where

Too = sup {T > 0 : Prob. (1.1)-(1.3) has a unique solution
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we CY([0,T); H2 N HY), o € L0, T; H? Hg)}.
Step 2. Next, we now prove that

Jim. (Hu(t)HHgmHé + Hu’(t)HHzmHé) = +c0. (3.28)

[e]

Indeed, assume that (3.28) is not true, there exists a constant M > 0 and there exists a
sequence {7}, } with {T,,,} C (0,7 ), T, = T~ such that

HU(Tm)HH2mH3 + Hu/(Tm)HHQQHé <M, Vm € N.
Following the argument as above, for each m &€ N, there exists a unique weak solution
i € CY([Trn, Trn +n); H* N HY), o € L(Ty, Ty 4+ n; H? N HY)
of Prob. (1.1)-(1.2) with the initial data
W(Tn) = u(Tm), @ (Tn) = u'(Tm),

with > 0 independent of m € N. By T,,, =& T, wecan get T},, + 7 > T, form € N
sufficiently large. It is clear to see that the function U (¢) with

ut), 0<t< Ty,
U(t)_{ (), Ty <t< T+,

is a weak solution of Prob. (1.1)-(1.3) on [0, T},, + 7], T\, + n > T, we obtain a contra-
diction to the maximality of T,. Thus, (3.28) holds. Theorem 3.1 is proved. [

4 Exponential decay

In this section, we make the following assumptions.
(Hy) felLl>®(Ry;L%) N LY (Ry; L2) NnCH([0,1] x Ry);
(Hs) Bj, By € C'(R,) and there exist the positive
constants by, X1x, by such that
(i) Bi(y) > bix >0,Vy >0,i=1,2,
(i) yBi(y) > x1« [y Bi(2)dz, Vy > 0,
(iii) Ba(y) < ba1B1(y), Yy > 0;
(Hs3) Bs € C(]0,1] x R, ) and there exist the positive
constants bz, b3, o3 such that
(i) bs. < Bs(z,t) < b, V(z,t) € [0,1] x Ry,
(i) —o3 < Bl(z,t) < 0,¥(z,t) € [0,1] x Ry;
(Hy) There exist F € C?(R?; R) and the constants
p,q, o, B, dy, da, do > 0, withg > 2, p > 8 > 2, such that
(i) %—i(u, v) = F(u,v), %—f(u,v) = —H(u,v) for all (u,v) € R?,
(i) uF(u,v) — vH(u,v) < doF (u,v) for all (u,v) € R?;
(i) Fi (1, 0) = F(u, v) + dy [v]P < do |ul? (1 + ul® + |u\ﬁ) for all (u,v) € R?;

_ d _
(Hs) x1x > — with dy as in (Hy, (ii)).
p

We can give the examples of the functions F, H satisfying (Hy), as follows
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Example4.1. F(u, v) = (g |2 [u]® + |u|<12> w, H(u,v) = (mH — Jul mH) v

where a, 3, p, ¢ > 2 are the constants, with p > max {q,253,a + (3} .
We see that (H,) holds, indeed, we consider 7 € C?(R?;R) defined by F(u,v) =

1 1 1
— = of? + = |u|*|v]® + = |u|?, then we have
p B q

oOF B OF B 2,
%(u,v) =F(u,v), %(u,v) = —H(u,v) forall (u,v) € R

wF (u,v) = vH(,0) = = o]’ + (%52) Jul® o] + [u]?
<dyF(u,v) for all (u,v) € R?,

where max {¢, « + 8} < da < p.
On the other hand, (Hy, (7)) also holds, indeed,
If ¢ > «, then

1 1 1 _
F(u,v) + » Kl =3 [ul* o] + p |ul? < max{1/8,1/q} [ul” [!v\ﬁ + Juf*"

<max {1/8,1/a} Jul® (1+ [u]? + o)
<da Jul* (1+ [ul* + o),
where dy = 1/p, dy = 2max {1/8,1/¢},a > 2,p > 23 > 2.
If ¢ < , then
1 1 r 1

Flu,v) + = v == |u|“|v = Jul?
( )pH 5'” qH

<max{1/8,1/q} lul® ([u|*|v|” + 1)

(
<max {1/8,1/q} |u|? <|u|a ol + 1)

2a 2q 25
<max {1/8,1/q} lul’ g 1)

28
<max (1/6.1/g) " (1 Rl 1)

<ds |ul? (1 + |u* + Wﬁ) ,

where d; = 1/p, dy = 2max{1/8,1/q},q> 2,p > 28 > 2.

Example 4.2.
2k p@kl*l 2k q¢k271

Flu,v) = ( Juft=2 @ (u, o) — ZaEO (0 ) | 2k ulf 0 7 (wv)y
p et u?+v? q e+ uZ+ 02
2k |u|d pF2—1 2%t ulP pF1—1

H(uyv) = (o2 @b (u,v) — 2292 () | 2k o 77 (0]
q e+u?+o? p  e+ul+o?

and @ (u,v) = In(e+u?+v?), where p, ¢ > 2; ki, ko > 1 are the constants, with
p > q+ 2ko.
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We see that (H4) holds, indeed, we consider F € C?(R?;R) defined by
1 1
Flu,v) = == [P & (u,0) + = [u]? &*2 (u, v),
p q

then we have

oOF

%( u,v) = —H(u,v) for all (u,v) € R?;

OF

= F _—

u) = Flu,v), 2

uF(u,v) — vH(u,v)

= — [P & (u,v) + [u|? @** (u,v)
2k o u? +v?

- ———

P e+ u? + v?

2k
< — [P &R (u, ) + [ul? B2 (u,0) + T2 [u]? *2 (u, v)
q

2
P81t (u,0) + e [ul? g @2 (u,0)

P @R () + T 12 (1, 0)
1 1

<dy (— 0P 1 (u, v) + L [u]? > w))
p q

=dyF (u,v) for all (u,v) € R?,

where g + 2ky < d3 < p.
On the other hand, (Hy, (i77)) also holds, because of

1 1 1
Fluyw)+ - o == [off [1 = &M (u,0)] + ~ ul? & (u,v)
p p q
1 1 2 2 )
<= |ul? %2 (u,v) = = |ul? [1 +1In (1 4+ l )]
q q e

k
u2+02) 2

1
< ul? <1+
q

2\ k2 2\ k2
<L pyage (1 + (“) n (”) >
q e e
<ds |ul? (1 ¥ lu® 4 |v|2k2> for all (u,v) € R2,

where d; = 1/p,dy =3"71/q, 0 = B = 2ky, ¢ > 2,p > 2ky > 2.
Now, we show the main result of this section. Tha~t is, the global weak solution u of
Prob. (1.1)-(1.3) is exponential decay provided that F(0) is small enough and I(0) =

- 2
foHuo“fH Bi(2)dz — pfol Fi(to(z), toz(x))dx > 0, where p > max{3, da/x1}
In order to obtain the decay result, we construct the functional

L(t) = E(t) 4+ 6¥(t), (4.1)

with § > 0; ¥(t) as in Section 3 and

B(t) =5 [ @) + 5 | VB0 + ;/Ow)Q Bi()d:  @42)
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ot
+ 5\6_2kt/0 e HU/(S)HQdS +d ||Uz(t)”ip

1
—/0 Fi (u(z,t), uy(x,t)) de,

where \, k are the constants, with 0 < A<\ Ek>0.
We rewrite E(t) as follows

B(t) =g [ @) + 5 | VBs@ut o) “3)

LI N PR T L TR s (01
+ 27 2)e ; e Hu(s)H ds + ; Bi(z)dz

~ 1
+ d [Juz(t) ||, + ];I(t),
where

ot llua (8)]1>
I(t) :2Ae_2kt/ ks Hu'(s)“2 ds + / Bi(z)dz (4.4)
0 0

1
—p/o J1 (u(x,t), ug(z,t)) du.

Then we have the following theorem.

Theorem 4.1. Assume that (H,) — (Hs) hold. Let 1y, i, € H} N H? such that I(0) > 0
and the initial energy E(0) satisfy

\ o E.\7
n* = b1 — pda R 1+ RS+ CT > 0, 4.5)
1
where
E, = (E(O) +3 Hf”Ll(lR_HLz)> exp <HfHL1(R+;L2)> : (4.6)
2pE,
R}=_—"*
Assume that B
£ )] < Coexp(—Fot) forall t > 0, (4.7

where Cy, o are two positive constants. Then, there exist positive constants C, 7 such that

Hu'(t)HiIOl + Hum(iE)H2 + Hux(t)H’ip < Cexp(—At), forall t > 0. (4.8)

Proof of Theorem 4.1. 1t consists of three steps.
Step 1. The estimate of E'(t). We have

2

() B (1) <5 IFO1 + 5 170 o/ “9)

(i) E'() <= (A= A= 5 ) [lu/(®)]|* — 27ke /0 e ol (s)]* ds

1
— bo. ||l (8)])* + o £ ()12,
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for all 1 > 0. Indeed, multiplying (1.1) by u/(z, t) and integrating over [0, 1], we get
ot
E'{t)=—\=X) Hu'(t)“2 - 25\1_66_2]“/ e2ks Hu'(s)”2 ds (4.10)
0

1 1
~ ) B (es2) + 5 [ Bitant) i)
+ (f(1), 4 (1)).
On the other hand

(7). )] < 51O+ 5 1@ | @ @11

By Bj(xz,t) <0, it follows from (4.10), (4.11), it is clear to see that (4.9)(;) holds.
Similarly,

\<f(t),u’(t)>\§2;”f()\| + — Hu H for all &1 > 0. (4.12)

By Bs(z,t) <0, (4.10) and (4.12), that (4.9);;) is true.
Step 2. The estimate of 1(t).
By the continuity of I(¢) and 1(0) > 0, there exists 77 > 0 such that

I(t) >0, Vt € [0,T1], (4.13)
it implies that

b3*

1 p—2 2
E(t) > [ @) + 5l O + (2p> b1 [|ua (1) (4.14)
+&WMWW,WENﬂI
Combining (4.9);, (4.14) and using Gronwall’s inequality to get

2pE(t) 2pE,

ug ()] < < = R?, 4.15
L e @.15)
t b,
fuatt)lly <22 < 2 vt e 0,13
1 dy’
Hence, it follows from (Hy, (iii)), (4.6), (4.15) that
1
p/ Fi(u(z, t), ug(z,t)) do (4.16)
0

1
<pJ2/O e )17 (1 g )" + (e, 1))
<pdy [[un (07 (14 e () + a1, )
<pda [lus (O (1+ a1 + o (B, o (1)

B
E.N\r
1+%+(~)]uwmw.
dy

<pdyR1™?
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Consequently, I(t) > 2 e~ 2t [T e ||/ (s)[|* ds + 1* [|uq(t)||> > 0, V¢ € [0, T1].

Put T = sup{T >0:1I(t) >0, Vt € [0,T]}. If Tox < +0oo then the continuity of
I(t)leads to I(Tw) > 0.

If I(T) > 0, by the same arguments as in the above part we can deduce that there exists

Tno > Tso such that I(t) > 0, Vt € [0, Tio]. We obtain a contradiction to the definition of
Too.
If I(T) = 0, it follows that

_ Too -
0 =1(Tx) > 2 e kT /0 ks Hu’(s)HZdS + 1% ||ue(Too ) | > 0.

Therefore .
u(Too) = / T ks Hu'(s)”2 ds = 0.
0

By the fact that the function s — e2* ||« (s)||? is continuous on [0, Tho] and e2ks >,
Vs € [0, T], we have
Too -
[ o as—o

it follows that ||/ (s)|| = 0, Vs € [0, Tso], it means that « is a constant function on [0, 7).
Then, u(0) = w(Tx) = 0. It leads to 1(0) = 0. We get in contradiction with 1(0) > 0.
Consequently, T,, = +o0, i.e. I(t) > 0, Vt > 0.
Step 3. Decay result. o
At first, we show that there exist the positive constants (31, B2 such that

BiE1(t) < L(t) < B2Er(t), Yt >0, (4.17)

for 9 is small enough, where
By(t) = [u' @) + [ub O + lua®OI + lua ()13, 4.18)

ot Jlua ()12
+e—2kt/ o2ks Hu/(s)Hst+/ Bi(z)dz + I(t).
0 0

Indeed, we have

£(t) =5 WO + 5 || VB 0|+ di o)1 (4.19)
P=2 |0y okt [* ks sy e (81"
+W !2)\6 /0 e || (s) | ds—i—/o Bi(2)dz —i—;](t)
+0(u (), u(t)) + 6(Bs(t)us (1), ual(t))
lJua (6)]2
+ %\ u(®)]* + g/o By(z)dz.
Therefore
[utt), o (1)) s% Jua @)+ 5 [l ], (420

(B0 (0 wa)] <305 (e[ + e D)
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1 1 ~
£(t) 25 [ Ol + Sbse [ @) + i ua (D), (“.21)

ot . llua (8)]1>
2)\6_2kt/ kaHu (s)]| ds—l—/ Bi(z)dz
0 0

1 1 0

10+ 510 = 5 (a0 + O

2
= 2 (O + e )1P)

1-946 b3y — Ob%
> [ O + =5 [l
p—2

_ llua (8)]1
+ = o 2/\62kt/0 kaHu’(s)szs—i-/O Bl(z)dz]

1 0 “
s o1+ (2 - 50+ 1) a0l

ZBlEl (t)a

where 0 is small enough and

L p=2

+

. -
"+ di luz ()7

1=8 by =0 5 (p-2)
2 ) 9 1 D
-2

n* 9 o 1
P=2 94y, — L o

b3« n*
0<o i 1, =, — %
= <mm{ by’ <1+b§>}

$1 =min { , (4.22)

Similarly, by ((H3),4ii) and (4.20), we get

1—1—6 1+6b .
[/ (O] + =222 [l ()] + d [ ()] (4.23)

+(p—2)>\e—2kt/ 2ksHu S)H ds
b 0

Lo s\l
+ <p2p +221>/0 Bi(2)dz

1 §(1+ A+ b3)
+ El(t) + % lJua (8)]?

<B2EA(t),
Whereﬁzzmax{1+67 (1+5)b3 Cz (p_2)>\ p—2+5b21 6(1—]—)\—|—b3)}>

0.

92 , U1, p ’ 2p 92 y 92

Next, we show that the functional ¥ (¢) satisfies

2 PRNIROIE
w0 < [ + (55 + 52 ) [0l - (= 2) [ B @2
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2d2/_\ _oL t ks d252 l
+ 222 2kt/0 ¢ | (5)]|? ds - — 1) —dada [ (£) 175

da(1 — d2)n*
B (p _ ) lua (6)]1% + 2—52 171,

forall e2 > 0, d2 € (0, 1). Its proof is as below.
By multiplying (1.1) by u(x, t) and integrating over [0, 1], we obtain

12~ I By (Nae)2) + VB 0| @29)

(t)
+ (By(H)uip (), ua(t)) + (F (u(t), ua(t)) , u(t))
— (H (u(t), ua(t)) , ua(t)) + (f (1), ult)).

Furthermore, by (Hy, (i4)), we get
(F (u(t), uz(t)) , u(t)) — (H (u(t), ux(t)) , ua(t)) (4.26)

gd2/0 F (u(,t), uy(x, 1)) da

v(t) = ||’

1
_d, [ /0 Fi (ula, 8), ug (@, 0)) de — d, Hum)nfzp]
_da | o5 okt Lok 1 a2 a1 -~
= [2)\6 /Oe |/ (s) || ds—l—/o By (z)dz I(t)]

— dady |Ju(t)|%,

- [Jua (£)[1
:2d2)\€_2kt/ ersHu H ds+ Bi(z)dz
0 P Jo

p
dod da(1 -6 ~
B0y B0 gy o),
b b
I et llua ()|
§2d2)\6—2kt/ €25 [l H s d2 Bi(2)dz
p 0 p 0
dodo do(1 — o n* ~
- 2210 - EEZ0 0 — dad s 1)1

y (Ha, (ii)) and (H3) we also have

l[uz @)l
e By (fee®1?) < =00 [ B (4.27)
B3 ()il (1) H A AL
(B (), (1), un(8)) < || B0t (1) a8
O'2 S
< oo @[+ 5 lua®)®,

(0, u®) < JuaOIF+ 5 17O,

foralleg > 0, 92 € (0,1).
Combining (4.25) - (4.27), we get (4.24).
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The estimates (4.9)(ii) and (4.24) give

: ;& 2 oy (7 042\ ot [T aks )02
co<-(A-a- 2 -8) uo) —2)\<k—p>e [ el pas

(4.28)
2 d ||uar(t)H2
_ [bQ*—5< 3+;§”2>] ||u;(t)||2_5<X1*—pQ>/o Bi(2)dz
ddsd do(1 — d2)n*
R e | G
~ 1 /1 1)
b s Ol + 5 (= + 2 ) I

forall §, 1,2 > 0, 52 € (0,1).

do(1 — 82)n* dan’*
(2(2)77_52>: 2;7 > 0, we can choose 5 > 0, do €

By lim

02—04,e0—04

(0, 1) such that

p

do(1 — 09)n*
0, = 2(232)’7 ey > 0. (4.29)
Choosing d, €1 > 0 such that
92:)\—5\—%—6>0, (4.30)
- 4d
05 =k — —2 >0,
D
6s <bo — 5 (0514 73 ) > 0
4 —02x 3 252 .
On the other hand, we have
1/1 ¢ s 1/1 8\ 4 _- -
sl—+—= I < s —+—) Coe " = Cre " 431
s (2 2l <5 (242 ) G =G, @an
- 1 _
where C1 = = <1 + 5) Coh.
2 €1 59}
By (4.28)-(4.31), we get
L' (t) < — BsEy(t) + Cre 0t < —@ﬁ (t) + Cre 0t (4.32)

2
< —FL(t) + Cre~ 0t

}Qm‘m

where B3 = min {591, 05, 2\03, B4, & <X1* - d2> , 5d252, 5d2d1} 0<7y< min{ 3
b b

And we also have

L) 2 BB 2 B [ O + NI + @] @33)

Therefore, Theorem 4.1 is proved completely. []
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