
Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci.
Mathematics, 44 (4), 109-115 (2024).
https://doi.org/10.30546/2617-7900.44.4.2024.0109

Oscillatory properties of eigenfunctions corresponding to the negative
eigenvalues of some boundary value problem with a spectral parameter
in the boundary conditions

Faiq M. Namazov?

Received: 09.05.2024 / Revised: 15.09.2024/ Accepted: 19.10.2024

Abstract. In this paper we consider the boundary value problem for fourth-order ordinary differential
equations with spectral parameter contained in the two of boundary conditions. We completely study
the oscillation properties of solutions of the corresponding initial-boundary value problem for negative
values of the spectral parameter, whence can be easily found the number of zeros of the eigenfunctions
corresponding to negative eigenvalues of this problem.

Keywords. initial-boundary value problem, eigenvalue parameter, eigenvalue, oscillatory property of
eigenfunction

Mathematics Subject Classification (2010): 34B05, 34B08, 34B09, 34L10, 34L15, 47A75, 47B50,
74H45.

1 Introduction

We consider the following eigenvalue problem:

y(4)(x)− (q(x)y′(x))′ = λy(x), x ∈ (0, 1), (1.1)

y′′(0) = y′′(1) = 0, (1.2)

Ty(0)− aλy(0) = 0, (1.3)

Ty(1)− cλy(1) = 0, (1.4)

where λ ∈ C is a spectral parameter, Ty ≡ y′′′−qy′, q(x) is a positive absolutely continuous
function on [0, 1], a and c are real constants such that a < 0 and c > 0.

Problem (1.1)-(1.4) describes free bending vibrations of a homogeneous Euler-Bernoulli
beam of constant rigidity, in the cross sections of which a longitudinal force acts, and the
masses are concentrated at both ends (see [6, p. 152-154]).

The spectral properties of problem (1.1)-(1.4), including the oscillatory properties of
eigenfunctions and the basis properties of root functions in Lp, 1 < p < ∞, were studied
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in [3]. However, it should be noted that the number of zeros contained in the interval (0, 1)
of the eigenfunctions corresponding to the negative eigenvalues of the problem (1.1)-(1.4)
found there is not exact.

The purpose of this paper is to clarify the number of zeros contained in the interval (0, 1)
of eigenfunctions corresponding to the negative eigenvalues of problem (1.1)-(1.4).

2 Preliminary

When studying the oscillatory properties of eigenfunctions of spectral problems for or-
dinary differential equations of the fourth order, the following statement plays an essential
role.

Lemma 2.1 (see [5, Lemma 2.1 ]) Let y(x, λ) be a nontrivial solution of differential equa-
tion (1.1) for λ > 0. If y, y′, y′′, T y are nonnegative at x = a (but not all zero), then they
are positive for all x > a. If y, −y′, y′′, −Ty are nonnegative at x = a (but not all zero),
then they are positive for x < a.

Along with problem (1.1)-(1.4) we consider the eigenvalue problem (1.1)-(1.3) and

y(1) cos δ − Ty(1) sin δ = 0, (2.1)

where δ ∈ [0, π/2]. For this problem we have the following result.

Theorem 2.1 [3, Theorems 4 and 5] (see also [2]). The eigenvalues of problem (1.1)-(1.3),
(2.1) for δ = 0 are real, simple and form an infinitely increasing sequence {µk}∞k=1, for
δ = π/2 are real and simple, and, except the case a = −1, where λ = 0 is a double
eigenvalue, form an infinitely nondecreasing sequence {νk}∞k=1 such that

µ1 < ν1 < 0 = ν2 < µ2 < ν3 < µ3 < . . . if a > −1,
µ1 < 0 = ν1 = ν2 < µ2 < ν3 < µ3 < . . . if a = −1,
µ1 < 0 = ν1 < ν2 < µ2 < ν3 < µ3 < . . . if a < −1.

(2.2)

Moreover, the eigenfunction vk(x), corresponding to the eigenvalue µk, for k ≥ 2 has
exactly k − 1 simple zeros in (0, 1); the number of zeros belonging to the interval (0, 1) of
eigenfunction v1(x) can be arbitrary.

Now we consider initial-boundary value problem (1.1)-(1.3).

Theorem 2.2 [3, Theorem 6] For each fixed λ ∈ C there exists a nontrivial solution y(x, λ)
of the problem (1.1)-(1.3) which is unique up to a constant factor.

Remark 2.1 From the proof of Theorem 2.2 it follows that the solution y(x, λ) of problem
(1.1)-(1.3) have the following representation:

y(x, λ) = ϕ′′2(1, λ) {ϕ1(x, λ) + aλϕ4(x, λ)} −
{
ϕ′′1(1, λ) + aλϕ′′4(1, λ)

}
ϕ2(x, λ),

where ϕk(x, λ), k = 1, 4, are solutions of Eq. (1.1), normalized for x = 0 by the Cauchy
conditions

ϕ
(s−1)
k (0, λ) = δks, s = 1, 3, Tϕk(0, λ) = δk4, (2.3)

δks is the Kronecker delta. Then the function y(x, λ) is an entire function of the parameter λ
for each fixed x ∈ [0, 1], since the functions ϕk(x, λ), k = 1, 2, 3, 4, and their derivatives
are entire function of the parameter λ for each fixed x ∈ [0, 1] (see [7, Ch. I, § 2.1]).
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Remark 2.2 It is obvious that the eigenvalues µk and νk of the spectral problem (1.1)-
(1.3), (2.1) for δ = 0 and δ = π/2 are zeros of the entire functions y(1, λ) and Ty(1, λ),
respectively.

We introduce the notation: Dk = (µk−1, µk), k = 1, 2, . . . , where µ0 = −∞.
Note that the function F (λ) = Ty(1,λ)

y(1,λ) is defined in the domain DF = (C\R) ∪( ∞⋃
k=1

Dk

)
for which in [3] established the following statements.

Lemma 2.2 [3, Lemmas 3-5] The following relations hold:

dF (λ)

dλ
=

1

y2(1, λ)


l∫

0

y2(x, λ) dx+ ay2(0, λ)

 , λ ∈ DF , (2.4)

lim
λ→−∞

F (λ) = −∞, (2.5)

F (λ) =
∞∑
k=1

λ ck
µk(λ− µk)

, (2.6)

where ck = res
λ=µk

F (λ), k ∈ N, and c1 > 0, ck < 0, k ≥ 2.

Remark 2.3 From (2.6) we obtain

F ′′(λ) = 2

∞∑
k=1

ck
(λ− µk)3

,

which implies that F ′′(λ) < 0 for λ ∈ D2 = (µ1, µ2), i.e., the function F (λ) is convex in
D2.

Lemma 2.3 One has the following relations:

F (λ) < 0 for λ ∈ (−∞, µ1), lim
λ→µ1−0

F (λ) = −∞,

lim
λ→µ1+0

F (λ) = +∞, F (λ) > 0 for λ ∈ (µ1, ν1),

F (λ) < 0 for λ ∈ (ν1, 0) in the case a > − 1.

Proof . Since µ1 is a smallest root of the function y(1, λ), by (2.2), Remark 2.2 and (2.5),
we have

F (λ) < 0 for λ ∈ D1 = (−∞, µ1). (2.7)
Since µ1 is a simple pole of the function F (λ) it follows from (2.7) that

lim
λ→µ1− 0

F (λ) = −∞, and lim
λ→µ1+0

F (λ) = +∞. (2.8)

In view of (2.2) we have µ1 < ν1 < 0 for a > − 1 and µ1 < ν1 = 0 for a ≤ − 1.
Then by Remark 2.3 and (2.8) we get

F (λ) > 0 for λ ∈ (µ1, ν1) and F (λ) < 0 for λ ∈ (ν1, 0) in the case a > − 1, (2.9)

F (λ) > 0 for λ ∈ (µ1, 0) in the case a ≤ − 1. (2.10)
The proof of this lemma is complete.
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3 Oscillation properties of solutions of the initial-boundary value problem (1.1)-(1.3)

Consider the equation

y(x, λ) = 0, x ∈ [0, 1], λ ∈ R. (3.1)

Obviously, the zeros Eq. (3.1) are functions of λ. For these zeros, in [3] the following lemma
was formulated and proved.

Lemma 3.1 The zeros in (0, 1] of function y(x, λ) are simple and C1 function of λ ∈ R.

The proof of this lemma for λ > 0 is based on Lemma 2.1. But for λ < 0 the proof of
this lemma given in [3] contains a gap (see the proof of Lemma 6 there).

Now we will give a complete proof of this lemma for λ < 0.
Proof of Lemma 3.1 for λ < 0. Let y(x0, λ) = y′(x0, λ) = 0 for some λ < 0 and x0 ∈
(0, 1). Then y(x, λ) is a solution of the initial-boundary value problem

y(4)(x)− (q(x)y′(x))′ = λy(x), x ∈ (x0, 1), (3.2)

y(x0) = y′(x0) = y′′(1) = 0. (3.3)
It follows from the proof of [3, Lemma 6] that y′′(x0, λ)Ty(x0, λ) 6= 0. Integrating (3.2) in
the range from x0 to 1, using the formula for integration by parts and taking into account
conditions (3.3) we obtain

1∫
x0

{
y′′2(x, λ) + q(x)y′2(x, λ)

}
dx+ Ty(1, λ)y(1, λ) = λ

1∫
x0

y2(x, λ)dx. (3.4)

Since λ < 0 and
1∫
x0

y2(x, λ)dx > 0 the left hand of (3.4) takes a nonzero value. If λ ∈

(µ1, ν1), then by Lemma 2.3 we have Ty(1, λ)y(1, λ) > 0, and if λ = µ1 (λ = ν1 for
a > − 1), then Ty(1, µ1)y(1, µ1) = 0 (Ty(1, ν1)y(1, ν1) = 0). Consequently, the left
hand of (3.4) is positive. Therefore, it follows from (3.4) that λ > 0 which contradicts the
condition λ < 0.

By Lemma 2.3 we have

Ty(1, λ)y(1, λ) < 0 for λ < µ1.

Since the left hand of (3.4) is positive for λ = µ1 it follows from continuity of the left hand
of (3.4) on the parameter λ that

1∫
x0

{
y′′2(x, λ) + q(x)y′2(x, λ)

}
dx+ Ty(1, λ)y(1, λ) > 0 (3.5)

for λ < µ1 and close enough to µ1. Despite the fact that Ty(1, λ)y(1, λ) < 0 for λ < µ1,
relation (3.5) will hold for all such λ. Indeed, otherwise for some λ = λ∗, the left-hand side
of equality (3.4) will be equal to zero, but the right-hand side will be different from zero.
Then by (3.5) it follows from (3.4) that λ > 0 in contradiction with the condition λ < 0.

If λ ∈ (ν1, 0) for a > − 1, repeating the above reasoning we arrive at a contradiction.
It follows from Theorem 2.1 that y(1, λ) 6= 0 for λ ∈ (−∞, 0), λ 6= µ1. If y′(1, µ1) =

0, then µ1 is an eigenvalue of problem

y(4)(x)− (q(x)y′(x))′ = λy(x), x ∈ (0, 1),
y′(0) cosα− y′′(0) sinα = Ty(0)− aλy(0) = 0,
y(1) = y′′(1) = 0,
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both for α = 0 and α = π/2. It follows from [1, Theorem 4.1, statement (i)] that the eigen-
values of this problem are real, simple and form infinitely increasing sequence {ζk(α)}∞k=1.
Moreover, by [2, Theorem 2.3] for this eigenvalues the following relation holds:

ζ1(0) < ζ1(π/2) < 0 < ζ2(π/2) < ζ2(0) < ζ3(π/2) < ζ3(0) < . . . ,

which leads to a contradiction to the fact that λ is an eigenvalue of this problem both for
α = 0 and α = π/2.

The smoothness of x(λ) follows from the well-known implicit function theorem. The
proof of Lemma 3.1 is complete.

Lemma 3.2 [3, Lemma 7]. As λ < µ1 or λ ∈ (µ1, 0) varies the function y(x, λ) can lose
or gain zeros only by these zeros leaving or entering the interval [0, 1] through its endpoint
x = 0.

Now we find the number of zeros of the function y(x, λ) contained in the interval (0, 1)
for λ < 0.

Lemma 3.3 [3, Lemma 10]. Let λ0 ∈ (−∞, µ1) ∪ (µ1, 0) and y(0, λ0) 6= 0. Then there
exists ε0 > 0 such that for any λ ∈ (λ0 − ε0, λ0 + ε0) the number of zeros of the function
y(x, λ) in the interval (0, 1) coincide with that for the function y(x, λ0).

Let τ(λ) be the number of zeros of the function y(x, λ) contained in the interval (0, 1).

Corollary 3.1 [3, Corollary 1]. Let µ, ν ∈ (−∞, µ1) or µ, ν ∈ (µ1, 0), µ < ν and τ(µ) 6=
τ(ν). Then the interval (µ, ν) contain an eigenvalue of the boundary value problem

y(4)(x)− (q(x)y′(x))′ = λy(x), x ∈ (0, 1),
y(0) = y′′(0) = Ty(0) = y′′(1) = 0.

(3.6)

Lemma 3.4 The real eigenvalues of problem (3.6) are negative.

Proof. Let µ be the eigenvalue of problem (3.6) and v(x) be the corresponding eigen-
function. If µ > 0, then in view of condition v(0) = v′′(0) = Tv(0) = 0, by Lemma
2.1, we get v′′(1) 6= 0 which contradicts the condition v′′(1) = 0. If µ = 0, then we have
v(x) = κϕ2(x, 0), where κ 6= 0 is some constant. By Lemma 2.1 for any λ > 0 we have

ϕ′′2(x, λ) > 0, Tϕ2(x, λ) > 0 for x ∈ (0, 1] and ϕ′2(x, λ) ≥ 1 for x ∈ [0, 1].

Then we get

ϕ′′2(x, 0) ≥ 0, Tϕ2(x, 0) ≥ 0 and ϕ′2(x, λ) ≥ 1 for x ∈ [0, 1].

From the relation

Tϕ2(x, 0) = ϕ′′′2 (x, 0)− q(x)ϕ′2(x, 0) ≥ 0 for x ∈ [0, 1],

we obtain ϕ′′′2 (x, 0) ≥ q(x)ϕ′2(x, 0) > 0 for x ∈ [0, 1], whence, by ϕ′′2(0, 0) = 0, implies
that ϕ′′2(1, 0) > 0. Consequently, v′′(1) 6= 0 which contradicts the condition v′′(1) = 0.
The proof of this corollary is complete.

Lemma 3.5 The real eigenvalues of problem (3.6) are contained in (−∞, µ1).
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Proof. Let λ ∈ [µ1, 0) be the eigenvalue of problem (3.6). Then integrating the equation
in (3.6) in the range from 0 to 1, using the formula for integration by parts and taking into
account boundary conditions in (3.6) we obtain

1∫
0

{
y′′2(x, λ) + q(x)y′2(x, λ)

}
dx+ Ty(1, λ) y(1, λ) = λ

1∫
0

y2(x, λ)dx. (3.7)

If λ = µ1, then y(1, µ1) = 0, and if λ ∈ (µ1, ν1), then Ty(1, λ) y(1, λ) > 0. Consequently,
the left hand-side of (3.7) is positive. If a > − 1 and λ = ν1, then Ty(1, ν1) = 0, and if
a > − 1 and λ ∈ (ν1, 0), then Ty(1, λ) y(1, λ) < 0. Since the left-hand side of (3.7) is
positive for λ = ν1 in the case a > − 1, it follows from the continuity of the left-hand side
of (3.7) with respect to the parameter λ that it remains positive for all λ ∈ (ν1, 0) in this
same case. Then from (3.7) we obtain λ > 0 in contradiction with the condition λ < 0. The
proof of this lemma is complete.

Corollary 3.2 If λ ∈ [µ1, 0), then τ(λ) = 0.

Proof. In view of y(x, 0) ≡ 1 we have τ(λ) = 0 for all λ < 0 near 0, which by Lemma
3.5 and Corollary 3.1 implies that τ(λ) = 0 for all λ ∈ [µ1, 0). The proof of this corollary
is complete.

Remark 3.1 Since µ1 is a simple zero of the function y(1, λ) by Lemma 3.5 and Corollary
3.2 it follows that there exists sufficiently small ε1 > 0 such that τ(µ1 − ε) = 1 for any
ε ∈ (0, ε1).

Let µ be a real eigenvalue of the problem (3.6). The oscillation index of this eigenvalue
which denoted by i(µ) is the difference between the number of zeros of the function y(x, λ)
for λ = µ−0 belonging to the interval (0, 1) and the number of the same zeros for λ = µ+0
(see [4]).

Theorem 3.1 The eigenvalues ξk, , k = 1, 2, . . . , of problem (3.6) are real and simple,
contained in (−∞, µ1), are numbered in descending order and allow asymptotics

ξk = −4(k + 1/4)4π4 + o(k4),

and have oscillation index 1.

Proof. The proof of this theorem is similar to that of [4, Theorem 4.1] with the use of
Lemma 3.5.

From the above definition, Corollary 3.2 and Remark 3.1 it follows that for λ < 0 the
number of zeros of function y(x, λ) belonging to the interval (0, 1) is defined as follows:

τ(λ) =

{
0 if λ ∈ [µ1, 0),

1 +
∑

ξs∈(λ,µ1)
i(ξs) if λ ∈ (−∞, µ1). (3.8)
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