Marcinkiewicz integral and its commutator on mixed Morrey spaces

Asim A. Akbarov · Fatai A. Isayev* · Meftun I. Ismayilov

Received: 02.09.2024 / Revised: 28.01.2025 / Accepted: 08.02.2025

Abstract. In this paper, we study the boundedness of the Marcinkiewicz operator μ_{Ω} and its commutator $\mu_{b,\Omega}$ on mixed Morrey spaces $L^{\mathbf{p},\lambda}(\mathbb{R}^n)$.

Keywords. Mixed Morrey spaces, Marcinkiewicz operator, commutators, BMO

Mathematics Subject Classification (2010): 42B20, 42B25, 35J10

1 Introduction

The classical Morrey spaces $L^{p,\lambda}$ were originally introduced by Morrey in [24] to study the local behavior of solutions to second order elliptic partial differential equations. For the properties and applications of classical Morrey spaces. In 2019, Nogayama [26] considered a new Morrey space, with the L^p norm replaced by the mixed Lebesgue norm $L^p(\mathbb{R}^n)$, which is call mixed Morrey spaces.

For $x \in \mathbb{R}^n$, and r > 0, let B(x, r) be the open ball centered at x with the radius r, and ${}^cB(x, r)$ be its complement. Let $S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$ is the unit sphere of \mathbb{R}^n $(n \ge 2)$ equipped with the normalized Lebesgue measure. Suppose that Ω satisfies the following conditions.

(i) Ω is a homogeneous function of degree zero on \mathbb{R}^n . That is,

$$\Omega(tx) = \Omega(x) \tag{1.1}$$

for all t > 0 and $x \in \mathbb{R}^n$.

* Corresponding author

A.A. Akbarov Baku State University, AZ1141 Baku, Azerbaijan Sumqait State University, Baku str. 1, AZ5008, Sumqait, Azerbaijan E-mail: akbarovasim1980@gmail.com

F.A. Isayev

Institute of Mathematics and Mechanics, Ministry of Science and Educations of the Republic of Azerbaijan, Baku, Azerbaijan E-mail: isayevfatai@yahoo.com

M.I. Ismayilov Nakhchivan State University, Department of Informatics, Nakhchivan, Azerbaijan E-mail: imeftun@yahoo.com (ii) Ω has mean zero on S^{n-1} . That is,

$$\int_{S^{n-1}} \Omega(x') dx' = 0,$$
 (1.2)

where x' = x/|x| for any $x \neq 0$.

The Marcinkiewicz integral operator of higher dimension μ_{Ω} is defined by

$$\mu_{\Omega} f(x) = \left(\int_0^\infty |F_{\Omega,t} f(x)|^2 \frac{dt}{t^3} \right)^{1/2}$$

where

$$F_{\Omega,t} f(x) = \int_{B(x,t)} \frac{\Omega(x-y)}{|x-y|^{n-1}} f(y) dy.$$

It is well known that the Littlewood-Paley g-function is a very important tool in harmonic analysis and the Marcinkiewicz integral is essentially a Littlewood-Paley g-function. In this paper, we will also consider the commutator $\mu_{\Omega,b}$ which is given by the following expression

$$\mu_{\Omega,b}f(x) = \left(\int_0^\infty |F_{\Omega,t}^b f(x)|^2 \frac{dt}{t^3}\right)^{1/2},$$

where

$$F^b_{\varOmega,t}f(x) = \int_{B(x,t)} \frac{\varOmega(x-y)}{|x-y|^{n-1}} [b(x) - b(y)]f(y)dy.$$

On the other hand, the study of Schrödinger operator $L = -\Delta + V$ recently attracted much attention. In particular, Shen [28] considered L^p estimates for Schrödinger operators L with certain potentials which include Schrödinger Riesz transforms $R_j^L = \frac{\partial}{\partial x_j} L^{-\frac{1}{2}}$, $j = 1, \ldots, n$. Then, Dziubanński and Zienkiewicz [12] introduced the Hardy type space $H_L^1(\mathbb{R}^n)$ associated with the Schrödinger operator L, which is larger than the classical Hardy space $H^1(\mathbb{R}^n)$, see also [1–4,7,15–20].

Similar to the classical Marcinkiewicz function, we define the Marcinkiewicz functions $\mu_{j,\Omega}$ associated with the Schrödinger operator L by

$$\mu_{j,\Omega}^L f(x) = \left(\int_0^\infty \left| \int_{B(x,t)} |\Omega(x-y)| K_j^L(x,y) f(y) dy \right|^2 \frac{dt}{t^3} \right)^{1/2}$$

where $K_j^L(x,y) = \widetilde{K_j^L}(x,y)|x-y|$ and $\widetilde{K_j^L}(x,y)$ is the kernel of $R_j = \frac{\partial}{\partial x_j}L^{-\frac{1}{2}}$, $j = 1, \ldots, n$. In particular, when V = 0, $K_j^{\Delta}(x,y) = \widetilde{K_j^{\Delta}}(x,y)|x-y| = \frac{(x-y)_j/|x-y|}{|x-y|^{n-1}}$ and $\widetilde{K_j^{\Delta}}(x,y)$ is the kernel of $R_j = \frac{\partial}{\partial x_j}\Delta^{-\frac{1}{2}}$, $j = 1, \ldots, n$. In this paper, we write $K_j(x,y) = K_j^{\Delta}(x,y)$ and

$$\mu_{j,\Omega}f(x) = \left(\int_0^\infty \left|\int_{B(x,t)} |\Omega(x-y)| K_j(x,y)f(y)dy\right|^2 \frac{dt}{t^3}\right)^{1/2}.$$

Obviously, $\mu_{j,\Omega}$ are classical Marcinkiewicz functions with rough kernel. Therefore, it will be an interesting thing to study the property of $\mu_{j,\Omega}^L$. The main purpose of this paper is to show that Marcinkiewicz operators with rough kernel associated with Schrödinger

operators $\mu_{j,\Omega}^L$, $j = 1, \ldots, n$ are bounded on mixed Morrey space $L^{\mathbf{p},\lambda}(\mathbb{R}^n)$, $1 < \mathbf{p} < \infty$, $0 \leq \lambda \leq n$.

The commutator of the classical Marcinkiewicz function with rough kernel is defined by

$$\mu_{j,\Omega,b}f(x) = \left(\int_0^\infty \left|\int_{B(x,t)} |\Omega(x-y)| K_j(x,y) [b(x) - b(y)] f(y) dy\right|^2 \frac{dt}{t^3}\right)^{1/2}$$

The commutator $\mu_{j,\Omega,b}^L$ formed by $b \in BMO(\mathbb{R}^n)$ and the Marcinkiewicz function with rough kernel $\mu_{i,\Omega}^L$ is defined by

$$\mu_{j,\Omega,b}^{L}f(x) = \left(\int_{0}^{\infty} \left|\int_{B(x,t)} |\Omega(x-y)| K_{j}^{L}(x,y)[b(x)-b(y)]f(y)dy\right|^{2} \frac{dt}{t^{3}}\right)^{1/2}.$$

The well-known classical Hardy-Littlewood maximal operator M is defined by

$$Mf(x) = \sup_{r>0} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y)| dy$$

where $f \in L^1_{loc}(\mathbb{R}^n)$ and |B(x,r)| is the Lebesgue measure of the ball B(x,r). Let T is a sublinear operator, and satisfies that for any $f \in L^1(\mathbb{R}^n)$ with compact support and $x \notin supp f$,

$$|Tf(x)| \lesssim \int_{\mathbb{R}^n} \frac{|f(y)|}{|x-y|^n} dy.$$
(1.3)

We point out that the condition (1.3) was first introduced by Soria and Weiss [27]. The condition (1.3) are satisfied by many interesting operators in harmonic analysis, such as the Calderón-Zygmund operators, the Carleson's maximal operators, the Hardy-Littlewood maximal operators, the Fefferman's singular multipliers, the Fefferman's singular integrals, the Ricci-Stein's oscillatory singular integrals, the Bochner-Riesz means and so on (see [23, 27] for details).

As is well known, the commutator is also an important operator and it plays a key role in harmonic analysis. Recall that for a locally integrable function b and a integral operator T, the commutator formed by b and T is defined by [b,T]f = bTf - T(bf). The commutators of the fractional maximal operator, the fractional integral operator and the Calderón-Zygmund singular integral operator have been intensively studied, see [13] for more details. In this paper, the maximal commutator operator M_b under consideration is of the form

$$M_b f(x) = \sup_{r>0} \frac{1}{|B(x,r)|} \int_{B(x,r)} |b(x) - b(y)| |f(y)| dy$$

for $f \in L^1_{loc}(\mathbb{R}^n)$.

To study a class of commutators uniformly, one can also introduce some sublinear operators with additional size conditions as before. For a function b, suppose that the commutator operator T_b represents a linear or a sublinear operator, which satisfies that for any $f \in L^1(\mathbb{R}^n)$ with compact support and $x \notin supp f$,

$$|T_b f(x)| \lesssim \int_{\mathbb{R}^n} \frac{|b(x) - b(y)|}{|x - y|^n} |f(y)| dy.$$
 (1.4)

The operator T_b has been studied in [14,23].

In this paper, we study the boundedness of the Marcinkiewicz operator μ_{Ω} and its commutator $\mu_{\Omega,b}$ on mixed Morrey spaces $L^{\mathbf{p},\lambda}(\mathbb{R}^n)$. We find the conditions with $b \in BMO(\mathbb{R}^n)$ which ensures the boundedness of the operators $\mu_{j,\Omega,b}^L$, $j = 1, \ldots, n$ on mixed Morrey space $L^{\mathbf{p},\lambda}(\mathbb{R}^n)$, $1 < \mathbf{p} < \infty$, $0 \le \lambda \le n$.

By $A \leq B$, we mean that $A \leq CB$ for some constant C > 0, and $A \approx B$ means that $A \leq B$ and $B \leq A$.

2 Definitions and preliminaries

For any r > 0 and $x \in \mathbb{R}^n$, let $B(x, r) = \{y : |y - x| < r\}$ be the ball centered at x with radius r. Let $B = \{B(x, r) : x \in \mathbb{R}^n, r > 0\}$ be the set of all such balls. We also use χ_E and |E| to denote the characteristic function and the Lebesgue measure of a measurable set E.

Let $\mathcal{M}(\mathbb{R}^n)$ and $L^1_{loc}(\mathbb{R}^n)$ denote the class of Lebesgue measurable functions and locally integrable functions on \mathbb{R}^n , respectively. We also use \mathbb{C} to represent all the complex numbers, and \mathbb{N} to represent the collection of all integers.

Definition 2.1 For $1 , a non-negative function <math>w \in L_{loc}(\mathbb{R}^n)$ is said to be an $A_p(\mathbb{R}^n)$ weight if

$$[w]_{A_p} = \sup_{B \in \mathcal{B}} \Big(\frac{1}{|B|} \int_B w(x) dx \Big) \Big(\frac{1}{|B|} \int_B w(x)^{-\frac{p'}{p}} dx \Big)^{\frac{p}{p'}} < \infty.$$

A non-negative local integrable function w is said to be an A_1 weight if

$$\frac{1}{|B|}\int_B w(y)dy \leq Cw(x) \;,\; a.e.\; x \in B$$

for some constant C > 0. The infimum of all such C is denoted by $[w]_{A_1}$. We denote A_{∞} by the union of all A_p $(1 \le p < \infty)$ functions.

Theorem 2.1 [9] Suppose that Ω be satisfies the conditions (1.1), (1.2) and $\Omega \in L^{\infty}(S^{n-1})$. Then for every $1 and <math>w \in A_p(\mathbb{R}^n)$, there is a constant C independent of f such that

$$\|\mu_{\Omega} f\|_{L^{p,w}} \le C \|f\|_{L^{p,w}}.$$

Theorem 2.2 [10] Suppose that Ω be satisfies the conditions (1.1), (1.2) and $\Omega \in L^{\infty}(S^{n-1})$. Let also $b \in BMO(\mathbb{R}^n)$. Then for every $1 and <math>w \in A_p(\mathbb{R}^n)$, there is a constant C > 0 independent of f such that

$$\left\| \mu_{\Omega,b} f \right\|_{L^{p,w}} \le C \|f\|_{L^{p,w}}.$$

Note that a nonnegative locally L^q integrable function V(x) on \mathbb{R}^n is said to belong to B_q $(1 < q < \infty)$ if there exists C > 0 such that the reverse Hölder inequality

$$\left(\frac{1}{|B(x,r)|} \int_{B(x,r)} V^q(y) dy\right)^{1/q} \le C\left(\frac{1}{|B(x,r)|} \int_{B(x,r)} V(y) dy\right)$$
(2.1)

holds for every ball $x \in \mathbb{R}^n$ and r > 0, where B(x, r) denotes the open ball centered at x with radius r; see [28]. It is worth pointing out that the B_q class is that, if $V \in B_q$ for some q > 1, then there exists $\varepsilon > 0$, which depends only n and the constant C in (2.1), such that $V \in B_{q+\varepsilon}$. Throughout this paper, we always assume that $0 \neq V \in B_n$.

Theorem 2.3 [3, 15] Suppose that Ω satisfies (1.1), (1.2) and $V \in B_n$. If $\Omega \in L^{\infty}(S^{n-1})$, then the operators $\mu_{j,\Omega}^L$, j = 1, ..., n are bounded on $L^{p,w}(\mathbb{R}^n)$ for $1 and <math>w \in A_p(\mathbb{R}^n)$.

Theorem 2.4 [3, 15] Suppose that Ω satisfies (1.1), (1.2) and $V \in B_n$. If $\Omega \in L^{\infty}(S^{n-1})$ and $b \in BMO(\mathbb{R}^n)$, then the operators $\mu_{j,\Omega,b}^L$, $j = 1, \ldots, n$ are bounded on $L^{p,w}(\mathbb{R}^n)$ for $1 and <math>w \in A_p(\mathbb{R}^n)$.

We first recall the definition of mixed Lebesgue space defined in [6].

Let $\mathbf{p} = (p_1, \dots, p_n) \in (0, \infty]^n$. Then the mixed Lebesgue norm $\|\cdot\|_{L^{\mathbf{p}}}$ or $\|\cdot\|_{L^{(p_1,\dots,p_n)}}$ is defined by

$$\|f\|_{L^{\mathbf{p}}} = \|f\|_{L^{(p_1,\dots,p_n)}}$$

= $\left(\int_{\mathbb{R}} \cdots \left(\int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x_1, x_2, \dots, x_n)|^{p_1} dx_1\right)^{\frac{p_2}{p_1}} dx_2\right)^{\frac{p_3}{p_2}} \dots dx_n\right)^{\frac{1}{p_n}}$

where $f : \mathbb{R}^n \to \mathbb{C}$ is a measurable function. If $p_j = \infty$ for some j = 1, n, then we have to make appropriate modifications. We define the mixed Lebesgue space $L^{\mathbf{p}}(\mathbb{R}^n) = L^{(p_1, \dots, p_n)}(\mathbb{R}^n)$ to be the set of all locally integrable functions f with $||f||_{L^{\mathbf{p}}} < \infty$.

Let $1 \leq \mathbf{p} < \infty$ and $0 \leq \lambda \leq n$. We denote by $L^{\mathbf{p},\lambda}(\mathbb{R}^n)$ the mixed Morrey space the set of all classes of locally integrable functions f with the finite norm

$$\|f\|_{L^{\mathbf{p},\lambda}} = \sup_{x \in \mathbb{R}^n, t > 0} t^{-\frac{\lambda}{n} \sum_{i=1}^n \frac{1}{p_i}} \|f\|_{L^{\mathbf{p}}(B(x,t))}$$

Obviously, we recover the classical Morrey space $L^{\mathbf{p},\lambda}(\mathbb{R}^n)$ when $\mathbf{p} = p$. We point out that in [25,26], the author used the cubes to define the mixed Morrey spaces. It is not hard to verify that the two definitions are equivalent.

As we know, the Hardy-Littlewood maximal operator M is bounded on $L^{\mathbf{p}}(\mathbb{R}^n)$, $1 < \mathbf{p} < \infty$ (see [26]), but there is no complete boundedness results for some other operators on the mixed Lebesgue spaces. To prove the boundedness of some important operators on the mixed Lebesgue space in a uniform way, we will give the extrapolation theorems on mixed Lebesgue spaces, which have their own interest.

The extrapolation theory on mixed Lebesgue spaces relies on the classical A_p weight (see [13]).

We also need the boundedness of M on mixed norm space $L^{\mathbf{p}}(\mathbb{R}^n)$ [26].

Lemma 2.1 [26] For $1 < \mathbf{p} < \infty$, there holds

$$\|Mf\|_{L^{\mathbf{p}}(\mathbb{R}^n)} \lesssim \|f\|_{L^{\mathbf{p}}(\mathbb{R}^n)}.$$
(2.2)

By \mathfrak{F} , we mean a family of pair (f, g) of non-negative measurable functions that are not identical to zero. For such a family S, p > 0 and a weight $w \in A_p$, the expression

$$\int_{\mathbb{R}^n} f(x)^p w(x) dx \lesssim \int_{\mathbb{R}^n} g(x)^p w(x) dx, \ (f, \ g) \in \mathfrak{F}$$

means that this inequality holds for all pair $(f, g) \in \mathfrak{F}$ if the left hand side is finite, and the implicated constant depends only on p and A_p .

Now we give the extrapolation theorems on the mixed Lebesgue spaces. The first one is the diagonal extrapolation theorem.

Theorem 2.5 Let $0 < p_0 < \infty$ and $\mathbf{p} = (p_1, \dots, p_n) \in (0, \infty)^n$. Let $f, g \in \mathcal{M}(\mathbb{R}^n)$. Suppose for every $w \in A_1$, we have

$$\int_{\mathbb{R}^n} f(x)^{p_0} w(x) dx \lesssim \int_{\mathbb{R}^n} g(x)^{p_0} w(x) dx, \ (f, \ g) \in \mathfrak{F}.$$
(2.3)

Then if $\mathbf{p} > p_0$, we have

$$\|f\|_{L^{\mathbf{p}}(\mathbb{R}^n)} \lesssim \|g\|_{L^{\mathbf{p}}(\mathbb{R}^n)}, (f, g) \in \mathfrak{F}.$$
(2.4)

Proof. Without loss of generality, one may assume f is a non-negative function. We use the Rubio de Francia iteration algorithm presented in [8].

Let $\bar{\mathbf{p}} = \mathbf{p}/p_0$ and $\bar{\mathbf{p}'} = \mathbf{p'}/p_0$. By the assumptions and Lemma 2.1, the maximal operator is bounded on $L^{\bar{\mathbf{p}}'}(\mathbb{R}^n)$, so there exists a positive constant B such that

$$\|Mf\|_{L^{\mathbf{p'}}(\mathbb{R}^n)} \le B\|f\|_{L^{\mathbf{p'}}(\mathbb{R}^n)}.$$

For any non-negative function h, define a new operator $\Re h$ by

$$\Re h(x) = \sum_{k=0}^{\infty} \frac{M^k h(x)}{2^k B^k},$$

where for $k \ge 1, M^k$ denotes k iterations of the maximal operator, and M^0 is the identity operator. The operator \Re satisfies

$$h(x) \le \Re h(x) , \qquad (2.5)$$

$$\|\Re h\|_{L^{\mathbf{p}'}} \le 2\|h\|_{L^{\mathbf{p}'}},\tag{2.6}$$

$$\|\mathfrak{R}h\|_{A_1} \le 2B. \tag{2.7}$$

The inequality (2.5) is straight-forward. Since

$$M(\Re h) \leq \sum_{k=0}^{\infty} \frac{M^{k+1}h}{2^k B^k} \leq 2B \sum_{k=1}^{\infty} \frac{M^k h}{2^k B^k} \leq 2B \Re h,$$

the properties (2.6) and (2.7) are consequences of Lemma 2.1 and the definition of A_1 . Since the dual of $L^{\bar{\mathbf{p}}}(\mathbb{R}^n)$ is $L^{\bar{\mathbf{p}'}}(\mathbb{R}^n)$, we get

$$||f||_{L^{\mathbf{p}}}^{p_{0}} = ||f^{p_{0}}||_{L^{\mathbf{p}}}$$

$$\lesssim \sup \Big\{ \int_{\mathbb{R}^{n}} |f(x)|^{p_{0}} h(x) dx : ||h||_{L^{\mathbf{p}'}} \leq 1, h \geq 0 \Big\}.$$
(2.8)

By Hölder's inequality on the mixed Lebesgue spaces and (2.5), we have

$$\int_{\mathbb{R}^n} f(x)^{p_0} h(x) dx \lesssim \int_{\mathbb{R}^n} f(x)^{p_0} \Re h(x) dx$$

$$\lesssim \|f^{p_0}\|_{L^{\bar{\mathbf{p}}}} \|h\|_{L^{\bar{\mathbf{p}}'}} < \infty.$$
(2.9)

In view of (2.5) and $\Re h \in A_1$, we use (2.3) with $w = \Re h(x)$ to obtain

$$\int_{\mathbb{R}^n} f(x)^{p_0} h(x) dx \lesssim \int_{\mathbb{R}^n} f(x)^{p_0} \Re h(x) dx \lesssim \int_{\mathbb{R}^n} g(x)^{p_0} \left[\Re h(x) \right] dx.$$

Combining (2.6) with (2.9) and using Hölder's inequality on the mixed Lebesgue spaces again, we arrive at

$$\int_{\mathbb{R}^n} f(x)^{p_0} h(x) dx \lesssim \|g^{p_0}\|_{L^{\bar{\mathbf{p}}}} \|\mathfrak{R}h\|_{L^{\bar{\mathbf{p}}'}}$$

$$\approx \|g\|_{L^{\bar{\mathbf{p}}}}^{p_0} \|\mathfrak{R}h\|_{L^{\bar{\mathbf{p}}'}}.$$

$$(2.10)$$

Therefore

$$\left\|\Re h\right\|_{L\bar{\mathbf{p}'}} \lesssim \left\|h\right\|_{L\bar{\mathbf{p}'}}.\tag{2.11}$$

By taking supremum over all $h \in L^{\bar{\mathbf{p}}}(\mathbb{R}^n)$ with $||h||_{L^{\bar{\mathbf{p}}}} \leq 1$, (2.8), (2.10) and (2.11) give us the desired conclusion (2.4).

We point out that when n = 2, there are different versions of the diagonal extrapolation theorem [21] and the off-diagonal extrapolation theorem [29] on mixed Lebesgue spaces, which are different form Theorem 2.5.

By the density of smooth functions with compact support $C_c^{\infty}(\mathbb{R}^n)$ in the mixed Lebesgue space $L^{\mathbf{p}}(\mathbb{R}^n)$, $1 < \mathbf{p} < \infty$ (see [6]), one can apply Theorem 2.5 to the mapping property of some sublinear operators.

Theorem 2.6 Suppose $0 < p_0 < \mathbf{p} < \infty$ and T is a sublinear operator such that for every $w \in A_1$,

$$\int_{\mathbb{R}^n} |Tf(z)|^{p_0} w(z) dz \lesssim \int_{\mathbb{R}^n} |f(z)|^{p_0} w(z) dz, \ f \in C_c^{\infty}(\mathbb{R}^n) \ .$$

Then T can be extended to be a bounded operator on $L^{\mathbf{p}}(\mathbb{R}^n)$.

Proof. By Theorem 2.5, for any $f \in C_c^{\infty}(\mathbb{R}^n)$, we have

$$\|Tf\|_{L^{\mathbf{p}}} \lesssim \|f\|_{L^{\mathbf{p}}}.$$

Since T is a sublinear operator, we have $|T(f) - T(g)| \le |T(f - g)|$, and hence, for any $f, g \in C_c^{\infty}(\mathbb{R}^n)$, we have

$$||Tf - Tg||_{L^{\mathbf{p}}} \le ||T(f - g)||_{L^{\mathbf{p}}} \lesssim ||f - g||_{L^{\mathbf{p}}}.$$

Since $C_c^{\infty}(\mathbb{R}^n)$ is dense in $L^{\mathbf{p}}(\mathbb{R}^n)$, the above inequalities guarantee that T can be extended to be a bounded operator on $L^{\mathbf{p}}(\mathbb{R}^n)$.

The following corollary is a consequence of Theorem 2.6 and the weighted boundedness of the corresponding operators.

Corollary 2.1 Let $1 < \mathbf{p} < \infty, b \in BMO$, then $M, \mu_{\Omega}, \mu_{j,\Omega}^{L}$, $M_{b}, \mu_{\Omega,b}, \mu_{j,\Omega,b}^{L}$ are all bounded on $L^{\mathbf{p}}(\mathbb{R}^{n})$.

Proof. It is well known that $M, \mu_{\Omega}, \mu_{j,\Omega}^L, M_b, \mu_{\Omega,b}, \mu_{j,\Omega,b}^L$ are all sublinear operators, and bounded on $L^{p_0,w}(\mathbb{R}^n)$ for arbitrary $1 < p_0 < \infty$ and $w \in A_{p_0}$ (see [13] for example). Since $A_1 \subset A_p$, Theorem 2.6 implies that $M, \mu_{\Omega}, \mu_{j,\Omega}^L, M_b, \mu_{\Omega,b}, \mu_{j,\Omega,b}^L$ are all bounded on $L^{\mathbf{p}}(\mathbb{R}^n)$ for all $p_0 < \mathbf{p} < \infty$. In view of the arbitrariness of $1 < p_0 < \infty, M, \mu_{\Omega}, \mu_{j,\Omega}^L$, $M_b, \mu_{\Omega,b}, \mu_{j,\Omega,b}^L$ are also bounded on $L^{\mathbf{p}}(\mathbb{R}^n)$ for all $< \mathbf{p} < \infty$.

3 Marcinkiewicz operator μ_{Ω} in mixed Morrey spaces

In this section, we investigate the boundedness of μ_{Ω} satisfies the conditions (1.1), (1.2) and $\Omega \in L^{\infty}(S^{n-1})$ on the mixed Morrey space $L^{\mathbf{p},\lambda}$.

We first prove one lemma, which give us the explicit estimates for the $L^{\mathbf{p}}(\mathbb{R}^n)$ norm of μ_{Ω} on a given ball $B(x_0, r)$.

Lemma 3.1 Let Ω be satisfies the conditions (1.1), (1.2) and $\Omega \in L^{\infty}(S^{n-1})$. Then for $1 < \mathbf{p} < \infty$, the inequality

$$\|\mu_{\Omega}f\|_{L^{\mathbf{p}}(B(x_{0},r))} \lesssim r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \int_{2r}^{\infty} t^{-1-\sum_{i=1}^{n} \frac{1}{p_{i}}} \|f\|_{L^{\mathbf{p}}(B(x_{0},t))} dt$$
(3.1)

holds for any ball $B(x_0, r)$ and all $f \in L^{\mathbf{p}}_{loc}(\mathbb{R}^n)$.

Proof. For any ball $B = B(x_0, r)$, Let $2B = B(x_0, 2r)$ be the ball centered at x_0 , with the radius 2r, we represent f as $f = f_1 + f_2$, where

$$f_1(y) = f\chi_{2B}(y) , \ f_2(y) = f\chi_{c(2B)}(y) , \ r > 0.$$

Since T is a sublinear operator, we have

$$\|\mu_{\Omega}f\|_{L^{\mathbf{p}}(B)} \le \|\mu_{\Omega}f_{1}\|_{L^{\mathbf{p}}(B)} + \|\mu_{\Omega}f_{2}\|_{L^{\mathbf{p}}(B)}.$$

Noting that $f_1 \in L^p(\mathbb{R}^n)$ and μ_{Ω} is bounded in $L^p(\mathbb{R}^n)$ (see Corollary 2.1), we have

$$\|\mu_{\Omega} f_1\|_{L^{\mathbf{p}}(B)} \le \|\mu_{\Omega} f_1\|_{L^{\mathbf{p}}(\mathbb{R}^n)} \lesssim \|f_1\|_{L^{\mathbf{p}}(\mathbb{R}^n)} = \|f\|_{L^{\mathbf{p}}(2B)}.$$

It is clear that $x \in B, y \in {}^c(2B)$ imply $\frac{1}{2}|x_0 - y| \le |x - y| \le \frac{3}{2}|x_0 - y|$, which further yields

$$|\mu_{\Omega}f_2(x)| \lesssim \int_{c(2B)} \frac{|f(y)|}{|x_0 - y|^n} dy$$

By Fubini's theorem, we have

$$\begin{split} \int_{c(2B)} \frac{|f(y)|}{|x_0 - y|^n} dy &\approx \int_{c(2B)} |f(y)| \int_{|x_0 - y|}^{\infty} \frac{dt}{t^{n+1}} dy \\ &\approx \int_{2r}^{\infty} \int_{2r \le |x_0 - y| < t} |f(y)| dy \frac{dt}{t^{n+1}} \\ &\lesssim \int_{2r}^{\infty} \int_{B(x_0, t)} |f(y)| dy \frac{dt}{t^{n+1}}. \end{split}$$

Applying Hölder's inequality on the mixed Lebesgue spaces (see [6]), we obtain

$$\int_{c(2B)} \frac{|f(y)|}{|x_0 - y|^n} dy \lesssim \int_{2r}^{\infty} \|f\|_{L^{\mathbf{p}}(B(x_0, t))} \frac{dt}{t^{1 + \sum_{i=1}^n \frac{1}{p_i}}}.$$
(3.2)

Moreover, for all $1 < \mathbf{p} < \infty$, we have

$$\|\mu_{\Omega} f_2\|_{L^{\mathbf{p}}(B(x_0,r))} \lesssim r^{\sum_{i=1}^n \frac{1}{p_i}} \int_{2r}^{\infty} \|f\|_{L^{\mathbf{p}}(B(x_0,t))} \frac{dt}{t^{1+\sum_{i=1}^n \frac{1}{p_i}}}$$

Therefore, one gets

$$\|\mu_{\Omega}f\|_{L^{\mathbf{p}}(B(x_{0},r))} \lesssim \|f\|_{L^{\mathbf{p}}(2B)} + r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \int_{2r}^{\infty} \|f\|_{L^{\mathbf{p}}(B(x_{0},t))} \frac{dt}{t^{1+\sum_{i=1}^{n} \frac{1}{p_{i}}}}.$$

On the other hand,

$$\|f\|_{L^{\mathbf{p}}(2B)} \approx r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \|f\|_{L^{\mathbf{p}}(2B)} \int_{2r}^{\infty} \frac{dt}{t^{1+\sum_{i=1}^{n} \frac{1}{p_{i}}}} \\ \lesssim r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \int_{2r}^{\infty} \|f\|_{L^{\mathbf{p}}(B(x_{0},t))} \frac{dt}{t^{1+\sum_{i=1}^{n} \frac{1}{p_{i}}}}.$$
(3.3)

Thus

$$\|\mu_{\Omega}f\|_{L^{\mathbf{p}}(B(x_{0},r))} \lesssim r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \int_{2r}^{\infty} \|f\|_{L^{\mathbf{p}}(B(x_{0},t))} \frac{dt}{t^{1+\sum_{i=1}^{n} \frac{1}{p_{i}}}}$$

Now we can present the first main result in this section.

Theorem 3.1 Let Ω be satisfies the conditions (1.1), (1.2) and $\Omega \in L^{\infty}(S^{n-1})$. Let also $1 < \mathbf{p} < \infty$, and $0 \le \lambda \le n$. Then the operator μ_{Ω} is bounded on $L^{\mathbf{p},\lambda}$. Moreover,

$$\|\mu_{\Omega}f\|_{L^{\mathbf{p},\lambda}} \lesssim \|f\|_{L^{\mathbf{p},\lambda}}.$$

Proof. From the inequality (3.1) we get

$$\begin{aligned} \|\mu_{\Omega}f\|_{L^{\mathbf{p},\lambda}} &\lesssim \sup_{x \in \mathbb{R}^{n}, r > 0} r^{-\frac{\lambda}{n} \sum_{i=1}^{n} \frac{1}{p_{i}}} r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \int_{2r}^{\infty} t^{-1 - \sum_{i=1}^{n} \frac{1}{p_{i}}} \|f\|_{L^{\mathbf{p}}(B(x_{0},t))} dt \\ &\lesssim \|f\|_{L^{\mathbf{p},\lambda}} \sup_{x \in \mathbb{R}^{n}, r > 0} r^{-\frac{\lambda}{n} \sum_{i=1}^{n} \frac{1}{p_{i}}} r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \int_{r}^{\infty} t^{-1 - \sum_{i=1}^{n} \frac{1}{p_{i}}} t^{\frac{\lambda}{n} \sum_{i=1}^{n} \frac{1}{p_{i}}} dt \\ &= \|f\|_{L^{\mathbf{p},\lambda}} \int_{1}^{\infty} t^{-1 - (1 - \frac{\lambda}{n}) \sum_{i=1}^{n} \frac{1}{p_{i}}} dt \\ &\lesssim \|f\|_{L^{\mathbf{p},\lambda}}. \end{aligned}$$

By taking $\mathbf{p} = (p, \dots, p)$ in Theorem 3.1, we obtain the boundedness of μ_{Ω} on the Morrey spaces.

4 Commutator of Marcinkiewicz operator $\mu_{\Omega,b}$ in mixed Morrey spaces

In this section, we investigate the boundedness of $\mu_{\Omega,b}$ conditions (1.1), (1.2) and $\Omega \in L^{\infty}(S^{n-1})$ on the mixed Morrey space $L^{\mathbf{p},\lambda}$. First, we review the definition of $BMO(\mathbb{R}^n)$, the bounded mean oscillation space. A function $f \in L^1_{loc}(\mathbb{R}^n)$ belongs to the bounded mean oscillation space $BMO(\mathbb{R}^n)$ if

$$||f||_{BMO} = \sup_{x \in \mathbb{R}^n, r > 0} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y) - f_{B(x,r)}| dy < \infty.$$
(4.1)

If one regards two functions whose difference is a constant as one, then the space $BMO(\mathbb{R}^n)$ is a Banach space with respect to norm $\|.\|_{BMO}$. The John-Nirenberg ineuqality for BMO yields that for any $1 < q < \infty$ and $f \in BMO(\mathbb{R}^n)$, the BMO norm of f is equivalent to

$$||f||_{BMO^q} = \sup_{x \in \mathbb{R}^n, r > 0} \left(\frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y) - f_{B(x,r)}|^q dy \right)^{\frac{1}{q}}$$

Recall that for any $\mathbf{p} = (p_1, \dots, p_n) \in (1, \infty)^n$, the John-Nirenberg inequality for mixed norm space [22] shows that the *BMO* norm of all $f \in BMO(\mathbb{R}^n)$ is also equivalent to

$$||f||_{BMO^{\mathbf{p}}} = \sup_{x \in \mathbb{R}^{n}, r > 0} \frac{||(f - f_{B(x,r)})\chi_{B(x,r)}||_{L^{\mathbf{p}}}}{||\chi_{B(x,r)}||_{L^{\mathbf{p}}}}.$$
(4.2)

The following property for BMO functions is valid.

Lemma 4.1 Let $f \in BMO(\mathbb{R}^n)$. Then for all 0 < 2r < t, we have

$$|f_{B(x,r)} - f_{B(x,t)}| \lesssim ||f||_{BMO} \ln \frac{t}{r}.$$
 (4.3)

We first prove one lemma, which give us the explicit estimates for the $L^{\mathbf{p}}(\mathbb{R}^n)$ norm of $\mu_{\Omega,b}$ on a given ball $B(x_0, r)$.

Lemma 4.2 Let Ω be satisfies the conditions (1.1), (1.2) and $\Omega \in L^{\infty}(S^{n-1})$. Let also $1 < \mathbf{p} < \infty$ and $b \in BMO(\mathbb{R}^n)$. Then the inequality

$$\|\mu_{\Omega,b}f\|_{L^{\mathbf{p}}(B(x_{0},r))}$$

$$\lesssim \|b\|_{BMO} r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \int_{2r}^{\infty} \left(1 + \ln \frac{t}{r}\right) t^{-1 - \sum_{i=1}^{n} \frac{1}{p_{i}}} \|f\|_{L^{\mathbf{p}}(B(x_{0},t))} dt$$

$$(4.4)$$

holds for any ball $B(x_0, r)$ and all $f \in L^{\mathbf{p}}_{loc}(\mathbb{R}^n)$.

Proof. For any ball $B = B(x_0, r)$, Let $2B = B(x_0, 2r)$. Write f as $f = f_1 + f_2$, where $f_1 = f\chi_{2B}$ and $f_2 = f\chi_{c(2B)}$.

Since $\mu_{\Omega,b}$ is a sublinear operator, we have

$$\|\mu_{\Omega,b}f\|_{L^{\mathbf{p}}(B)} \le \|\mu_{\Omega,b}f_1\|_{L^{\mathbf{p}}(B)} + \|\mu_{\Omega,b}f_2\|_{L^{\mathbf{p}}(B)}$$

Noting that $f_1 \in L^{\mathbf{p}}(\mathbb{R}^n)$ and $\mu_{\Omega,b}$ is bounded in $L^{\mathbf{p}}(\mathbb{R}^n)$ (see Corollary 2.1), we have

$$\|\mu_{\Omega,b}f_1\|_{L^{\mathbf{p}}(B)} \le \|\mu_{\Omega,b}f_1\|_{L^{\mathbf{p}}(\mathbb{R}^n)} \lesssim \|b\|_{BMO} \|f_1\|_{L^{\mathbf{p}}(\mathbb{R}^n)} = \|b\|_{BMO} \|f\|_{L^{\mathbf{p}}(2B)}$$

Since $x \in B, y \in^{c} (2B)$ imply $\frac{1}{2}|x_{0} - y| \le |x - y| \le \frac{3}{2}|x_{0} - y|$, we get $|\mu_{\Omega,b}f_{2}(x)| \lesssim \int \frac{|b(x) - b(y)|}{|x - y|^{n}} |f(y)| dy$

$$\approx \int_{c(2B)} \frac{|x-y|^n}{|x_0-y|^n} |f(y)| dy.$$

By the generalized Minkowski's inequality on mixed Lebesgue spaces (see [6]), we have

$$\begin{split} \|\mu_{\Omega,b}f_2\|_{L^{\mathbf{p}}(B))} &\lesssim \Big\| \int_{c(2B)} \frac{|b(\cdot) - b(y)|}{|x_0 - y|^n} |f(y)| dy \Big\|_{L^{\mathbf{p}}(B(x_0, r))} \\ &\lesssim \Big\| \int_{c(2B)} \frac{|b_B - b(y)|}{|x_0 - y|^n} |f(y)| dy \Big\|_{L^{\mathbf{p}}(B(x_0, r))} \\ &+ \Big\| \int_{c(2B)} \frac{|b(\cdot) - b_B|}{|x_0 - y|^n} |f(y)| dy \Big\|_{L^{\mathbf{p}}(B(x_0, r))} \\ &= I_1 + I_2. \end{split}$$

For the term I_1 , we have

$$\begin{split} I_{1} &\approx r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \int_{c(2B)} \frac{|b_{B} - b(y)|}{|x_{0} - y|^{n}} |f(y)| dy \\ &\approx r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \int_{c(2B)} |b(y) - b_{B}| |f(y)| \int_{|x_{0} - y|}^{\infty} \frac{dt}{t^{n+1}} dy \\ &\approx r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \int_{2r}^{\infty} \int_{2r \leq |x_{0} - y| < t} |b(y) - b_{B}| |f(y)| dy \frac{dt}{t^{n+1}} \\ &\lesssim r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \int_{2r}^{\infty} \int_{B(x_{0},t)} |b(y) - b_{B}| |f(y)| dy \frac{dt}{t^{n+1}}. \end{split}$$

Applying Hölder's inequality and by (4.2), (4.3), we get

$$\begin{split} I_{1} &\lesssim r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \int_{2r}^{\infty} \int_{B(x_{0},t)} |b(y) - b_{B(x_{0},t)}| |f(y)| dy \frac{dt}{t^{n+1}} \\ &+ r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \int_{2r}^{\infty} \int_{B(x_{0},t)} |b_{B(x_{0},r)} - b_{B(x_{0},t)}| |f(y)| dy \frac{dt}{t^{n+1}} \\ &\lesssim r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \int_{2r}^{\infty} \int_{B(x_{0},t)} \|(b(\cdot) - b_{B(x_{0},t)})\chi_{B(x_{0},t)}\|_{L\mathbf{p}'} \|f\|_{L^{\mathbf{p}}(B(x_{0},t)} dy \frac{dt}{t^{n+1}} \\ &+ r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \int_{2r}^{\infty} |b_{B(x_{0},r)} - b_{B(x_{0},t)}| \|f\|_{L^{\mathbf{p}}(B(x_{0},t)} \frac{dt}{t^{1+\sum_{i=1}^{n} \frac{1}{p_{i}}}} \\ &\lesssim \|b\|_{BMO} r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \int_{2r}^{\infty} (1 + \ln \frac{t}{r}) \|f\|_{L^{\mathbf{p}}(B(x_{0},t)} \frac{dt}{t^{1+\sum_{i=1}^{n} \frac{1}{p_{i}}}}. \end{split}$$

In order to estimate I_2 , note that

$$I_{2} = \int_{c(2B)} \frac{|f(y)|}{|x_{0} - y|^{n}} dy \cdot ||b(\cdot) - b_{B}||_{L^{\mathbf{p}}(B(x_{0}, r))}.$$

It follows from (4.2) that

$$I_2 \lesssim \|b\|_{BMO} r^{\sum_{i=1}^n \frac{1}{p_i}} \int_{c(2B)} \frac{|f(y)|}{|x_0 - y|^n} dy.$$

Thus by (3.2), we get

$$I_2 \lesssim \|b\|_{BMO} r^{\sum_{i=1}^n \frac{1}{p_i}} \int_{2r}^\infty \|f\|_{L^{\mathbf{p}}(B(x_0,t))} \frac{dt}{t^{1+\sum_{i=1}^n \frac{1}{p_i}}}.$$

Summing up I_1 and I_2 , we get

$$\|\mu_{\Omega,b}f_2\|_{L^{\mathbf{p}}(B)} \le \|b\|_{BMO} r^{\sum_{i=1}^n \frac{1}{p_i}} \int_{2r}^\infty \left(1 + \ln \frac{t}{r}\right) \|f\|_{L^{\mathbf{p}}(B(x_0,t))} \frac{dt}{t^{1+\sum_{i=1}^n \frac{1}{p_i}}}$$

Therefore, by (3.3), there holds

$$\begin{aligned} \|\mu_{\Omega,b}f_2\|_{L^{\mathbf{p}}(B)} &\lesssim \|b\|_{BMO} \|f\|_{L^{\mathbf{p}}(2B)} \\ &+ \|b\|_{BMO} \ r^{\sum_{i=1}^n \frac{1}{p_i}} \ \int_{2r}^\infty \left(1 + \ln \frac{t}{r}\right) t^{-1 - \sum_{i=1}^n \frac{1}{p_i}} \|f\|_{L^{\mathbf{p}}(B(x_0, t))} dt \\ &\lesssim \ \|b\|_{BMO} \ r^{\sum_{i=1}^n \frac{1}{p_i}} \ \int_{2r}^\infty \left(1 + \ln \frac{t}{r}\right) t^{-1 - \sum_{i=1}^n \frac{1}{p_i}} \|f\|_{L^{\mathbf{p}}(B(x_0, t))} dt. \end{aligned}$$

We are done.

Now we give the boundedness of $\mu_{\Omega,b}$ on the mixed Morrey space.

Theorem 4.1 Let Ω be satisfies the conditions (1.1), (1.2) and $\Omega \in L^{\infty}(S^{n-1})$. Let also $1 < \mathbf{p} < \infty$, $b \in BMO(\mathbb{R}^n)$, and $0 \le \lambda \le n$. Then the operator $\mu_{\Omega,b}$ is bounded on $L^{\mathbf{p},\lambda}$. Moreover,

$$\|\mu_{\Omega,b}f\|_{L^{\mathbf{p},\lambda}} \lesssim \|b\|_{BMO} \|f\|_{L^{\mathbf{p},\lambda}}$$

Proof. From the inequality (4.4) we get

$$\begin{aligned} \|\mu_{\Omega,b}f\|_{L^{\mathbf{p},\lambda}} &\lesssim \|b\|_{BMO} \\ &\times \sup_{x \in \mathbb{R}^{n}, r > 0} r^{(1-\frac{\lambda}{n})\sum_{i=1}^{n}\frac{1}{p_{i}}} \int_{2r}^{\infty} \left(1+\ln\frac{t}{r}\right) t^{-1-\sum_{i=1}^{n}\frac{1}{p_{i}}} \|f\|_{L^{\mathbf{p}}(B(x_{0},t))} dt \\ &\lesssim \|b\|_{BMO} \|f\|_{L^{\mathbf{p},\lambda}} \sup_{x \in \mathbb{R}^{n}, r > 0} r^{(1-\frac{\lambda}{n})\sum_{i=1}^{n}\frac{1}{p_{i}}} \int_{r}^{\infty} \left(1+\ln\frac{t}{r}\right) t^{-1-(1-\frac{\lambda}{n})\sum_{i=1}^{n}\frac{1}{p_{i}}} dt \\ &= \|b\|_{BMO} \|f\|_{L^{\mathbf{p},\lambda}} \sup_{x \in \mathbb{R}^{n}, r > 0} \int_{1}^{\infty} (1+\ln t) t^{-1-(1-\frac{\lambda}{n})\sum_{i=1}^{n}\frac{1}{p_{i}}} dt \\ &\lesssim \|b\|_{BMO} \|f\|_{L^{\mathbf{p},\lambda}}. \end{aligned}$$

By taking $\mathbf{p} = (p, \dots, p)$ in Theorem 4.1, we obtain the boundedness of $\mu_{\Omega,b}$ on the Morrey spaces.

5 Marcinkiewicz operator $\mu_{i,\Omega}^L$ and its commutator $\mu_{i,\Omega,b}^L$ in mixed Morrey spaces

In this section, we prove the boundedness of the Marcinkiewicz operator $\mu_{j,\Omega}^L$ and its commutator $\mu_{j,\Omega,b}^L$ on mixed Morrey space $L^{\mathbf{p},\lambda}$.

For $x \in \mathbb{R}^n$, the function $\rho(x)$ is defined by

$$\rho(x) = \sup_{r>0} \left\{ r : \frac{1}{r^{n-2}} \int_{B(x,r)} V(y) dy \le 1 \right\}.$$

Lemma 5.1 [28] Let $V \in B_q$ with $q \ge n/2$. Then there exists $l_0 > 0$ such that

$$\frac{l}{C} \left(1 + \frac{|x-y|}{\rho(x)} \right)^{-l_0} \le \frac{\rho(y)}{\rho(x)} \le C \left(1 + \frac{|x-y|}{\rho(x)} \right)^{l_0/(l_0+1)}$$

In particular, $\rho(x) \sim \rho(y)$ if $|x - y| < C\rho(x)$.

Lemma 5.2 [28] Let $V \in B_q$ with $q \ge n/2$. For any l > 0, there exists $C_l > 0$ such that

$$\left|K_j^L(x,y)\right| \leq \frac{C_l}{\left(1+\frac{|x-y|}{\rho(x)}\right)^l} \frac{1}{|x-y|^{n-1}}$$

and

$$\left| K_{j}^{L}(x,y) - K_{j}(x-y) \right| \leq C \frac{\rho(x)}{|x-y|^{n-2}}.$$

Analogously proof of Lemma 3.1 and Theorem 3.1 the following results is valid.

Lemma 5.3 Let Ω be satisfies the conditions (1.1), (1.2), $\Omega \in L^{\infty}(S^{n-1})$ and $V \in B_n$. Then for $1 < \mathbf{p} < \infty$, the inequality

$$\|\mu_{j,\Omega}^{L}f\|_{L^{\mathbf{p}}(B(x_{0},r))} \lesssim r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \int_{2r}^{\infty} t^{-1-\sum_{i=1}^{n} \frac{1}{p_{i}}} \|f\|_{L^{\mathbf{p}}(B(x_{0},t))} dt$$

holds for any ball $B(x_0, r)$ and all $f \in L^{\mathbf{p}}_{loc}(\mathbb{R}^n)$.

Theorem 5.1 Let Ω be satisfies the conditions (1.1), (1.2), $\Omega \in L^{\infty}(S^{n-1})$ and $V \in B_n$. Let also $1 < \mathbf{p} < \infty$, and $0 \le \lambda \le n$. Then the operator $\mu_{j,\Omega}^L$ is bounded on $L^{\mathbf{p},\lambda}$. Moreover,

$$\|\mu_{j,\Omega}^L f\|_{L^{\mathbf{p},\lambda}} \lesssim \|f\|_{L^{\mathbf{p},\lambda}}$$

Analogously proof of Lemma 4.2 and Theorem 4.1 the following results is valid.

Lemma 5.4 Let Ω be satisfies the conditions (1.1), (1.2), $\Omega \in L^{\infty}(S^{n-1})$ and $V \in B_n$. Then for $1 < \mathbf{p} < \infty$ and $b \in BMO(\mathbb{R}^n)$, the inequality

 $\|\mu_{j,\Omega,b}^{L}f\|_{L^{\mathbf{p}}(B(x_{0},r))} \lesssim \|b\|_{BMO} r^{\sum_{i=1}^{n} \frac{1}{p_{i}}} \int_{2r}^{\infty} \left(1 + \ln \frac{t}{r}\right) t^{-1 - \sum_{i=1}^{n} \frac{1}{p_{i}}} \|f\|_{L^{\mathbf{p}}(B(x_{0},t))} dt$

holds for any ball $B(x_0, r)$ and all $f \in L^{\mathbf{p}}_{loc}(\mathbb{R}^n)$.

Theorem 5.2 Let Ω be satisfies the conditions (1.1), (1.2), $\Omega \in L^{\infty}(S^{n-1})$ and $V \in B_n$. Let also $1 < \mathbf{p} < \infty$, $b \in BMO(\mathbb{R}^n)$, and $0 \le \lambda \le n$. Then the operator $\mu_{j,\Omega,b}^L$ is bounded on $L^{\mathbf{p},\lambda}$. Moreover,

$$\|\mu_{j,\Omega,b}^L f\|_{L^{\mathbf{p},\lambda}} \lesssim \|b\|_{BMO} \|f\|_{L^{\mathbf{p},\lambda}}.$$

Acknowledgements. The authors would like to express their gratitude to the referees for his very valuable comments and suggestions.

References

- Akbulut, A., Celik, S., Omarova, M.N.: Fractional maximal operator associated with Schrödinger operator and its commutators on vanishing generalized Morrey spaces, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci 44(1) Mathematics, 3-19 (2024).
- Akbulut, A., Guliyev, R., Ekincioglu, I.: Calderon-Zygmund operators associated with Schrödinger operator and their commutators on vanishing generalized Morrey spaces, TWMS J. Pure Appl. Math. 13(2), 144-157 (2022).
- Akbulut, A., Kuzu, O: Marcinkiewicz integrals associated with Schrödinger operator on generalized Morrey spaces, J. Math. Inequal. 8(4), 791-801 (2014).
- Akbulut, A., Omarova, M.N., Serbetci, A.: Generalized local mixed Morrey estimates for linear elliptic systems with discontinuous coefficients, Socar Proceedings No. 1, 136-142 (2025).
- Alvarez, J., Bagby, R.J., Kurtz, D.S., Pérez, C.: Weighted estimates for commutators of linear operators, Studia Math. 104, 195-209 (1993).
- Benedek, A., Panzone, R.: The spaces L^P with mixed norm, Duke Math. J. 28(3), 301-324 (1961).

- 7. Celik, S., Guliyev, V.S., Akbulut, A.: Commutator of fractional integral with Lipschitz functions associated with Schrödinger operator on local generalized mixed Morrey spaces, Open Math. 22, 20240082 (2024).
- 8. D. V. Cruz-Uribe, J. M. Martell, C. Prez, *Weights, extrapolation and the theory of Rubio de Francia*, volume 215. Springer Science & Business Media, 2011.
- 9. Ding, Y., Fan, D., Pan, Y.: Weighted boundedness for a class of rough Marcinkiewicz integrals, Indiana Univ. Math. J. 48, 1037-1055 (1999).
- 10. Ding, Y., Lu, S., Yabuta, K.: On commutators of Marcinkiewicz integrals with rough kernel, J. Math. Anal. Appl. 275, 60-68 (2002).
- 11. Duoandikoetxea, J.: Weighted norm inequalities for homogeneous singular integrals, Trans. Amer. Math. Soc. **336**, 869-880 (1993).
- Dziubański, J., Zienkiewicz, J.: Hardy space H¹ associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Rev. Mat. Iber. 15, 279-296 (1999).
- 13. Grafakos, L.: Fourier analysis, volume 249. Springer, 2008.
- 14. Guliyev, V.S.: Generalized weighted Morrey spaces and higher order commutators of sublinear operators, Eurasian Math. J. **3**(3), 33-61 (2012).
- Guliyev, V.S., Akbulut, A., Hamzayev, V.H., Kuzu, O: Commutator of Marcinkiewicz integrals associated with Schrödinger operator on generalized weighted Morrey spaces, J. Math. Inequal. 10(4), 947-970 (2014).
- Guliyev, V.S., Akbulut, A., Celik, S.: Fractional integral related to Schrödinger operator on vanishing generalized mixed Morrey spaces, Bound. Value Probl. (2024), Article number: 137 (2024).
- 17. Guliyev, V.S., Serbetci, A., Ekincioglu, I.: Weighted Sobolev-Morrey Regularity of Solutions to Variational Inequalities, Azerb. J. Math. 14 (1), 94-108 (2024).
- 18. Guliyev, V.S., Serbetci, A.: *Generalized local Morrey regularity of elliptic systems*, Socar Proc. (2), 131136 (2024).
- Hasanov, A., Hasanov, S.G., Nazkipinar, A.: *Marcinkiewicz integral with rough kernel in local Morrey-type spaces*, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci 43(4) Mathematics, 96-104 (2023).
- 20. Hamzayev, V.H., Mammadov, Y.Y.: *Commutators of Marcinkiewicz integral with rough kernels on generalized weighted Morrey spaces*, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci **43**(1) Mathematics, 55-65 (2023).
- 21. Ho, K.P.: Strong maximal operator on mixed-norm spaces, Ann. Univ. Ferrara, **62**(2), 275-291 (2016).
- 22. Ho, K.P.: *Mixed norm lebesgue spaces with variable exponents and applications*, Riv. Mat. Univ. Parma **9**(1), 21-44 (2018).
- 23. Lu, G., Lu, S., Yang, D.: *Singular integrals and commutators on homogeneous groups*, Anal. Math. **28**(2), 103-134 (2002).
- 24. Morrey, C.B.: On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. **43**(1), 126-166 (1938).
- 25. Nogayama, T.: Boundedness of commutators of fractional integral operators on mixed Morrey spaces, Integral Transforms Spec. Funct. **30**(10), 790-816 (2019).
- 26. Nogayama, T.: *Mixed Morrey spaces*, Positivity **23**(4), 961-1000 (2019).
- 27. Soria, F., Weiss, G.: A remark on singular integrals and power weights, Indiana Univ. Math. J. 43, 187-204 (1994).
- 28. Shen, Z.: *L^p estimates for Schrödinger operators with certain potentials*, Ann. Inst. Fourier (Grenoble) **45**, 513-546 (1995).
- 29. Tan, J.: Off-diagonal extrapolation on mixed variable Lebesgue spaces and its applications to strong fractional maximal operators, Georgian Math. J. 27(4), 637-647 (2020).