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Abstract. The paper considers a boundary value problem with an oblique derivative for the Laplace
equation in the unit ball D in the complex plane. The problem is firstly studied in weighted Hardy-type
classes of harmonic functions in D. Then, the weighted Sobolev space W 2

p;ν (D) with the weight function
ν : Γ = ∂D → [0,+∞], is introduced into consideration. The same problem is considered in another
setting in the spaces W 2

p;ν (D). The solution is understood in a strong sense. It is proved that if the weight
belongs to the Mackenhoupt class Ap (Γ ), then this problem is Noetherian and the index is calculated.
Operator corresponding to this problem, generally speaking, is not a Fredholm operator.
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1 Introduction

The theory of boundary value problems for elliptic equations in classical formulations (i.e.,
with respect to Hölder and Lebesgue spaces - Lp-theory) is quite well developed and cov-
ered in various monographs by very famous mathematicians (see, for example, [1–8]). Due
to various reasons, new Banach functional spaces appear over time, and in parallel, with
respect to these spaces, one should study the problems of certain areas of mathematics such
as harmonic analysis, approximation theory, the theory of differential equations, etc. These
spaces include weighted Lebesgue spaces, Lebesgue spaces with variable summability ex-
ponent, Morrey spaces, grand Lebesgue spaces, Orlicz spaces, Marcinkiewicz spaces, etc. In
these spaces, in comparison with other areas, the problems of harmonic analysis are quite
well studied. And this, in turn, creates an acceptable opportunity to construct theories of
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approximation and partial differential equations with respect to these spaces. Significant re-
sults have also been obtained in this direction, and the number of such works increases with
time (see, for example, works [9–23] and their references). These spaces have their own
characteristics and in connection with this, the study of certain problems in these spaces
faces certain difficulties. For example, weighted Lebesgue spaces and Lebesgue spaces with
variable summability are not invariant with respect to the shift operator, Morrey and grand
Lebesgue spaces are not separable, and so on. Therefore, when studying certain problems,
many classical methods are not applicable and other research approaches should be in-
volved.

Our work is devoted precisely to the above-named special case both with respect to
space and with respect to the problem under consideration. This work considers a boundary
value problem with an oblique derivative for the Laplace equation in the unit ball D on
the complex plane. First the problem is solved in weighted Hardy-type classes of harmonic
functions in D. Then the weighted Sobolev space W 2

p;ν (D) with the weight function ν :
Γ = ∂D → [0,+∞], is introduced into consideration. The same problem is considered
in another setting in the spaces W 2

p;ν (D). The solution is understood in a strong sense. It
is proved that if the weight belongs to the Mackenhoupt class Ap (Γ ), then this problem is
Noetherian and the index is calculated. Operator corresponding to this problem, generally
speaking, is not a Fredholmness.

2 Necessary information

First we give the following standard notation used in the work.N will be se set of all positive
integers, Z+ = {0}

⋃
N ; Z will be a set of all integers,C will stand for the field of complex

numbers; R−are real numbers. D = {z ∈ C : |z| < 1}, Γ = ∂D = {z ∈ C : |z| = 1}.
Denote by |E| the linear measure of a measurable (according to Lebesgue) set E ⊂ Γ .
C∞0 [−π, π] is the space of infinitely differentiable functions with compact support in (−π, π) ,
X∗ is a dual space to X¡ δij is the Kronecker symbol, dσ is an element of length on ∂D.
[X;Y ] is a Banach space of linear bounded operators, acting from X to Y , [X] = [X;X].

Let ν : Γ → [0,+∞] be a weight function, i.e. measurable (according to Lebesgue) and∣∣ν−1 {0; +∞}
∣∣ = 0. We will say that ν (·) belongs to the Mackenhoupt weight classAp (Γ )

1 < p < +∞, if the condition

sup
E⊂Γ

(
1

|E|

∫
E
ν (t) dt

)(
1

|E|

∫
E

(ν (t))
− 1
p−1 dt

)p−1
< +∞

is satisfied, where sup is taken over all measurable sets E ⊂ Γ . The weights from class
Ap (Γ ) have the following properties.

Statement 2.1 Let ν ∈ Ap (Γ ) , 1 < p < +∞. Then:
i) ∃p0 ∈ (1, p) : ν ∈ Ap0 (Γ ) ;
ii) ∃δ > 0 such that the following inverse Hölder inequality holds(

1

|E|

∫
E
ν1+δ (x) dx

) 1
1+δ

≤ C

|E|

∫
E
ν (x) dx,

for ∀E ⊂ Γ , where C−is a constant independent of E.

Everywhere in the future, the unit circle Γ and the semi-interval [−π, π) will be iden-
tified using the mapping eit : [−π, π) ↔ Γ . Accordingly, the function f : Γ → C will
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be identified with the function f : [−π, π) → C ⇔ f (t) ≡ f
(
eit
)
. Also for the function

f : D → R, assume

fr (t) = f
(
reit
)
, 0 ≤ r < 1, t ∈ [−π, π) .

Let us introduce into consideration the weighted Lebesgue spaceLp;ν (Γ ) = Lp;ν (−π, π)
1 < p < +∞ , defined with the norm

‖f‖p;ν =

(∫
Γ
|f |p ν |dτ |

) 1
p

=

(∫ π

−π
|f |p ν dt

) 1
p

.

Assume LRp;ν (Γ ) = ReLp;ν (Γ ). Let α = (α1;α2) ∈ Z2
+−be a multi-index and |α| =

α1 + α2. Put ∂αu = ∂|α|u
∂xα1∂yα2 . We define a weighted Sobolev space W 2

p;ν (D) with the
norm ‖ · ‖W 2

p;ν
:

‖u‖W 2
p;ν

=
∑
|α|≤2

‖∂αu‖Lp;ν(D) .

The following statement is true.

Statement 2.2 Let ν ∈ Ap (Γ ) , 1 < p < +∞. Then: i) the continuous embedding
Lp;ν (Γ ) ⊂ L1 (Γ ) is true; ii) C∞0 [−π, π] = Lp;ν (−π, π) (the closure is taken in the
norm of the space Lp;ν (Γ ) ).

In order to obtain the main results, we will also need the following well-known

Statement 2.3 The classical trigonometric system {1; cosnx; sinnx}n∈N forms a basis for
Lp;ν (−π, π) , 1 < p < +∞, if and only if ν ∈ Ap (Γ ) .

These and other facts can be found in detail in [24,25].
Denote by H (D) the class of all harmonic functions in D, i.e.

H (D) = {u : D → R : ∆u = 0 , in D} .

Put
hp;ν =

{
u ∈H (D) : ‖u‖hp;ν < +∞

}
,

where
‖u‖hp;ν = sup

0≤r<1
‖ur ( · )‖Lp;ν(Γ ) ,

is the norm in hp;ν .
Along with hp;ν we also introduce into consideration the class h(1)p;ν of harmonic func-

tions in D:

h(1)p;ν =

{
u ∈ hp;ν :

∂u

∂r
;
∂u

∂ϕ
∈ hp;ν

}
.

The norm in h(1)p;ν is defined by the expression

‖u‖
h
(1)
p;ν

= ‖u‖hp;ν +

∥∥∥∥∂u∂r
∥∥∥∥
hp;ν

+

∥∥∥∥∂u∂ϕ
∥∥∥∥
hp;ν

.

We will also consider the weighted Hardy class of analytical in D functions. Denote the
class of analytical functions in D by A (D) . The weighted Hardy class H+

p;ν is defined as
follows

H+
p;ν =

{
F ∈ A (D) : ‖F‖H+

p;ν
< +∞

}
,
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where
‖F‖H+

p;ν
= sup

0<r<1
‖Fr ( · )‖Lp;ν(Γ ) .

It is obvious that F ∈ H+
p;ν ⇔ ReF & ImF ∈ hp;ν . The following theorem is true.

Theorem 2.4 Let ν ∈ Ap (Γ ) , 1 < p < +∞. Then: i) ∀F ∈ H+
p;ν has nontangential

boundary value F+ ∈ Lp;ν (Γ ) and the Cauchy formula

F (z) =
1

2πi

∫
Γ

F+ (ξ)

ξ − z
dξ,

holds; ii) the system {zn}n∈Z+
({τn}n∈Z+

) forms a basis forH+
p;ν ( forL+

p;ν (Γ ) = H+
p;ν

/
Γ ).

An analogue of the Riesz theorem is also true.

Theorem 2.5 Let ν ∈ Ap (Γ ) , 1 < p < +∞, and F ∈ H+
p;ν . Then:

i) lim
r→1−0

∫ π
−π |Fr (t)− F+ (t)|p ν (t) dt = 0; ii) lim

r→1−0

∫ π
−π |Fr (t)|p ν (t) dt =

∫ π
−π |F

+ (t)|p ν (t) dt.

More details about these and other results can be found, for example, in works [27–32].
From these theorems it immediately follows

Corollary 2.1 Let ν ∈ Ap (Γ ) , 1 < p < +∞. Then:
1) ∀u ∈ hp;ν has nontangential boundary value u+ ∈ Lp;ν (Γ ) and the Poisson formula

u (r;ϕ) =
1

2π

∫ π

−π
Pr (ϕ− θ)u+ (θ) dθ

holds, where Pr (ϕ) = 1−r2
1−2r cosϕ+r2 , is a Poisson kernel for a circle;

2) the following relations

lim
r→1−0

∫ π

−π

∣∣u (r;ϕ)− u+ (ϕ)
∣∣p ν (ϕ) dϕ = 0;

lim
r→1−0

∫ π

−π
|u (r;ϕ)|p ν (ϕ) dϕ =

∫ π

−π

∣∣u+ (ϕ)
∣∣p ν (ϕ) dϕ

hold.

Thus, we can conditionally write hp;ν = ReH+
p;ν = ImH+

p;ν . The last relation fol-
lows from the obvious fact that f ∈ H+

p;ν ⇔ i f ∈ H+
p;ν . Hence and by Theorem 2.4

it immediately follows that the system
{
1
2 ;Rezn; Imzn

}
n∈N is complete in hp;ν , if ν ∈

Ap (Γ ) , 1 < p < +∞. Denoted by h+p;ν the restriction of the space hp;ν to Γ (i.e., we
associate each function u ∈ hp;ν with its boundary values u+ ∈ h+p;ν). Therefore, we have
h+p;ν = ReL+

p;ν = ImL+
p;ν . This directly implies that the relation

(T ) ≡
{

1

2
; cosnϕ; sinnϕ

}
n∈N

⊂ h+p;ν ,

is true and moreover, an arbitrary function u+ ∈ h+p;ν can be expanded in the system (T ) in
the norm of the space LRp;ν (Γ ) . On the other hand, it is known that the system (T ) forms a
basis for LRp;ν (Γ ) and as a result we get h+p;ν = LRp;ν (Γ ). The operator that assigns to each
function u ∈ hp;ν its nontangential boundary values u+ ∈ h+p;ν , will be denoted by γ+. As
a result, we obtain that the following theorem is true.
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Theorem 2.6 Let ν ∈ Ap (Γ ) , 1 < p < +∞. Then for ∀f ∈ LRp;ν (Γ ) the Dirichlet
problem

∆u = 0 , in D,

γ+u = f , on Γ,

}
(2.1)

is uniquely solvable in class hp;ν , moreover, the estimate

‖u‖hp;ν ≤ c ‖f‖Lp;ν (2.2)

is valid, where A > 0 is a constant independent of f .

Indeed, the fact that the problem (2.1) is uniquely solvable is obvious. Further, from
Corollary 2.1, 2) it follows

lim
n→∞

∫ π

−π

∣∣u (rn;ϕ)− u+ (ϕ)
∣∣p ν (ϕ) dϕ = 0,

where rn → 1 − 0 , n → ∞, is some sequence. Hence it follows that ∃ {n1 < n2 < ...} :
u (rnk ;ϕ)→ u+ (ϕ) , k →∞, a.e.. ϕ ∈ (−π, π). Consequently

|u (rnk ;ϕ)|p ν (ϕ)→
∣∣u+ (ϕ)

∣∣p ν (ϕ) , n→∞, a.e. ϕ ∈ (−π, π) ,

and as a result, by the Fatou theorem, we obtain∫ π
−π |u

+ (ϕ)|p ν (ϕ) ≤ sup
0<r<1

∫ π
−π |u (r;ϕ)|p ν (ϕ) dϕ ,

⇓
‖u+‖Lp,ν(Γ ) ≤ ‖u‖hr,ν ⇔ ‖γ

+u‖Lp,ν(Γ ) ≤ ‖u‖hr,ϕ .

It is quite obvious thatKer γ+ = 0. Then it follows from Banach’s theorem that ∃ (γ+)
−1 ∈

[Lp;ν (Γ ) ;hp;ν ], i.e. estimate (2.2) is proved.
It follows directly from this theorem that the operator γ+ ∈ [hp;ν ;Lp;ν (Γ )] is an iso-

morphism between the spaces hp;ν and Lp;ν (Γ ). As a result, the following corollary is true.

Corollary 2.2 Let ν ∈ Ap (Γ ) , 1 < p < +∞. Then the system{
1

2
;Rezn; Imzn

}
n∈N

≡
{

1

2
; rn cosnϕ; rn sinnϕ

}
n∈N

,

forms a basis for hp;ν . In this case, the biorthogonal system is determined by the functionals

l+n (u) = 1
π lim
r→1−0

1
rn

∫ π
−π u (r;ϕ) cosnϕdϕ , ∀n ∈ Z+ ,

l−n (u) = 1
π lim
r→1−0

1
rn

∫ π
−π u (r;ϕ) sinnϕdϕ , ∀n ∈ N .

(2.3)

Proof. It is sufficient to prove the minimality of the system
{
1
2 ;Rezn; Imzn

}
n∈N in hp;ν .

Consider the following functional

l+n (u) =
1

π
lim

r→1−0

1

rn

∫ π

−π
u (r;ϕ) cosnϕdϕ , ∀n ∈ Z+.

It is clear that

l+n

(
Rezk

)
= δnk , ∀n; k ∈ Z+; l+n

(
Imzk

)
= 0 , ∀n ∈ Z+, ∀k ∈ N
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holds, where zk = rkeikϕ . We also have∣∣l+n (u)
∣∣ ≤ 1

π
lim

r→1−0

1

rn

∫ π

−π
|u (r;ϕ)| dϕ ≤

≤ 1

π
lim

r→1−0

1

rn

(∫ π

−π
|u (r;ϕ)|p ν (ϕ) dϕ

) 1
p
(∫ π

−π
ν
− p′

p (ϕ) dϕ

) 1
p′

≤ const lim
r→1−0

[
1

rn
sup

0<r<1

(∫ π

−π
|u (r;ϕ)|p ν (ϕ) dϕ

) 1
p

]
= const ‖u‖hp;ν .

It follows that {l+n } ⊂ (hp;ν)∗. Similar calculations are valid for the expression u−n . There-
fore, the system

{
l+n ; l−n+1

}
n∈Z+

is biorthogonal to the basis
{
1
2 ; rn cosnϕ; rn sinnϕ

}
n∈N

in the space hp;ν .
Corollary is proved.

We will also need the following

Lemma 2.1 Let ν ∈ Ap (Γ ) , 1 < p < +∞, and u ∈ hp;ν . Then, if

u (r;ϕ) = u+0 +

∞∑
n=1

(
u+n cosnϕ+ u−n sinnϕ

)
rn

is the expansion of the function u (r;ϕ) on the system
{
1
2 ;Rezn; Imzn

}
n∈N in hp;ν , then

the non-tangential boundary value u+ (ϕ) ∈ Lp;ν (Γ ) has the expansion on the system (T ):

u+ (ϕ) = u+0 +

∞∑
n=1

(
u+n cosnϕ+ u−n sinnϕ

)
.

Indeed, it suffices to show that

1

π

∫ π

−π
u+ (ϕ) cosnϕdϕ = u+n , ∀n ∈ Z+

holds. Expressions for {u−n } are proved similarly. So, by formula (2.3) we have∣∣∣∣u+n − 1

π

∫ π

−π
u+ (ϕ) cosnϕdϕ

∣∣∣∣ =
1

π

∣∣∣∣ lim
r→1−0

1

rn

∫ π

−π

[
u (r;ϕ)− u+ (ϕ)

]
cosnϕdϕ

∣∣∣∣
≤ 1

π
lim

r→1−0

1

rn

∫ π

−π

∣∣u (r;ϕ)− u+ (ϕ)
∣∣ dϕ

≤ const lim
r→1−0

1

rn

(∫ π

−π

∣∣u (r;ϕ)− u+ (ϕ)
∣∣p ν (ϕ) dϕ

)
1
p = 0.

Lemma is proved.
We will also use the following well-known notions and facts. Consider the following

Hardy-Littlewood maximum operator

(MΓ f) (ξ) = sup
ξ∈Br(τ)

1

r

∫
Br(τ)

|f (η)| |d η| ,

where sup is taken over all balls Br (τ) with center τ ∈ Γ and radius r > 0. The following
well-known theorem is true (see, e.g., [34])
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Theorem 2.7 OperatorMΓ is bounded inLp;ν (Γ ) , 1 < p < +∞, i.e..MΓ ∈ [Lp;ν (Γ ) ]⇔
ν ∈ Ap (Γ ).

Denote by θ0 (τ) a non-tangential angle of θ0 ∈ (0, π) and with a vertex at the point
τ ∈ Γ . It is known that (see e.g., [33, p. 237]) there exists a constant Cθ0 that depends only
on the angle θ0 (but independent of τ ∈ Γ ), for which the inequality

sup
reit∈θ0(τ)

∣∣u (reit)∣∣ ≤ Cθ0M f (τ) , a.e. τ ∈ Γ (2.4)

holds, where u (z) is the Poisson-Lebesgue integral of the function f (·):

u
(
reit
)

=
1

2π

∫ π

−π
Pr (t− ϕ) f (ϕ) dϕ.

3 Main results

We will consider the same problem in two settings. First, we will solve the formulated prob-
lem in the weighted class of harmonic functions inD. In this case, the boundary condition is
given by the operator γ+. Then the same problem is solved in the weighted Sobolev space.
In this case, the boundary condition is defined using the trace operator.

3.1. h(1)p;ν setting.

Let (r;ϕ) , 0 ≤ r < 1 , −π ≤ ϕ < π be polar coordinates in D. Consider the following
oblique derivative problem

∆r;ϕu = 0, in D; (3.1)

γ+
(

cosϕ
∂u

∂r
+ sinϕ

∂u

∂ϕ

)
≡
(

cosϕ
∂u

∂r
+ sinϕ

∂u

∂ϕ

)/
r=1

= f (ϕ) , ϕ ∈ [−π, π) ,

(3.2)
where∆r;ϕ = ∂2u

∂r2
+ 1

r
∂u
∂r + 1

r2
∂2u
∂ϕ2 , is the Laplace operator in polar coordinates. It is known

that this boundary value problem is elliptic (see, for example, [26]). Problem (3.1), (3.2)
will be solved in the space h(1)p;ν . So let u ∈ h

(1)
p;ν be the solution of this problem, where

f ∈ Lp;ν (Γ ) is some given function. Let us expand these functions in the corresponding
bases

f (ϕ) = f+0 +

∞∑
n=1

(
f+n cosnϕ+ f−n sinnϕ

)
,

u (r;ϕ) = u+0 +
∞∑
n=1

(
u+n cosnϕ+ u−n sinnϕ

)
rn, (3.3)

where and {f±n } are the corresponding biorthogonal coefficients, which are defined by the
expressions

f+n =
1

π

∫ π

−π
f (ϕ) cosnϕdϕ ; f−n =

1

π

∫ π

−π
f (ϕ) sinnϕdϕ,

u+n =
1

π
lim

r→1−0

1

rn

∫ π

−π
u (r;ϕ) cosnϕdϕ ;
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u−n =
1

π
lim

r→1−0

1

rn

∫ π

−π
u (r;ϕ) sinnϕdϕ . (3.4)

Represent u (r;ϕ) in the form

u (r;ϕ) =

+∞∑
n=−∞

Anr
|n|einϕ,

where

An =

{
u+0 , n = 0,
u+n − iu−n , n 6= 0 .

We have
∂u

∂r
=
∑
n6=0

|n|Anr|n|−1einϕ;
∂u

∂ϕ
=
∑
n6=0

i nAnr
|n|einϕ.

By
(
∂u
∂r

)+
and

(
∂u
∂ϕ

)+
we denote the nontangential boundary values of the functions ∂u∂r ; ∂u

∂ϕ ∈
hp;ν , respectively, i.e.(

∂u

∂r

)+

= γ+
(
∂u

∂r

)
,

(
∂u

∂ϕ

)+

= γ+
(
∂u

∂ϕ

)
.

Then from Lemma 2.1 we directly obtain(
∂u

∂r

)+

=
∑
n6=0

|n|Aneinϕ;

(
∂u

∂ϕ

)+

=
∑
n6=0

i nAne
inϕ.

Taking into account these expressions in the boundary condition (3.2), we have

eiϕ + e−iϕ

2

∑
n6=0

|n|Aneinϕ +
eiϕ − e−iϕ

2

∑
n6=0

i nAne
inϕ =

+∞∑
n=−∞

cn (f) einϕ,

where

cn (f) =
1

2π

∫ π

−π
f (ϕ) e−inϕdϕ , ∀n ∈ Z+.

Consequently

∑
n6=0

An (|n|+ n) ei(n+1)ϕ +
∑
n6=0

An (|n| − n) ei(n−1)ϕ = 2
+∞∑

n=−∞
cn (f) einϕ.

By making the appropriate changes, as a result we have

∞∑
n=2

(n− 1)An−1e
inϕ −

−2∑
n=−∞

(n+ 1)An+1e
inϕ =

+∞∑
n=−∞

cn (f) einϕ. (3.5)

This immediately implies that for the solvability of problem (3.1), (3.2), the fulfillment of
the conditions

c−1 (f) = c0 (f) = c1 (f) = 0, (3.6)
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is necessary. Further, the coefficient A0 is not included in the left side of relation (3.5), and
hence it remains an arbitrary constant. For the remaining coefficients {An} from (3.5) we
obtain

An =
1

n
cn+1 (f) , n ≥ 1;

and
An = − 1

n
cn−1 (f) , n ≤ −1.

As a result, for the solution u (r;ϕ) ∈ hp;ν of problem (3.1), (3.2), we obtain the formal
expression

u (r;ϕ) = A0 +

−1∑
n=−∞

cn−1 (f)

|n|
r|n|einϕ +

∞∑
n=1

cn+1 (f)

n
rneinϕ. (3.7)

Let us show that the function u (r;ϕ) defined by expression (3.7) is indeed a solution
of problem (3.1), (3.2). It is quite obvious that ∆r;ϕu (r;ϕ) = 0 , ∀reiϕ ∈ D. Let us
show that u ∈ h

(1)
p;ν . For this, it is enough to prove that ∂u

∂r ; ∂u∂ϕ ∈ hp;ν . It is clear that
u (0;ϕ) = u+0 = const. Then from the formula

u (r;ϕ) =

∫ r

0

∂u (ρ;ϕ)

∂ρ
dρ+ u (0;ϕ) ,

we get that if ∂u
∂r ∈ hp;ν , then u ∈ hp;ν . Thus, differentiating the expression (3.7) term by

term with respect to r, we have

∂u

∂r
=

−1∑
n=−∞

cn−1 (f) r|n|−1einϕ +
∞∑
n=1

cn+1 (f) rn−1einϕ.

Assume

u1 (r;ϕ) =

−1∑
n=−∞

cn−1 (f) r|n|−1einϕ,

u2 (r;ϕ) =

∞∑
n=1

cn+1 (f) rn−1einϕ.

Let us show that uk ∈ hp;ν , k = 1, 2. It suffices to show that the inclusion u2 ∈ hp;ν (the
inclusion u1 ∈ hp;ν is proved similarly). It is clear that ∆u2 = 0. We have

u2 (r;ϕ) = e−iϕr−2ϑ (r;ϕ) ,

where

ϑ (r;ϕ) =
∞∑
n=2

cn (f) rneinϕ.

It is easy to see that the function u2 (r;ϕ) tends uniformly to the function c2 (f) eiϕ as
r → +0 on Γ . Therefore, the following relation

sup
0<r<1

‖u2 (r; ·)‖Lp;ν(Γ ) < +∞⇔ sup
0<r<1

‖ϑ (r; ·)‖Lp;ν(Γ ) < +∞, (3.8)

is true. Let

g (ϕ) =

∞∑
n=2

cn (f) einϕ , ϕ ∈ (−π, π) .
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From the basicity of the system of exponents
{
einϕ

}
n∈Z in Lp;ν (Γ ) , 1 < p < +∞ , and

f ∈ Lp;ν (Γ ) it follows that g ∈ Lp;ν (Γ ) . For ϑ (r;ϕ) the following Poisson-Lebesgue
formula is valid

ϑ (r;ϕ) =
1

2π

∫ π

−π
Pr (ϕ− θ) g (θ) dθ.

Taking into account estimate (2.4) and applying Theorem 2.7 to the expression ϑ (r;ϕ) we
obtain

‖ϑ (r; · )‖Lp;ν(Γ ) ≤ c ‖MΓ g‖Lp;ν(Γ ) ≤ c ‖g‖Lp;ν(Γ ) ,

where c > 0 is a constant independent of g . Hence it directly follows that ϑ ∈ hp;ν , as a
result u1 ∈ hp;ν . Similarly, it is established that u2 ∈ hp;ν . Thus, the inclusion ∂u

∂r ∈ hp;ν is
valid.

We also have

∂u

∂ϕ
= −i

−1∑
n=−∞

cn−1 (f) r|n|einϕ + i

∞∑
n=1

cn+1 (f) rneinϕ.

From the same considerations it follows that ∂u∂ϕ ∈ hp;ν . So, it is established that u ∈ h(1)p;ν .
And now we turn to calculating the index of problem (3.1), (3.2). Consider the operator

γ : h
(1)
p;ν → Lp;ν (Γ ) defined by the expression

(γu) (ϕ) = cosϕ

(
∂u

∂r

)+

+ sinϕ

(
∂u

∂ϕ

)+

, ϕ ∈ (−π, π) .

We have

‖γu‖Lp;ν(Γ ) ≤

∥∥∥∥∥cosϕ

(
∂u

∂r

)+
∥∥∥∥∥
Lp;ν(Γ )

+

∥∥∥∥∥sinϕ

(
∂u

∂ϕ

)+
∥∥∥∥∥
Lp;ν(Γ )

≤

∥∥∥∥∥
(
∂u

∂r

)+
∥∥∥∥∥
Lp;ν(Γ )

+

∥∥∥∥∥
(
∂u

∂ϕ

)+
∥∥∥∥∥
Lp;ν(Γ )

≤ /Theorem 2.3/

≤ c

(∥∥∥∥∂u∂r
∥∥∥∥
hp;ν

+

∥∥∥∥∂u∂ϕ
∥∥∥∥
hp;ν

)
≤ c ‖u‖

h
(1)
p;ν
.

Hence it follows that γ ∈
[
h
(1)
p;ν ;Lp;ν (Γ )

]
. Let us calculate the index of this operator. So,

let u ∈ h(1)p;ν & u ∈ Kerγ, i.e. γ u = 0. It is clear that u (r;ϕ) has the representation

u (r;ϕ) =

+∞∑
n=−∞

Anr
|n|einϕ.

We have

γ u =
1

2

[ ∞∑
n=2

(n− 1)An−1e
inϕ −

−2∑
n=−∞

(n+ 1)An+1e
inϕ

]
= 0.

From the basicity of the system
{
einϕ

}
n∈Z in Lp;ν (Γ ) we obtain An = 0 , ∀n 6= 0.

Consequently
u (r;ϕ) = A0 ≡ const ⇒ dimKer γ = 1.
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On the other hand, for the solvability of the equation γ u = f , the right side f must sat-
isfy three conditions of the form (3.6), where ck ∈ (Lp;ν (Γ ))∗ , k = −1; 0; 1 are concrete
nonzero functional. Hence it follows that, codim γ = 3 and as a result the index æ (γ) of the
operator γ (in other words, of problems (3.1), (3.2)) is equal to æ (γ) = dim γ−codim γ =
−2. As a result, the following main theorem is proved.

Theorem 3.1 Let ν ∈ Ap (Γ ) , 1 < p < +∞. Then the oblique derivative problem
(3.1),(3.2), with the boundary function f ∈ Lp;ν (Γ ) is Noetherian in the class h(1)p;ν and
its index æ (γ) = −2.

3.2. W 2
p;ν (D) setting.

Let us now consider the same problem in a different setting, namely, we will look for the
solution of problem (3.1), (3.2) in the weighted Sobolev space W 2

p;ν (D) , 1 < p < +∞.
As before, we will assume that ν ∈ Ap (Γ ) , 1 < p < +∞. First we define the trace
operator and the trace space with respect to the space W 1

p;ν (D) . Let ν ∈ Ap (Γ ) , 1 <

p < +∞. It is clear that a continuous embedding W 1
p;ν (D) ⊂ W 1

1 (D) is true. Denote by
TΓ ∈

[
W 1

1 (D) ;L1 (Γ )
]

the trace operator in the sense of the space W 1
1 (D) . Assume

0
W

1
p;ν (D) =

{
u ∈W 1

p;ν (D) : TΓu = 0
}
.

0
W 1

p;ν (D) is a subspace of W 1
p;ν (D) . Indeed, let {un}n∈N ⊂

0
W 1

p;ν (D) be a Cauchy
sequence and let lim

n
un = u ∈W 1

p;ν (D) . We have

‖TΓu‖L1(Γ )
= lim

n
‖TΓun‖L1(Γ )

= 0⇒ u ∈
0
W

1
p;ν (D) .

Consider a factor space F 1
p;ν (D) = W 1

p;ν (D)

/
0
W 1

p;ν(D)
with factor norm

‖F‖F1
p;ν(D) = inf

f∈F
‖f‖W 1

p;ν(D) .

It is a Banach space.
Let us also set TΓ

(
W 1
p;ν (D)

)
= W 1

p;ν (Γ ; dσ). Quite similarly to [16], the following
statement is proved.

Statement 3.2 Let Ω ⊂ Rn be a bounded domain with boundary ∂Ω ∈ C(1). Then the
trace operator TΓ establishes an isomorphism between the linear spaces F 1

p;ν (D) and
W 1
p;ν (Γ ; dσ) : TΓ : F 1

p;ν (D)↔W 1
p;ν (Γ ; dσ).

Based on this statement, we define the norm in the spaceW 1
p;ν (Γ ; dσ) by the expression

‖g‖W 1
p;ν(Γ ;dσ)

=
∥∥T−1Γ g

∥∥
F1
p;ν(D)

, ∀g ∈W 1
p;ν (Γ ; dσ) . (3.9)

It is clear that the space W 1
p;ν (Γ ; dσ) is a Banach space with respect to the norm (3.9). For

the function u ∈ W 1
p;ν (D), denote by Fu the class Fu ∈F 1

p;ν (D), containing the element
u : u ∈ Fu. So we have

‖TΓu‖W 1
p;ν(Γ ;dσ)

=
∥∥T−1Γ (TΓu)

∥∥
F1
p;ν(D)

= ‖Fu‖F1
p;ν(D) = inf

ϑ∈Fu
‖ϑ‖W 1

p;ν(D) ≤ ‖u‖W 1
p;ν(D) .

Hence it immediately follows that TΓ ∈
[
W 1
p;ν (D) ; W 1

p;ν (Γ ; dσ)
]
. Therefore, the follow-

ing statement is true.
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Statement 3.3 Let ν ∈ Ap (Γ ) , 1 < p < +∞. Then the trace operator TΓ acts boundedly
from W 1

p;ν (D) to the trace space W 1
p;ν (Γ ; dσ).

So let us consider the problem

∆r;ϕu = 0 , in D, (3.10)

cosϕTΓ

(
∂u

∂r

)
+ sinϕTΓ

(
∂u

∂ϕ

)
= f (ϕ) , ϕ ∈ (−π, π) , (3.11)

where f ∈ W 1
p;ν (Γ ; dσ) is a given function. Assume that u ∈ W 2

p;ν (D) is a solution to
problem (3.10)-(3.11). As in the previous case, the function has the following representation

u =

+∞∑
n=−∞

Anr
|n|einϕ , reiϕ ∈ D. (3.12)

Let us assume that the series (3.12) converges in the space W 1
p;ν (D) . Considering that

TΓ
(
r|n|einϕ

)
= einϕ , ∀n ∈ Z, in exactly the same way as in the previous case, from the

boundary condition (3.11) we obtain the relation

∞∑
n=2

(n− 1)An−1e
inϕ −

−2∑
n=−∞

(n+ 1)An+1e
inϕ = f (ϕ) , ϕ ∈ (−π, π) ,

in which the series on the left side converge in Lp;ν (Γ ). Multiplying both sides by e−inϕ
and integrating over (−π, π), we get

c−1 (f) = c0 (f) = c1 (f) = 0, (3.13)

where

An =

{
1
ncn+1 (f) , n ≥ 1 ,
− 1
ncn−1 (f) , n ≤ −1.

Therefore, as before, we have

u (r;ϕ) = A0 +
−1∑

n=−∞

cn−1 (f)

|n|
r|n|einϕ +

∞∑
n=1

cn+1 (f)

n
rneinϕ, (3.14)

where A0 ∈ R is an arbitrary number. First, note that if f ∈ LRp;ν (Γ ) is a real function, the
series (3.14) represents a real-valued harmonic function in D . It follows directly from the
fact that in this case we have c−k (f) = ck (f) , ∀k ∈ Z.

Thus, let us consider the question of the convergence of the series (3.14) in W 1
p;ν (D) .

We first prove the following lemma.

Lemma 3.1 Let ν ∈ Ap (Γ ) , 1 < p < +∞ , and the series

−1∑
n=−∞

cn−1e
inϕ +

∞∑
n=1

An+1e
inϕ, (3.15)

converges in Lp;ν (−π, π) . Then the series (3.14) converges in W 1
p;ν (D).
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Proof. Let all the conditions of the lemma be satisfied. Let

unm =
n∑
k=1

c−k−1
k

rke−ikϕ +
m∑
k=1

ck+1

k
rkeikϕ , ∀n,m ∈ N.

We have

‖unm − un1m1‖Lp;ν(D) ≤
n1∑
k=n

|c−k−1|
k

∥∥∥rk∥∥∥
Lp;ν(D)

+

m1∑
k=m

|ck+1|
k

∥∥∥rk∥∥∥
Lp;ν(D)

. (3.16)

It is clear that |ck| ≤ const < +∞ , ∀k ∈ Z is true.
On the other hand∥∥∥rk∥∥∥p

Lp;ν(D)
=

∫ 1

0

∫ π

−π

∣∣∣rk∣∣∣p ν (ϕ) r dϕdr = const

∫ 1

0
rkp+1dr =

const

kp+ 2
⇒

∥∥∥rk∥∥∥
Lp;ν(D)

=
const

(kp+ 2)
1
2

≤ const

k
1
p

, ∀k ∈ N.

Taking into account this relation in (3.16), we obtain

‖unm − un1m1‖Lp;ν(D) ≤ const

(
n1∑
k=n

1

k
1+ 1

p

+

m1∑
k=m

1

k
1+ 1

p

)
→ 0 , n;n1;m;m1 →∞.

It follows from here that the series (3.14) converges in Lp;ν (D) , and as a result u ∈
Lp;ν (D) . Let us show that ∂u

∂x ; ∂u∂y ∈ Lp;ν (D). For this purpose, we first consider the
following series

Ψ (ρ; θ) =

∞∑
k=1

ρk (ck sin kθ + dk cos kθ) .

Obviously, if sup
k
{ |ck| ; |dk|} < +∞, then on any compact set in the unit ball this series

converges uniformly, and in particular, for ∀ρ : 0 ≤ ρ < 1, it converges uniformly on Γ .
Let

ψ (θ) =
∞∑
k=1

(ck sin kθ + dk cos kθ) .

It is clear that if ψ ∈ Lp;ν (−π, π) , then the function Ψ can be represented as a Poisson-
Lebesgue integral

Ψ (ρ; θ) =
1

2π

∫ π

−π
Pρ (s− θ)ψ (s) ds.

Paying attention to inequality (2.4) again, we obtain that ∃c > 0 such that the estimate
|Ψ (ρ; θ)| ≤ c (MΓψ) (θ) , a.e. θ ∈ (−π, π) , is true. Consequently
|Ψ (ρ; θ)|p ν (θ) ≤ c (MΓψ)p ν (θ) , a.e. θ ∈ (−π, π) .

By Theorem 2.7 we have∫ π

−π
|Ψ (ρ; θ)|p ν (θ) dθ ≤ c

∫ π

−π
(MΓψ)p ν (θ) dθ ≤ c

∫ π

−π
|ψ (θ)|p ν (θ) dθ , ∀ρ ∈ (0, 1) .

This directly implies the following estimate

‖Ψ‖Lp;ν(D) ≤ A ‖ψ‖Lp;ν(Γ ) . (3.17)
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So, in polar coordinates, partial derivatives are expressed by the formulas

∂u

∂x
= cos θ

∂u

∂ρ
− sin θ

ρ

∂u

∂θ
;

∂u

∂y
= sin θ

∂u

∂ρ
+

cos θ

ρ

∂u

∂θ
.

Let us represent u (ρ; θ) as

u (ρ; θ) =
1

2
a0 +

∞∑
k=1

1

k
ρk (ak cos kθ + bk sin kθ) ,

where
ak = ak (f) = Reck (f) ; bk = bk (f) = Imck (f) .

We have
∂u

∂x
=
∞∑
k=0

ρk (ak+1 cos kθ + bk+1 sin kθ) .

It is quite obvious that ∂u∂x is also harmonic in D. By the condition of the lemma, the series
(3.15), as well as the series

ϕ (θ) =
∞∑
k=0

ρk (ak+1 cos kθ + bk+1 sin kθ) ,

converges in Lp;ν (Γ ). Then, by the above reasoning, we obtain that∂u∂x has a Poisson-
Lebesgue representation

∂u

∂x
=

1

2π

∫ π

−π
Pρ (s− θ)ϕ (s) ds.

Since ϕ ∈ Lp;ν (Γ ), it follows from here, as above, that ∂u
∂x ∈ Lp;ν (Γ ) . It is proved in

exactly the same way that ∂u∂y ∈ Lp;ν (Γ ).
Lemma is proved.

Further, we note that since the system
{
einϕ

}
n∈Z forms a basis for Lp;ν (−π, π), 1 <

p < +∞, then the series (3.15) converges in Lp;ν (−π, π) if and only if the series

f (ϕ) =

+∞∑
n=−∞

cne
inϕ,

converges inLp;ν (−π, π), i.e. f ∈ Lp;ν (−π, π). As a result, we obtain that if f ∈ Lp;ν (−π, π),
then the function u (ρ;ϕ) defined by expression (3.14) belongs to the space W 1

p;ν (D).
In a completely analogous way, it is proved that if the series

+∞∑
n=−∞

ncne
inϕ, (3.18)

converges in Lp;ν (−π, π), then the series (3.14) belongs to the space W 2
p;ν (D).
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Thus, let us consider the question of the convergence of the series (3.18) in Lp;ν (−π, π).
Let f ∈W 1

p;ν (−π, π). We have

2π cn (f) =

∫ π

−π
f (t) eintdt =

1

in

(
f (t) eint

/
π
−π −

∫ π

−π
f ′ (t) eintdt

)
=

=
1

in

(
f (−π)− f (π)− 2πcn

(
f ′
))
, ∀n ∈ Z,

where f ′ = df
dt . It immediately follows from this that if f (−π) = f (π), then ncn (f) =

1
i cn (f ′), and as a result it is clear that the series (3.18) converges in Lp;ν (−π, π). Assume

W̃ 1
p;ν (−π, π) =

{
f ∈W 1

p;ν (−π, π) : f (−π) = f (π)
}
.

Thus, summing up the obtained results, we come to the following conclusion.

Theorem 3.4 Let ν ∈ Ap (Γ ) , 1 < p < +∞. Then the oblique derivative problem (3.1),
(3.2) with the boundary function f ∈ W̃ 1

p;ν (−π, π) is Noetherian in the space W 2
p;ν (D)

and its index is æ = −2.

The fact that the index æ = −2 follows from the same considerations as in Theorem
3.1, since in this case the coefficient A0 in expression (3.14) is arbitrary, and the functionals
(3.13) are also bounded in W 1

p;ν (−π, π) .
Consider the same problem with a boundary function f ∈ W 1

p;ν (−π, π). Let δa be the
Dirac functional concentrated at the point a. Then the condition f (−π) = f (π) can be
written as δπ − δ−π (f) = 0. It is clear that the functional v = δπ − δ−π is also bounded in
W 1
p;ν (−π, π) . Taking this circumstance into account, we obtain the following theorem.

Theorem 3.5 Let ν ∈ Ap (Γ ) , 1 < p < +∞. Then the oblique derivative problem (3.1),
(3.2) with the boundary function f ∈ W 1

p;ν (−π, π) is Noetherian in the space W 2
p;ν (D)

and its index is æ = −3.
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