Oscillatory properties of eigenfunctions corresponding to the negative eigenvalues of some boundary value problem with a spectral parameter in the boundary conditions

Faiq M. Namazov^{*}

Received: 09.05.2024 / Revised: 15.09.2024/ Accepted: 19.10.2024

Abstract. *In this paper we consider the boundary value problem for fourth-order ordinary differential equations with spectral parameter contained in the two of boundary conditions. We completely study the oscillation properties of solutions of the corresponding initial-boundary value problem for negative values of the spectral parameter, whence can be easily found the number of zeros of the eigenfunctions corresponding to negative eigenvalues of this problem.*

Keywords. initial-boundary value problem, eigenvalue parameter, eigenvalue, oscillatory property of eigenfunction

Mathematics Subject Classification (2010): 34B05, 34B08, 34B09, 34L10, 34L15, 47A75, 47B50, 74H45.

1 Introduction

We consider the following eigenvalue problem:

$$
y^{(4)}(x) - (q(x)y'(x))' = \lambda y(x), \ x \in (0,1), \tag{1.1}
$$

$$
y''(0) = y''(1) = 0,\t\t(1.2)
$$

$$
Ty(0) - a\lambda y(0) = 0,\t(1.3)
$$

$$
Ty(1) - c\lambda y(1) = 0,\t(1.4)
$$

where $\lambda \in \mathbb{C}$ is a spectral parameter, $Ty \equiv y''' - qy'$, $q(x)$ is a positive absolutely continuous function on [0, 1], a and c are real constants such that $a < 0$ and $c > 0$.

Problem (1.1)-(1.4) describes free bending vibrations of a homogeneous Euler-Bernoulli beam of constant rigidity, in the cross sections of which a longitudinal force acts, and the masses are concentrated at both ends (see [6, p. 152-154]).

The spectral properties of problem $(1.1)-(1.4)$, including the oscillatory properties of eigenfunctions and the basis properties of root functions in L_p , $1 < p < \infty$, were studied

Faiq M. namazov Baku State University, Baku AZ1148, Azerbaijan E-mail: faig-namazov@mail.ru

[?] Corresponding author

in [3]. However, it should be noted that the number of zeros contained in the interval $(0, 1)$ of the eigenfunctions corresponding to the negative eigenvalues of the problem $(1.1)-(1.4)$ found there is not exact.

The purpose of this paper is to clarify the number of zeros contained in the interval $(0, 1)$ of eigenfunctions corresponding to the negative eigenvalues of problem $(1.1)-(1.4)$.

2 Preliminary

When studying the oscillatory properties of eigenfunctions of spectral problems for ordinary differential equations of the fourth order, the following statement plays an essential role.

Lemma 2.1 (see [5, Lemma 2.1]) Let $y(x, \lambda)$ be a nontrivial solution of differential equa*tion* (1.1) *for* $\lambda > 0$ *. If* y, y', y'', Ty are nonnegative at $x = a$ (but not all zero), then they *are positive for all* $x > a$ *. If y,* $-y'$ *, y'',* $-Ty$ *are nonnegative at* $x = a$ *(but not all zero), then they are positive for* $x < a$ *.*

Along with problem (1.1) - (1.4) we consider the eigenvalue problem (1.1) - (1.3) and

$$
y(1)\cos\delta - Ty(1)\sin\delta = 0,\tag{2.1}
$$

where $\delta \in [0, \pi/2]$. For this problem we have the following result.

Theorem 2.1 [3, Theorems 4 and 5] (see also [2])*. The eigenvalues of problem* (1.1)*-*(1.3)*,* (2.1) *for* $\delta = 0$ *are real, simple and form an infinitely increasing sequence* $\{\mu_k\}_{k=1}^{\infty}$ *, for* $\delta = \pi/2$ are real and simple, and, except the case $a = -1$, where $\lambda = 0$ is a double *eigenvalue, form an infinitely nondecreasing sequence* $\{\nu_k\}_{k=1}^\infty$ *such that*

$$
\mu_1 < \nu_1 < 0 = \nu_2 < \mu_2 < \nu_3 < \mu_3 < \dots & if \ a > -1, \\
\mu_1 < 0 = \nu_1 = \nu_2 < \mu_2 < \nu_3 < \mu_3 < \dots & if \ a = -1, \\
\mu_1 < 0 = \nu_1 < \nu_2 < \mu_2 < \nu_3 < \mu_3 < \dots & if \ a < -1.\n\tag{2.2}
$$

Moreover, the eigenfunction $v_k(x)$ *, corresponding to the eigenvalue* μ_k *, for* $k \geq 2$ *has exactly* $k - 1$ *simple zeros in* $(0, 1)$ *; the number of zeros belonging to the interval* $(0, 1)$ *of eigenfunction* $v_1(x)$ *can be arbitrary.*

Now we consider initial-boundary value problem (1.1)-(1.3).

Theorem 2.2 [3, Theorem 6] *For each fixed* $\lambda \in \mathbb{C}$ *there exists a nontrivial solution* $y(x, \lambda)$ *of the problem* (1.1)*-*(1.3) *which is unique up to a constant factor.*

Remark 2.1 From the proof of Theorem 2.2 it follows that the solution $y(x, \lambda)$ of problem $(1.1)-(1.3)$ have the following representation:

$$
y(x,\lambda) = \varphi_2''(1,\lambda)\left\{\varphi_1(x,\lambda) + a\lambda\varphi_4(x,\lambda)\right\} - \left\{\varphi_1''(1,\lambda) + a\lambda\varphi_4''(1,\lambda)\right\}\varphi_2(x,\lambda),
$$

where $\varphi_k(x, \lambda), k = \overline{1, 4}$, are solutions of Eq. (1.1), normalized for $x = 0$ by the Cauchy conditions

$$
\varphi_k^{(s-1)}(0,\lambda) = \delta_{ks}, \ s = \overline{1,3}, \ T\varphi_k(0,\lambda) = \delta_{k4}, \tag{2.3}
$$

 δ_{ks} is the Kronecker delta. Then the function $y(x, \lambda)$ is an entire function of the parameter λ for each fixed $x \in [0, 1]$, since the functions $\varphi_k(x, \lambda)$, $k = 1, 2, 3, 4$, and their derivatives are entire function of the parameter λ for each fixed $x \in [0, 1]$ (see [7, Ch. I, § 2.1]).

Remark 2.2 It is obvious that the eigenvalues μ_k and ν_k of the spectral problem (1.1)-(1.3), (2.1) for $\delta = 0$ and $\delta = \pi/2$ are zeros of the entire functions $y(1, \lambda)$ and $Ty(1, \lambda)$, respectively.

We introduce the notation: $D_k = (\mu_{k-1}, \mu_k)$, $k = 1, 2, \dots$, where $\mu_0 = -\infty$. Note that the function $F(\lambda) = \frac{T y(1,\lambda)}{y(1,\lambda)}$ is defined in the domain $D_F = (\mathbb{C} \setminus \mathbb{R}) \cup$ \int_0^∞ $_{k=1}$ D_k) for which in [3] established the following statements.

Lemma 2.2 [3, Lemmas 3-5] *The following relations hold:*

$$
\frac{dF(\lambda)}{d\lambda} = \frac{1}{y^2(1,\lambda)} \left\{ \int_0^l y^2(x,\lambda) \, dx + ay^2(0,\lambda) \right\}, \, \lambda \in D_F, \tag{2.4}
$$

$$
\lim_{\to -\infty} F(\lambda) = -\infty,\tag{2.5}
$$

$$
F(\lambda) = \sum_{k=1}^{\infty} \frac{\lambda c_k}{\mu_k(\lambda - \mu_k)},
$$
\n(2.6)

where $c_k = \underset{\lambda = \mu_k}{\text{res }} F(\lambda), k \in \mathbb{N}$, and $c_1 > 0, c_k < 0, k \ge 2$.

 λ

Remark 2.3 From (2.6) we obtain

$$
F''(\lambda) = 2 \sum_{k=1}^{\infty} \frac{c_k}{(\lambda - \mu_k)^3},
$$

which implies that $F''(\lambda) < 0$ for $\lambda \in D_2 = (\mu_1, \mu_2)$, i.e., the function $F(\lambda)$ is convex in D_2 .

Lemma 2.3 *One has the following relations:*

$$
F(\lambda) < 0 \text{ for } \lambda \in (-\infty, \mu_1), \lim_{\lambda \to \mu_1 - 0} F(\lambda) = -\infty,
$$
\n
$$
\lim_{\lambda \to \mu_1 + 0} F(\lambda) = +\infty, \ F(\lambda) > 0 \text{ for } \lambda \in (\mu_1, \nu_1),
$$
\n
$$
F(\lambda) < 0 \text{ for } \lambda \in (\nu_1, 0) \text{ in the case } a > -1.
$$

Proof . Since μ_1 is a smallest root of the function $y(1, \lambda)$, by (2.2), Remark 2.2 and (2.5), we have

$$
F(\lambda) < 0 \quad \text{for} \quad \lambda \in D_1 = (-\infty, \mu_1). \tag{2.7}
$$

Since μ_1 is a simple pole of the function $F(\lambda)$ it follows from (2.7) that

$$
\lim_{\lambda \to \mu_1 - 0} F(\lambda) = -\infty, \text{ and } \lim_{\lambda \to \mu_1 + 0} F(\lambda) = +\infty.
$$
 (2.8)

In view of (2.2) we have $\mu_1 < \nu_1 < 0$ for $a > -1$ and $\mu_1 < \nu_1 = 0$ for $a \le -1$. Then by Remark 2.3 and (2.8) we get

$$
F(\lambda) > 0 \text{ for } \lambda \in (\mu_1, \nu_1) \text{ and } F(\lambda) < 0 \text{ for } \lambda \in (\nu_1, 0) \text{ in the case } a > -1, \tag{2.9}
$$

$$
F(\lambda) > 0 \text{ for } \lambda \in (\mu_1, 0) \text{ in the case } a \le -1.
$$
 (2.10)

The proof of this lemma is complete.

3 Oscillation properties of solutions of the initial-boundary value problem (1.1)-(1.3)

Consider the equation

$$
y(x,\lambda) = 0, \ x \in [0,1], \ \lambda \in \mathbb{R}.\tag{3.1}
$$

Obviously, the zeros Eq. (3.1) are functions of λ . For these zeros, in [3] the following lemma was formulated and proved.

Lemma 3.1 *The zeros in* $(0,1]$ *of function* $y(x, \lambda)$ *are simple and* C^1 *function of* $\lambda \in \mathbb{R}$ *.*

The proof of this lemma for $\lambda > 0$ is based on Lemma 2.1. But for $\lambda < 0$ the proof of this lemma given in [3] contains a gap (see the proof of Lemma 6 there).

Now we will give a complete proof of this lemma for $\lambda < 0$.

Proof of Lemma 3.1 for $\lambda < 0$. Let $y(x_0, \lambda) = y'(x_0, \lambda) = 0$ for some $\lambda < 0$ and $x_0 \in$ $(0, 1)$. Then $y(x, \lambda)$ is a solution of the initial-boundary value problem

$$
y^{(4)}(x) - (q(x)y'(x))' = \lambda y(x), \ x \in (x_0, 1), \tag{3.2}
$$

$$
y(x_0) = y'(x_0) = y''(1) = 0.
$$
\n(3.3)

It follows from the proof of [3, Lemma 6] that $y''(x_0, \lambda)Ty(x_0, \lambda) \neq 0$. Integrating (3.2) in the range from x_0 to 1, using the formula for integration by parts and taking into account conditions (3.3) we obtain

$$
\int_{x_0}^1 \left\{ y''^2(x,\lambda) + q(x)y'^2(x,\lambda) \right\} dx + Ty(1,\lambda)y(1,\lambda) = \lambda \int_{x_0}^1 y^2(x,\lambda) dx. \tag{3.4}
$$

Since $\lambda < 0$ and \int_0^1 x_0 $y^2(x, \lambda)dx > 0$ the left hand of (3.4) takes a nonzero value. If $\lambda \in$

 (μ_1, ν_1) , then by Lemma 2.3 we have $Ty(1, \lambda)y(1, \lambda) > 0$, and if $\lambda = \mu_1 (\lambda = \nu_1$ for $a > -1$), then $Ty(1, \mu_1)y(1, \mu_1) = 0$ $(Ty(1, \nu_1)y(1, \nu_1) = 0)$. Consequently, the left hand of (3.4) is positive. Therefore, it follows from (3.4) that $\lambda > 0$ which contradicts the condition $\lambda < 0$.

By Lemma 2.3 we have

$$
Ty(1, \lambda)y(1, \lambda) < 0
$$
 for $\lambda < \mu_1$.

Since the left hand of (3.4) is positive for $\lambda = \mu_1$ it follows from continuity of the left hand of (3.4) on the parameter λ that

$$
\int_{x_0}^1 \left\{ y''^2(x,\lambda) + q(x)y'^2(x,\lambda) \right\} dx + Ty(1,\lambda)y(1,\lambda) > 0 \tag{3.5}
$$

for $\lambda < \mu_1$ and close enough to μ_1 . Despite the fact that $Ty(1, \lambda)y(1, \lambda) < 0$ for $\lambda < \mu_1$, relation (3.5) will hold for all such λ . Indeed, otherwise for some $\lambda = \lambda^*$, the left-hand side of equality (3.4) will be equal to zero, but the right-hand side will be different from zero. Then by (3.5) it follows from (3.4) that $\lambda > 0$ in contradiction with the condition $\lambda < 0$.

If $\lambda \in (\nu_1, 0)$ for $a > -1$, repeating the above reasoning we arrive at a contradiction.

It follows from Theorem 2.1 that $y(1, \lambda) \neq 0$ for $\lambda \in (-\infty, 0)$, $\lambda \neq \mu_1$. If $y'(1, \mu_1) =$ 0, then μ_1 is an eigenvalue of problem

$$
y^{(4)}(x) - (q(x)y'(x))' = \lambda y(x), x \in (0, 1),
$$

\n
$$
y'(0) \cos \alpha - y''(0) \sin \alpha = Ty(0) - a\lambda y(0) = 0,
$$

\n
$$
y(1) = y''(1) = 0,
$$

both for $\alpha = 0$ and $\alpha = \pi/2$. It follows from [1, Theorem 4.1, statement (i)] that the eigenvalues of this problem are real, simple and form infinitely increasing sequence $\{\zeta_k(\alpha)\}_{k=1}^{\infty}$. Moreover, by [2, Theorem 2.3] for this eigenvalues the following relation holds:

$$
\zeta_1(0) < \zeta_1(\pi/2) < 0 < \zeta_2(\pi/2) < \zeta_2(0) < \zeta_3(\pi/2) < \zeta_3(0) < \ldots,
$$

which leads to a contradiction to the fact that λ is an eigenvalue of this problem both for $\alpha = 0$ and $\alpha = \pi/2$.

The smoothness of $x(\lambda)$ follows from the well-known implicit function theorem. The proof of Lemma 3.1 is complete.

Lemma 3.2 [3, Lemma 7]*. As* $\lambda < \mu_1$ *or* $\lambda \in (\mu_1, 0)$ *varies the function* $y(x, \lambda)$ *can lose or gain zeros only by these zeros leaving or entering the interval* [0, 1] *through its endpoint* $x=0$.

Now we find the number of zeros of the function $y(x, \lambda)$ contained in the interval $(0, 1)$ for $\lambda < 0$.

Lemma 3.3 [3, Lemma 10]*. Let* $\lambda_0 \in (-\infty, \mu_1) \cup (\mu_1, 0)$ *and* $y(0, \lambda_0) \neq 0$ *. Then there exists* $\epsilon_0 > 0$ *such that for any* $\lambda \in (\lambda_0 - \epsilon_0, \lambda_0 + \epsilon_0)$ *the number of zeros of the function* $y(x, \lambda)$ *in the interval* $(0, 1)$ *coincide with that for the function* $y(x, \lambda_0)$ *.*

Let $\tau(\lambda)$ be the number of zeros of the function $y(x, \lambda)$ contained in the interval $(0, 1)$.

Corollary 3.1 [3, Corollary 1]*. Let* $\mu, \nu \in (-\infty, \mu_1)$ *or* $\mu, \nu \in (\mu_1, 0)$, $\mu < \nu$ and $\tau(\mu) \neq$ $\tau(\nu)$ *. Then the interval* (μ, ν) *contain an eigenvalue of the boundary value problem*

$$
y^{(4)}(x) - (q(x)y'(x))' = \lambda y(x), \ x \in (0, 1),
$$

\n
$$
y(0) = y''(0) = Ty(0) = y''(1) = 0.
$$
\n(3.6)

Lemma 3.4 *The real eigenvalues of problem* (3.6) *are negative.*

Proof. Let μ be the eigenvalue of problem (3.6) and $v(x)$ be the corresponding eigenfunction. If $\mu > 0$, then in view of condition $v(0) = v''(0) = Tv(0) = 0$, by Lemma 2.1, we get $v''(1) \neq 0$ which contradicts the condition $v''(1) = 0$. If $\mu = 0$, then we have $v(x) = \kappa \varphi_2(x, 0)$, where $\kappa \neq 0$ is some constant. By Lemma 2.1 for any $\lambda > 0$ we have

$$
\varphi_2''(x,\lambda) > 0, T\varphi_2(x,\lambda) > 0 \text{ for } x \in (0,1] \text{ and } \varphi_2'(x,\lambda) \ge 1 \text{ for } x \in [0,1].
$$

Then we get

$$
\varphi_2''(x,0) \ge 0
$$
, $T\varphi_2(x,0) \ge 0$ and $\varphi_2'(x,\lambda) \ge 1$ for $x \in [0,1]$.

From the relation

$$
T\varphi_2(x,0) = \varphi_2'''(x,0) - q(x)\varphi_2'(x,0) \ge 0 \text{ for } x \in [0,1],
$$

we obtain $\varphi_2'''(x,0) \ge q(x) \varphi_2'(x,0) > 0$ for $x \in [0,1]$, whence, by $\varphi_2''(0,0) = 0$, implies that $\varphi''_2(1,0) > 0$. Consequently, $v''(1) \neq 0$ which contradicts the condition $v''(1) = 0$. The proof of this corollary is complete.

Lemma 3.5 *The real eigenvalues of problem* (3.6) *are contained in* $(-\infty, \mu_1)$ *.*

Proof. Let $\lambda \in [\mu_1, 0]$ be the eigenvalue of problem (3.6). Then integrating the equation in (3.6) in the range from 0 to 1, using the formula for integration by parts and taking into account boundary conditions in (3.6) we obtain

$$
\int_{0}^{1} \left\{ y''^{2}(x,\lambda) + q(x)y'^{2}(x,\lambda) \right\} dx + Ty(1,\lambda) y(1,\lambda) = \lambda \int_{0}^{1} y^{2}(x,\lambda) dx.
$$
 (3.7)

If $\lambda = \mu_1$, then $y(1, \mu_1) = 0$, and if $\lambda \in (\mu_1, \nu_1)$, then $Ty(1, \lambda) y(1, \lambda) > 0$. Consequently, the left hand-side of (3.7) is positive. If $a > -1$ and $\lambda = \nu_1$, then $Ty(1, \nu_1) = 0$, and if $a > -1$ and $\lambda \in (\nu_1, 0)$, then $Ty(1, \lambda) y(1, \lambda) < 0$. Since the left-hand side of (3.7) is positive for $\lambda = \nu_1$ in the case $a > -1$, it follows from the continuity of the left-hand side of (3.7) with respect to the parameter λ that it remains positive for all $\lambda \in (\nu_1, 0)$ in this same case. Then from (3.7) we obtain $\lambda > 0$ in contradiction with the condition $\lambda < 0$. The proof of this lemma is complete.

Corollary 3.2 *If* $\lambda \in [\mu_1, 0)$ *, then* $\tau(\lambda) = 0$ *.*

Proof. In view of $y(x, 0) \equiv 1$ we have $\tau(\lambda) = 0$ for all $\lambda < 0$ near 0, which by Lemma 3.5 and Corollary 3.1 implies that $\tau(\lambda) = 0$ for all $\lambda \in [\mu_1, 0)$. The proof of this corollary is complete.

Remark 3.1 Since μ_1 is a simple zero of the function $y(1, \lambda)$ by Lemma 3.5 and Corollary 3.2 it follows that there exists sufficiently small $\epsilon_1 > 0$ such that $\tau(\mu_1 - \epsilon) = 1$ for any $\epsilon \in (0, \epsilon_1).$

Let μ be a real eigenvalue of the problem (3.6). The oscillation index of this eigenvalue which denoted by $i(\mu)$ is the difference between the number of zeros of the function $y(x, \lambda)$ for $\lambda = \mu - 0$ belonging to the interval $(0, 1)$ and the number of the same zeros for $\lambda = \mu + 0$ (see [4]).

Theorem 3.1 *The eigenvalues* ξ_k , $k = 1, 2, \ldots$, *of problem* (3.6) *are real and simple*, *contained in* $(-\infty, \mu_1)$ *, are numbered in descending order and allow asymptotics*

$$
\xi_k = -4(k+1/4)^4 \pi^4 + o(k^4),
$$

and have oscillation index 1*.*

Proof. The proof of this theorem is similar to that of [4, Theorem 4.1] with the use of Lemma 3.5.

From the above definition, Corollary 3.2 and Remark 3.1 it follows that for $\lambda < 0$ the number of zeros of function $y(x, \lambda)$ belonging to the interval $(0, 1)$ is defined as follows:

$$
\tau(\lambda) = \begin{cases}\n0 & \text{if } \lambda \in [\mu_1, 0), \\
1 + \sum_{\xi_s \in (\lambda, \mu_1)} i(\xi_s) & \text{if } \lambda \in (-\infty, \mu_1).\n\end{cases}
$$
\n(3.8)

References

- 1. Aliyev, Z.S.: Basis properties in L_p of systems of root functions of a spectral problem with spectral parameter in a boundary condition, *Differ. Equ.* **47**(6), 766-777 (2011).
- 2. Aliyev, Z.S., Kerimov, N.B., Mehrabov, V.A.: Convergence of eigenfunction expansions for a boundary value problem with spectral parameter in the boundary Conditions. I, *Differ. Equ.* 56(2), 143-157 (2020).
- 3. Aliyev, Z.S., Namazov, F.M.: Spectral properties of the equation of a vibrating rod at both ends of which the masses are concentrated. Banach J. Math. Anal. 14(2), 585-606 (2020).
- 4. Amara, J.Ben, Vladimirov, A.A.: On oscillation of eigenfunctions of a fourth-order problem with spectral parameters in the boundary conditions, *J. Math. Sci.*, 150(5), 2317-2325 (2008).
- 5. Banks, D.O, Kurowski, G.J.: A Prufer transformation for the equation of a vibrating beam subject to axial forces, *J. Differential Equations*, 24(3), 57-74 (1977).
- 6. Bolotin, B.B: Vibrations in technique: Handbook in 6 volumes, The vibrations of linear systems, I, Engineering Industry, Moscow, 1978.
- 7. Naimark, M.A.: Linear Differential Operators, Ungar, New York, 1967.