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Abstract. In this paper, we study the boundedness of the Marcinkiewicz operator iy and its commutator
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1 Introduction

The classical Morrey spaces LP* were originally introduced by Morrey in [24] to study
the local behavior of solutions to second order elliptic partial differential equations. For the
properties and applications of classical Morrey spaces. In 2019, Nogayama [26] considered
a new Morrey space, with the LP norm replaced by the mixed Lebesgue norm LP(R"™),
which is call mixed Morrey spaces.

For z € R", and r > 0, let B(z,r) be the open ball centered at x with the radius r,
and °B(x,7) be its complement. Let "1 = {x € R" : |z| = 1} is the unit sphere of
R™ (n > 2) equipped with the normalized Lebesgue measure. Suppose that {2 satisfies the
following conditions.

(1) 2 is a homogeneous function of degree zero on R™. That is,

Q(tx) = 2(x) (1.1)

forallt > 0 and x € R™.
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4 Marcinkiewicz integral and its commutator on mixed Morrey spaces

(ii) {2 has mean zero on S™~!. That is,

/ 2(2")dx' =0, (1.2)
Snfl

where 2’ = x/|z| for any x # 0.
The Marcinkiewicz integral operator of higher dimension i, is defined by

o f(@) = ( / | Fay f<m>|2dt>1/2,

3
where

Qx —
Fou f(2) = /B . ,x(_wy_)lﬂy)dy.

It is well known that the Littlewood-Paley g-function is a very important tool in har-
monic analysis and the Marcinkiewicz integral is essentially a Littlewood-Paley g-function.
In this paper, we will also consider the commutator ji, which is given by the following

expression
R Ldt\ '
st = ([T IFbI@PG)
where o )
r—y
Fhuf@) = [ A ba) - b)) )y,
ot Bayt) [T —y[" !

On the other hand, the study of Schrodinger operator L. = —A + V recently attracted
much attention. In particular, Shen [28] considered LP estimates for Schrodinger opera-
tors L with certain potentials which include Schrédinger Riesz transforms R]L = %L‘é,
7 = 1,...,n. Then, Dziubanfiski and Zienkiewicz [12] introduced the Hardy type space
Hi (R™) associated with the Schrodinger operator L, which is larger than the classical
Hardy space H'(R"), see also [1-4,7,15-20].

Similar to the classical Marcinkiewicz function, we define the Marcinkiewicz functions
15,2 associated with the Schrodinger operator L by

ik f(z) = /

where Kf(a:,y) = fK\jZ(a:,y)]x — y| and }(\]Z(a;,y) Ehe kernel of R; = B%J_Lfé,j =

9 1/2

dt
[ 126 -pistenrws) 5
B(z,t)

1,...,n. In particular, when V' = 0, K]-A(x,y) = Kf(x,y)kc —y| = % and

Kf(m, y) is the kernel of R; = %A‘é,j =1,...,n. In this paper, we write K;(z,y) =
KjA(x,y) and

pj.0f(x) = /000

Obviously, p; » are classical Marcinkiewicz functions with rough kernel. Therefore, it
will be an interesting thing to study the property of ,uﬁ - The main purpose of this paper
is to show that Marcinkiewicz operators with rough kernel associated with Schrodinger

9 1/2
dt
3

/ 19z — )| K (2, 9) f () dy
B(z,t)
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operators ujLﬂ,j = 1,...,n are bounded on mixed Morrey space LP*(R"), 1 < p < oo,
0<A<n.
The commutator of the classical Marcinkiewicz function with rough kernel is defined by
. 9 " 1/2
panf@ = | [ [ 106 - I b)) w)dy|
0 B(z,t)

The commutator uf o formed by b € BMO(RR™) and the Marcinkiewicz function with
rough kernel uﬁ (, 1s defined by
9 1/2
dt
3

N]l':ﬂ,bf(x) = /0

The well-known classical Hardy-Littlewood maximal operator M is defined by

/ 190 — ) [KE (2, ) b(x) — b))/ (0)dy
B(z,t)

r>0

1
M) = sup o /B L

where f € L} (R"™) and |B(z,7)| is the Lebesgue measure of the ball B(z,7) .

loc

Let T is a sublinear operator, and satisfies that for any f € L!(R") with compact support
andz &€ suppf,

rn |7 —y|"

(1.3)

We point out that the condition (1.3) was first introduced by Soria and Weiss [27]. The
condition (1.3) are satisfied by many interesting operators in harmonic analysis, such as
the Calder6n-Zygmund operators, the Carleson’s maximal operators, the Hardy-Littlewood
maximal operators, the Fefferman’s singular multipliers, the Fefferman’s singular integrals,
the Ricci-Stein’s oscillatory singular integrals, the Bochner-Riesz means and so on (see [23,
27] for details).

As is well known, the commutator is also an important operator and it plays a key role
in harmonic analysis. Recall that for a locally integrable function b and a integral oper-
ator 7', the commutator formed by b and 7' is defined by [b,T|f = bTf — T(bf). The
commutators of the fractional maximal operator, the fractional integral operator and the
Calderén-Zygmund singular integral operator have been intensively studied, see [13] for
more details. In this paper, the maximal commutator operator M} under consideration is of
the form

1
Myf() = sup s /B ) = b))y

r>0

for f € L} (R™).

To study a class of commutators uniformly, one can also introduce some sublinear op-
erators with additional size conditions as before. For a function b, suppose that the com-
mutator operator 7} represents a linear or a sublinear operator, which satisfies that for any

f € L*(R™) with compact support and = ¢ supp f,

[b(x) — b(y)]

no e =yt

Tyf ()] < / F)ldy. (1.4)
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The operator T} has been studied in [14,23].

In this paper, we study the boundedness of the Marcinkiewicz operator p; and its
commutator fip, on mixed Morrey spaces LPA(R™). We find the conditions with b €
BMO(R™) which ensures the boundedness of the operators ,uﬁ opJ=1,...,non mixed
Morrey space LPA(R™),1 < p < 00,0 < A < n.

By A < B, we mean that A < CB for some constant C' > 0, and A ~ B means that
A< Band B < A.

2 Definitions and preliminaries

For any r > 0 and z € R", let B(z,r) = {y : |y — x| < r} be the ball centered at =
with radius 7. Let B = {B(z,7) : € R™, r > 0} be the set of all such balls. We also use
X £ and |E| to denote the characteristic function and the Lebesgue measure of a measurable
set E.

Let M(R™) and L}, .(R™) denote the class of Lebesgue measurable functions and lo-
cally integrable functions on R", respectively. We also use C to represent all the complex
numbers, and N to represent the collection of all integers.

Definition 2.1 For 1 < p < oo, a non-negative function w € Lj,.(R™) is said to be an
Ap(R™) weight if

w|4 = su d:U / de p/<oo.
wia, = gup (g7 [ was) (55

A non-negative local integrable function w is said to be an A1 weight if

y)dy < Cw(z), a.e.x € B
i3] o < Coto

for some constant C' > 0. The infimum of all such C'is denoted by [w] 4,. We denote A, by
the union of all A,, (1 < p < c0) functions.

Theorem 2.1 [9] Suppose that §2 be satisfies the conditions (1.1), (1.2) and 2 € L>=(S"1).
Then for every 1 < p < oo and w € A,(R™), there is a constant C independent of f such
that

g fllpw < Cllfl|ow.

Theorem 2.2 [10] Suppose that {2 be satisfies the conditions (1.1), (1.2) and 2 € L*(S™1).
Let also b € BMO(R"™). Then for every 1 < p < oo and w € Ay(R™), there is a constant
C > 0 independent of f such that

1626 Fll o < ClLf Nl o

Note that a nonnegative locally L? integrable function V' (z) on R" is said to belong to
B, (1 < g < o0) if there exists C' > 0 such that the reverse Holder inequality

1/q
1 1
(B@””me @)o . Qmam|mW>@)Q @n

holds for every ball x € R™ and r > 0, where B(x, ) denotes the open ball centered at
with radius r; see [28]. It is worth pointing out that the B, class is that, if V' € B, for some
q > 1, then there exists € > 0, which depends only n and the constant C' in (2.1), such that
V' € By4e. Throughout this paper, we always assume that 0 # V' € B,,.
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Theorem 2.3 /3, 15] Suppose that 2 satisfies (1.1), (1.2) and V € B,,. If 2 € L*>®(S™"~1),
then the operators ,qu, j = 1,...,n are bounded on LP"(R™) for 1 < p < oo and
w e A,(R™).

Theorem 2.4 [3,15] Suppose that {2 satisfies (1.1), (1.2) and V € B,,. If 2 € L>(S"1)
and b € BMO(R"), then the operators H]LQ p J =1,...,n are bounded on L"*(R") for
1 <p<ooandw € Ap(R™).

We first recall the definition of mixed Lebesgue space defined in [6].
Letp = (p1, --- , pn) € (0, oo]™. Then the mixed Lebesgue norm || - ||zp or || -
| .o1.om) is defined by

[fllze = Il Loreon)
P3

= </R---</R</R]f(:c1, To, ..., xn)]pldml)f’?datg)” dwn)pl"

where f : R" — C is a measurable function. If p; = oo for some j = 1, n, then we
have to make appropriate modifications. We define the mixed Lebesgue space LP(R") =
LP1pn) (R™) to be the set of all locally integrable functions f with || f|z» < co.

Let1 < p < ooand 0 < A < n. We denote by LP*(R") the mixed Morrey space the
set of all classes of locally integrable functions f with the finite norm

_ ti% Z?:l i
[fllzer = sup N llze (B

zeR™ >0

Obviously, we recover the classical Morrey space LP*(R™) when p = p. We point out
that in [25,26], the author used the cubes to define the mixed Morrey spaces. It is not hard
to verify that the two definitions are equivalent.

As we know, the Hardy-Littlewood maximal operator M is bounded on LP(R"), 1 <
p < oo (see [26]), but there is no complete boundedness results for some other operators on
the mixed Lebesgue spaces. To prove the boundedness of some important operators on the
mixed Lebesgue space in a uniform way, we will give the extrapolation theorems on mixed
Lebesgue spaces, which have their own interest.

The extrapolation theory on mixed Lebesgue spaces relies on the classical A, weight
(see [13]).

We also need the boundedness of M on mixed norm space LP(R"™) [26].

Lemma 2.1 [26] For 1 < p < oo, there holds

M flle@ny S I flloe@ny- (2.2)

By §, we mean a family of pair (f, ¢g) of non-negative measurable functions that are not
identical to zero. For such a family S, p > 0 and a weight w € A,,, the expression

f@Pu@ds S [ gapuads, (7. 9) €5
R’I’L n
means that this inequality holds for all pair (f, g) € § if the left hand side is finite, and the
implicated constant depends only on p and A,,.
Now we give the extrapolation theorems on the mixed Lebesgue spaces. The first one is
the diagonal extrapolation theorem.
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Theorem 2.5 Let 0 < py < coandp = (p1, -+ , pn) € (0, c0)". Let f,g € M(R").
Suppose for every w € Ay, we have

[ fomu@is < [ g@ruds, (7, 9) €5 23
Then if p > pg, we have
[fll ey S lgllze@ny, (f; 9) €S- (2.4)

Proof. Without loss of generality, one may assume f is a non-negative function. We use the
Rubio de Francia iteration algorithm presented in [8].
Let p = p/po and pf = p’/po. By the assumptions and Lemma 2.1, the maximal

operator is bounded on LP’ (R™) , so there exists a positive constant B such that

IM £l gy < B o

For any non-negative function h, define a new operator R/ by
o0
M*h
Rh(z) = ﬂ,

2k Bk
k=0

where for k > 1, M* denotes k iterations of the maximal operator, and M? is the identity
operator. The operator PR satisfies

h(z) < Rh(z), (2.5)
1RA]] 5 < 20 s (2.6)
I9Rh| 4, < 2B. @7
The inequality (2.5) is straight-forward. Since
M(Rh) < f: :;h < Z ]\f;Z < 2BRh,

the properties (2.6) and (2.7) are consequences of Lemma 2.1 and the definition of A;.
Since the dual of LP(R") is LP'(R") , we get

Iz = 11£7llze (2.8)
sup{ [ If@PhGeyds s |l <1, 0> 0},

By Holder’s inequality on the mixed Lebesgue spaces and (2.5), we have

N

f( )p0h< ) N an f(%')po%h(x)dx (2.9)
< 1Pl < oo

In view of (2.5) and Rh € A;, we use (2.3) with w = Rh(z) to obtain

FaPh(a)de S [ fa)™ Rh(z)de < / 9™ [Rh(2)] da.
RTL

R’Il n



A.A. Akbarov, FA. Isayev, M.I. Ismayilov 9

Combining (2.6) with (2.9) and using Holder’s inequality on the mixed Lebesgue spaces
again, we arrive at
f@)Ph(x)de S g7 e [|RA] o (2.10)
Rn
~ |lgll7s IRA] -
Therefore

I%A], o S Al @.11)

By taking supremum over all h € LP(R"™) with ||| s < 1, (2.8), (2.10) and (2.11) give
us the desired conclusion (2.4) .

We point out that when n = 2, there are different versions of the diagonal extrapolation
theorem [21] and the off-diagonal extrapolation theorem [29] on mixed Lebesgue spaces,
which are different form Theorem 2.5.

By the density of smooth functions with compact support C2°(R™) in the mixed Lebesgue
space LP(R™),1 < p < oo (see [6]), one can apply Theorem 2.5 to the mapping property
of some sublinear operators.

Theorem 2.6 Suppose 0 < pg < p < oo and T is a sublinear operator such that for every
wE A,

[ s [ 1P, e o).
R n
Then T can be extended to be a bounded operator on LP(R™) .

Proof. By Theorem 2.5, for any f € C2°(R"™), we have

ITfllze S 11 llze-

Since T is a sublinear operator, we have |T'(f) — T(g)| < |T(f — ¢)|, and hence, for any
fyg € C(R™), we have

N Tf—Tgllee < |T(f —g)lle SI|If — gllze-

Since C2°(R™) is dense in LP(R™) , the above inequalities guarantee that 7" can be extended
to be a bounded operator on LP(R") .

The following corollary is a consequence of Theorem 2.6 and the weighted boundedness of
the corresponding operators.

Corollary 2.1 Let 1 < p < 00,b € BMO, then M, ug,,ujfjg, MbaMQ,baujl‘:Q,b are all
bounded on LP(R™) .

Proof. It is well known that M, p0, u]L o My, 1102 b, MJL 0. are all sublinear operators, and
bounded on LPo*(IR™) for arbitrary 1 < pg < oo and w € Ap, (see [13] for example).
Since A1 C A, Theorem 2.6 implies that M, 10, ,uJLQ, My, p10p, MJLQ , are all bounded on

LP(R"™) for all pp < p < oo. In view of the arbitrariness of 1 < py < oo, M, ;m,,uﬁg,
My, 110 p, ,ufg , are also bounded on LP(R") for all < p < oc.
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3 Marcinkiewicz operator (i, in mixed Morrey spaces

In this section, we investigate the boundedness of p; satisfies the conditions (1.1), (1.2)
and 2 € L>°(S"~1) on the mixed Morrey space LP.

We first prove one lemma, which give us the explicit estimates for the LP(R™) norm of
g on a given ball B(z,r).

Lemma 3.1 Let (2 be satisfies the conditions (1.1), (1.2) and 2 € L>=(S"1).
Then for 1 < p < o0, the inequality

n 1 x4 n 1
I fllie(B@ory) ST ’7/2 RN £l e (B(zo,t)) At (3.1)

holds for any ball B(xq,r) and all f € LY (R").

loc

Proof. For any ball B = B(xg,r) , Let 2B = B(x¢, 2r) be the ball centered at x, with
the radius 2r. we represent f as f = f1 + fo, where

A = fxes(y), 2y) = fxees(y), r>0.

Since 7' is a sublinear operator, we have

luofllees) < lluefilliesy + ke follies)
Noting that f; € LP(R") and i, is bounded in LP(R™) (see Corollary 2.1), we have

luefillesy < llnefille@ny S I fillee@ny = I1fllLr2B)-

1 3
Itis clear that x € B,y € ¢(2B) imply §|xo —yl <l|z—y| < §|:1:0 — y|, which further

nofa@)| 5 | 1wl

c2B) |T0 — y|™

yields

By Fubini’s theorem, we have

1f (W)l / /°° dt
T dy &~ f(y 5 dy
K(2B) 2o — y|™ 7@ jwo—yl "1
dt
dy—
/21” Lr<|xo y|<t )‘ trtt
S fly dyi-
/27" /B(xo,t)‘ ( )‘ tntl

Applying Holder’s inequality on the mixed Lebesgue spaces (see [6]), we obtain
fly > dt
/ 7wl dy S 1 £l e (B(wort) —Ten—T (3.2)
2r

c2B) |T0 — y|™ P DV B

Moreover, for all 1 < p < oo, we have

S m dt
D L M O e



A.A. Akbarov, FA. Isayev, M.I. Ismayilov 11

Therefore, one gets

< YA dt
I flle(Baory) S IfllLe@sy + 177 =" HfHLp B(zo,t) :
2r 1+Z'L 1 pz
On the other hand,
St / odt
=T pPq
Ifll e 2m) Ifll e 2m) TS
i p dt
S /2 s e (33)

Thus

noL [0 dt
< 27,:1 i _
lne fllce B S =" " /gr HfHLp(B(m’t))tlJrZ?:li

Now we can present the first main result in this section.

Theorem 3.1 Let 2 be satisfies the conditions (1.1), (1.2) and 2 € L>(S"~1). Let also
1 < p < oo, and 0 < X\ < n. Then the operator jg is bounded on LP*. Moreover,

e fllzes S If 1 pes-

Proof. From the inequality (3.1) we get

A 1 n 1 [ _;_5yn 1
lnaflea S sup  romZ=tuiy / T | F L o (3o ) dt
zeR™ r>0 2r

Ay 1 n o1 _1 s n 1
5 ||f||LP»A sup r n =1 p, r i=1 p; i=1 p tn i=1 p; dt
zER™ r>0 r

O q_(1_2Ayswm L
= ||f||Lp,)\/ t 1=(1=3) Xim Pi dt
1

S [ fllpea-

By taking p = (p, ..., p) in Theorem 3.1, we obtain the boundedness of 1, on the Morrey
spaces.

4 Commutator of Marcinkiewicz operator (i ; in mixed Morrey spaces

In this section, we investigate the boundedness of y, ; conditions (1.1), (1.2) and {2 €
L>(S"~1) on the mixed Morrey space LP*. First, we review the definition of BMO(R™),
the bounded mean oscillation space. A function f & Lllo .(R™) belongs to the bounded mean
oscillation space BM O(R") if

1
fllBMo = sup W) = IBanldy < oo. (4.1)
H H z€R™,r>0 ]B(x,r)\ B(x,r)| ( ) Bz, )|

If one regards two functions whose difference is a constant as one, then the space BM O(R"™)
is a Banach space with respect to norm ||.|| ga70. The John-Nirenberg ineugalitiy for BM O
yields that forany 1 < ¢ < oo and f € BM O(R”) , the BM O norm of f is equivalent to

1
[Fllaros = sup 5 o 1900 = Fotan )’
zeR™,r>0 ‘B z,r | (z,r)
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Recall that for any p = (p1, -+ , pn) € (1, 00)", the John-Nirenberg inequality for mixed
norm space [22] shows that the BM O norm of all f € BMO(R") is also equivalent to

HfHBMOP — sup H(f - fB(J:,r))XB(x,T) ”Lp . (4.2)
zER™,r>0 ”XB(I,T) HLP

The following property for BM O functions is valid.
Lemma 4.1 Let f € BMO(R") . Then for all 0 < 2r < t, we have

t
B = fBEn] S I flBron . (4.3)

We first prove one lemma, which give us the explicit estimates for the LP(R"™) norm of
b on a given ball B(zo, 7).

Lemma 4.2 Let (2 be satisfies the conditions (1.1), (1.2) and 2 € L>®(S™'). Let also
1< p<ooandb e BMO(R™). Then the inequality

l2sfll e (B o)) “H

o0

no1 t, —1—
S lbllpao == 7 /2 (1+mn ;) i lp’HfHLP(B(rm ydt

T

holds for any ball B(xq,r) and all f € LY (R").

loc

Proof. For any ball B = B(xq, ), Let 2B = B(xg,2r) . Write f as f = fi + fa, where
J1 = fxep and fa = fxeep).-
Since 1 p 1s a sublinear operator, we have

luopflles) < llkepfillies) + ke follLes)-
Noting that f; € LP(R™) and p0 4, is bounded in LP(R™) (see Corollary 2.1), we have

lnapfillees) < llkepfillie@®ny S 0 Baoll fill Le@ny = [0l Baroll fll e @B)-

1 3
Since z € B,y € (2B) imply glao —y| < |z —y| < Slzo —yl, we get

nopfa) 5 [ D=0 ay

|z —y|"

~ |b(x) — b(y)|
- [(23) lzo — y|™ Fw)ldy

By the generalized Minkowski’s inequality on mixed Lebesgue spaces (see [6]), we have

lnosfoluwisy <) [ BI= 510

c(2B) |0 —y["

<[, el

+H/2B) |$0—;’i‘|f( d ’
=L + L.

LP(B(xo,r))

LP(B(zo,r)

LP(B(zo,r)
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For the term I;, we have

Ilm

Q

S

no 1 b
Tk [ b,

lzo — y|™

@”m/ by) = bsllf W) |y

lzo—yl

dt
i y) — bsllf(y)ldy
/2r /2r<|m0 y|<t tntl

i b(y) — bi||f (y)|dy
L bl sl

Applying Holder’s inequality and by (4.2), (4.3), we get

hgékm/’/ 1) = b 1Sy s
2r B(zo,t)

dt
=1 p,; b 7b d
+r bi /27« /B(xm 10B(20,r) — OB (o.n)|1f (¥)] Yt

dt
< i=1 p; d T
~ Pi /27- /;(IO 9 bB(.Io t))XB xo, ||Lp ||f||Lp aco,t) yt”‘H

di
+ i 1”/2 b5(w0.r) = bB(wo ) lIf Lo (0.t
T

1+Zz 1 p
o dt

no1
S Ibllao ™= ””/ (14— )HfHLP

$()7 :
2r 1+ZZ 1 pl

In order to estimate I, note that

.722/ 7y z/| N16() = b8l Le (B(2o,r)-

¢(2B) |$0— "

It follows from (4.2) that

no 1
B S [Wlaor™5 [ W,
*(2B) |70 — 9

Thus by (3.2), we get

no1
Iy S \bHBMOTz““/ 11l e (B(ao.t)
2r

dt
1+Zz lp '

Summing up I; and I, we get

01
mmﬁmmasmmmeJWA (1102 1l oo
s

dt

:L,Ot) 1+Zz lp

Therefore, by (3.3), there holds

ko folleB)

We are done.

S bl saroll fllze28)

no1 [0 ty,—1-yn L
+ |16l Brmo iy, /2 (1+1n*)t . ?i || 1l Lo (B(ao,t))dt

n o1 1= i
< Ibllsaro r== pi/z (14~ ) 251 57| £ o (5 17 -
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Now we give the boundedness of 1, on the mixed Morrey space.

Theorem 4.1 Let (2 be satisfies the conditions (1.1), (1.2) and 2 € L*(S"™1). Let also
1 <p<oobe BMO(R"™), and 0 < X\ < n. Then the operator jiq is bounded on LPA,
Moreover,

ln@pflles S 10l Baro 1 f] e

Proof. From the inequality (4.4) we get

lwopfllres S lIBllBro

1-2 n 1 o0 t —1_y7n L
X sup T( n) i=1 p; / (1 + ln 7) t Zl—l Pq ||f”Lp(B(£B0,t)) dt
zeR™,r>0 2r r

_Ayywm 1 [0 t. _1-(1-2)ysn 1
S by | fllges sup 072 2= / e e
z€R™,r>0 r T

o0 (1A n 1
N T / (14np) 0D Ehi5 g
zeR™r>0J1

S lIbllsao ([ £l e

By taking p = (p, ..., p) in Theorem 4.1, we obtain the boundedness of /., ;, on the Morrey
spaces.

5 Marcinkiewicz operator uJ , and its commutator 1}, , in mixed Morrey spaces
9 9 9

In this section, we prove the boundedness of the Marcinkiewicz operator MJL o and its
commutator uﬁ ,p On mixed Morrey space LPA,
For z € R", the function p(z) is defined by

p(x) =sup<r: 1_2/ Viydy <1;.
r>0 r B(z,r)

Lemma 5.1 [28] Let V € B, with ¢ > n/2. Then there exists ly > 0 such that

Ll =y _ ply) 2 — y[\ o/ Go+D)
C<1+ p@)) Sp@c)“(” p<x>) '

In particular, p(x) ~ p(y) if |z — y| < Cp(x).

Lemma 5.2 [28] Let V € B, with ¢ > n/2. For any | > 0, there exists C; > 0 such that

1
KE(z,y)| < G —,
J . oy l‘m_y‘n 1
T @)
and
p(x)

KXz, y) - K; x—y‘g c——r
]( y) ]( ) ’x_y’n_g

Analogously proof of Lemma 3.1 and Theorem 3.1 the following results is valid.
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Lemma 5.3 Let 2 be satisfies the conditions (1.1), (1.2), 2 € L>=(S" ) and V € B,,.
Then for 1 < p < oo, the inequality

"o 1 o0 15" 1
1155 o fll o (B o) < i ”i/z RN | £l e (B(wo,t)) At

T

holds for any ball B(xq,r) and all f € LY (R").

loc

Theorem 5.1 Let §2 be satisfies the conditions (1.1), (1.2), 2 € L>°(S" ') and V € B,,.

Let also 1 < p < oo, and 0 < X < n. Then the operator Mf,g is bounded on LP.
Moreover,

I lzor S 15 lze
Analogously proof of Lemma 4.2 and Theorem 4.1 the following results is valid.

Lemma 5.4 Let §2 be satisfies the conditions (1.1), (1.2), 2 € L>®(S" ) and V € B,.
Then for 1 < p < oo and b € BMO(R"™), the inequality

155 2.6 F 1l Lo (B (wo.r)

no 1
S Pllawor=17 [
2

holds for any ball B(zo,r) and all f € LY (R™).

loc

[e o]

ty —1-37 L

T

Theorem 5.2 Let §2 be satisfies the conditions (1.1), (1.2), 2 € L>®°(S" ') and V € B,,.
Letalsol < p < 00, b € BMO(R™), and 0 < \ < n. Then the operator Nﬁg,b is bounded

on LP?. Moreover, ;
k5 0pf len S 0l Breo (| £l Lo
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