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Abstract. In this paper, we study the boundedness of the maximal commutator operator Mb, the commu-
tators of the maximal operator [b,M ] and the commutators of the sharp maximal operator [b,M ]] in the
local Morrey-Lorentz spaces M loc

p,q;λ(R
n). We give necessary and sufficient conditions for the bounded-

ness of the operators Mb, [b,M ] and [b,M ]] on local Morrey-Lorentz spaces M loc
p,q;λ(R

n) when b belongs
to BMO(Rn) spaces, whereby some new characterizations for certain subclasses of BMO(Rn) spaces
are obtained.
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1 Introduction

Let 0 < p, q ≤ ∞ and let 0 ≤ λ ≤ 1. We define the local Morrey-Lorentz spaces as the
spaces of all measurable functions with finite quasinorm

‖f‖M loc
p,q;λ

:= sup
r>0

r
−λ
q ‖t

1
p
− 1
q f∗(t)‖Lq(0,r).

The purpose of this paper is to give necessary and sufficient conditions for the bounded-
ness of the maximal commutators Mb and the commutators of the maximal operator [b,M ]
on the local Morrey-Lorentz spaces M loc

p,q;λ(Rn). We obtain some new characterizations for
certain subclasses ofBMO(Rn). Local Morrey-Lorentz spacesM loc

p,q;λ(Rn), which are nat-
ural generalizations of the Lorentz spaces Lp,q(Rn) ≡M loc

p,q;0(Rn) and the classical Lorentz
spaces Λ

∞,t
1
p−

1
q
(Rn) ≡ M loc

p,q;1(Rn), were introduced and their main properties were ob-

tained in [6], see also [7,22,25]. For 0 < q ≤ p < ∞ and 0 < λ ≤ q
p , the local Morrey-

Lorentz spaces M loc
p,q;λ(Rn) are equal to weak Lebesgue spaces WL 1

p
−λ
q
(Rn). In [6] the
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basic properties of M loc
p,q;λ(Rn) were given and the boundedness of the maximal operator

was proved. Generally speaking, local Morrey spaces were also introduced separately by
Guliyev [21] (see also [20]) and Garcia-Cuerva and Herrero [18] (see also [4]).

Recall that the local Morrey-type spacesLMpθ,w were introduced and proved the bound-
edness in this spaces of the fractional integral operators and singular integral operators de-
fined on homogeneous Lie groups by Guliyev [20] in the doctoral thesis (see, also [21]) are
given by

‖f‖LMpθ,w
=
∥∥w(r)‖f‖Lp(B(0,r))

∥∥
Lθ(0,∞)

,

where w is a positive measurable function defined on (0,∞). Some necessary and sufficient
conditions for the boundedness of the maximal, fractional maximal, Riesz potential and
singular integral operators in local Morrey-type space LMpθ,w are given in [11–13]. We
should explain that the spaces LMpθ,w are closely related to the Bσ spaces (see, [34,35]).

The study of maximal operators is one of the most important topics in harmonic analysis.
These significant non-linear operators, whose behavior are very informative in particular in
differentiation theory, provided the understanding and the inspiration for the development
of the general class of singular and potential operators (see, for instance [19]). For f ∈
L1

loc(Rn), the maximal operator M is defined by

Mf(x) = sup
r>0
|B(x, r)|−1

∫
B(x,r)

|f(y)|dy,

where B(x, r) is the ball of radius r centered at x ∈ Rn,
{
B(x, r) is its complement and

|B(x, r)| = vn r
n, vn = |B(0, 1)|, here |B(x, r)| denotes the Lebesgue measure ofB(x, r).

The sharp maximal operator M ] was introduced by Fefferman and Stein [15], which is
defined as

M ]f(x) = sup
r>0
|B(x, r)|−1

∫
B(x,r)

|f(y)− fB(x,r)|dy,

where fB(x,r) = 1
|B(x,r)|

∫
B(x,r) f(y)dy. For a fixed q ∈ (0, 1), any suitable function h and

x ∈ Rn, let M ]
qh(x) =

(
M ]
(
|h|q
)
(x)
)1/q and Mqh(x) =

(
M
(
|h|q
)
(x)
)1/q.

The maximal commutator generated by the operator M and b ∈ L1
loc(Rn) is defined by

Mbf(x) = sup
r>0
|B(x, r)|−1

∫
B(x,r)

|b(x)− b(y)||f(y)|dy.

The commutators generated by the operator M and a suitable function b is defined by

[b,M ]f(x) = b(x)Mf(x)−M(bf)(x).

Obviously, the operators Mb and [b,M ] essentially differ from each other since Mb is posi-
tive and sublinear and [b,M ] is neither positive nor sublinear. The operators M , [b,M ] and
Mb play an important role in real and harmonic analysis and applications (see, for instance
[8,17,32,33,42,44]).

The commutator estimates have many important applications, for example, in studying
the regularity and boundedness of solutions of elliptic, parabolic and ultraparabolic partial
differential equations of second order, and in characterizing certain function spaces (see,
for instance [14,19]). The nonlinear commutator of maximal function [b,M ] can be used
in tudying the product of a function in H1 and a function in BMO (see [10] for instance).
Note that, the boundedness of the operator Mb on Lp(Rn) spaces was proved by Garcia-
Cuerva et al. [17]. In [8] by Bastero et al. studied the necessary and sufficient condition for
the boundedness of [b,M ] on Lp(Rn) spaces.
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The commutator estimates play an important role in studying the regularity of solutions
of elliptic, parabolic and ultraparabolic partial differential equations of second order, and
their boundedness can be used to characterize certain function spaces (see, for instance [14,
27–30,39]).

In [5,24,31] was obtain necessary and sufficient conditions for the boundedness of the
maximal commutator operator Mb and commutators of maximal operator [b,M ] on the
Lorentz spaces Lp,q, see also [26].

The structure of the paper is as follows. In Section 2 we give some definitions and auxil-
iary results. In Section 3 we obtain necessary and sufficient conditions for the boundedness
of the maximal commutator Mb on M loc

p,q;λ(Rn) spaces. In Section 4 we give necessary and
sufficient conditions for the boundedness of the commutator of maximal operator [b,M ] on
M loc
p,q;λ(Rn) spaces. In Section 5 we give necessary and sufficient conditions for the bound-

edness of the commutator of sharp maximal operator [b,M ]] on M loc
p,q;λ(Rn) spaces.

By A . B we mean that A ≤ CB with some positive constant C independent of
appropriate quantities. If A . B and B . A, we write A ≈ B and say that A and B are
equivalent.

2 Definition and some basic properties

We start with the definition of Lorentz spaces. Lorentz spaces are introduced by Lorentz
in the 1950. These spaces are Banach spaces and generalizations of the more familiar Lp
spaces, also they are appear to be useful in the general interpolation theory.

Suppose that f is a measurable function on Rn, then we define

f∗(t) = inf{s > 0 : df (s) ≤ t},

where

df (s) := |{x ∈ Rn : |f(x)| > s}|, s > 0.

The Lorentz space Lp,q ≡ Lp,q(Rn), 0 < p, q ≤ ∞ is the collection of all measurable
functions f on Rn such the quantity

‖f‖Lp,q := ‖t
1
p
− 1
q f∗(t)‖Lq(0,∞) (2.1)

is finite. Clearly Lp,p ≡ Lp and Lp,ı ≡ WLp. The functional ‖ · ‖Lp,q is a norm if and only
if either 1 ≤ q ≤ p or p = q =∞.

Maximal operators play an important role in the differentiability properties of functions,
singular integrals and partial differential equations. They often provide a deeper and more
simplified approach to understanding problems in these areas than other methods. It is well
known that for the classical Hardy-Littlewood maximal operator the rearrangement inequal-
ity

c f∗∗(t) ≤ (Mf)∗(t) ≤ C f∗∗(t), t ∈ (0,∞)

holds, ([9] Chapter 3, Theorem 3.8), where f∗(t) is the nonincreasing rearrangement of f
and

f∗∗(t) =
1

t

∫ t

0
f∗(t)dt.

Adams [1] defined the Morrey-Lorentz spaces Lp,q;λ(Rn) (see also [37]) by following:
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Definition 2.1 [1] The Morrey-Lorentz spaces Lp,q;λ(Rn) is the set of all measurable func-
tions f on Rn: for 1 ≤ p <∞, 0 < q <∞, and 0 ≤ λ ≤ n, f ∈ Lp,q;λ(Rn) iff

‖f‖Lp,q;λ(Rn) = sup
x∈Rn, t>0

t
−λ
p ‖f χ

B(x,t)
‖Lp,q(Rn) <∞.

Here ‖ · ‖Lp,q(Rn) denoted by Lorentz norm of a function.

In [37], Section 4.1, Mingione studied the boundedness of the restricted fractional maximal
operator Mβ,B :

Mβ,Bf(x) = sup
B(x,t)⊂B

|B(x, t)|
β
n
−1

∫
B(x,t)

|f(y)|dy, x ∈ Rn

in the restricted Morrey-Lorentz spaces Lp,q;λ(B), where B is any ball. Mingione derives
a general non-linear version, extending a priori estimates and regularity results for possi-
bly degenerate non-linear elliptic problems to the various spaces of Lorentz and Morrey-
Lorentz type considered in [1–3].

Ragusa [41] defined the Morrey-Lorentz spaces Lp,q;λ(Rn) and studied some embed-
dings between these spaces.

Definition 2.2 [41] The Morrey-Lorentz spaces Lp,q;λ(Rn) is the set of all measurable
functions f on Rn: for 1 ≤ p <∞, 0 < q <∞, and 0 ≤ λ ≤ n, iff

‖f‖Lp,q;λ(Rn) = sup
x∈Rn, t>0

t
−λ
q ‖f χ

B(x,t)
‖Lp,q(Rn) <∞.

Accordingly, f belongs to
Lp,∞;λ(Rn) ≡WLp,λ(Rn) iff ‖f‖Lp,∞;λ = ‖f‖WLp,λ <∞.

Note that the spaces Lp,q;λ(Rn) and Lp,q;λ
q
p (Rn) defined by Adams and Ragusa respec-

tively, coincide, thus

Lp,q;λ(Rn) = Lp,q;λ q
p
(Rn),

Lp,1;λ(Rn) ⊂ Lp,q;λ(Rn) ⊂ Lp,∞;λ(Rn).

Note that the spaces Lp,q;λ(Rn) and Lp,q;λ q
p
(Rn) defined by Mingione and Ragusa re-

spectively, coincide, thus
Lp,q;λ(Rn) = Lp,q;λ q

p
(Rn).

The following result completely characterizes the boundedness of the maximal operator
M on Morrey-Lorentz spaces.

Lemma 2.1 [16, Lemma 3.1] Let 1 < p ≤ ∞, 1 ≤ q ≤ ∞ and 0 ≤ λ < n. Then, for any
0 < s < p there is a positive constant C = C(p, q, s, λ, n) such that

‖Msf‖Lp,q;λ . ‖f‖Lp,q;λ .

Corollary 2.1 Let 1 < p ≤ ∞, 1 ≤ q ≤ ∞ and 0 ≤ λ < n. Then the operator M is
bounded on the Morrey-Lorentz spaces Lp,q;λ(Rn).

In the following we give the local Morrey spaces LMp,λ(0,∞) which we use while
proving of our main results.
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Definition 2.3 Let 1 ≤ p < ı and 0 ≤ λ ≤ 1. We denote by LMp,λ ≡ LMp,λ(0,∞) the
local Morrey space, the space of all functions ϕ ∈ Lloc

p (0,∞) with finite quasinorm

‖ϕ‖LMp,λ
= sup

r>0
r
−λ
p ‖ϕ‖Lp(0,r).

Also by WLMp,λ ≡ WLMp,λ(0,∞) we denote the weak local Morrey space of all func-
tions ϕ ∈WLloc

p (0,∞) for which

‖ϕ‖WLMp,λ
= sup

r>0
r
−λ
p ‖ϕ‖WLp(0,r) < ı.

The local Morrey-type spaces LMpθ,w were introduced by Guliyev in the doctoral thesis
[20], 1994, (see, also [21]) defined by

‖ϕ‖LMpθ,w
= ‖w(r) ‖ϕ‖Lp(B(0,r))‖Lθ(0,ı),

where w is a positive measurable function defined on (0, ı). If θ = ı, it denotes LMp,w ≡
LMpı,w. The boundedness of the classical operators in LMpθ,w was intensively studied in
[11–13,20,21], etc.

Definition 2.4 [6] Let 0 < p, q ≤ ∞ and 0 ≤ λ ≤ 1. We denote by M loc
p,q;λ ≡ M loc

p,q;λ(Rn)
the local Morrey-Lorentz space, the space of all measurable functions with finite quasinorm

‖f‖M loc
p,q;λ

:= sup
r>0

r
−λ
q ‖t

1
p
− 1
q f∗(t)‖Lq(0,r).

In the cases λ < 0, λ > 1 and p = ∞, we have M loc
p,q;λ = Θ, where Θ is the set of all

functions equivalent to 0 on Rn. Also M loc
p,q;0 = Lp,q and M loc

p,p;λ ≡ M loc
p;λ. In the limiting

case λ = 1 the space M loc
p,q;1 is the classical Lorentz space Λ

∞,t
1
p−

1
q

. For 0 < q ≤ p < ∞

and 0 < λ ≤ q
p , the local Morrey-Lorentz spacesM loc

p,q;λ are equal to weak Lebesgue spaces
WL 1

p
−λ
q

. Note that, in the case q =∞ we have M loc
p,∞;λ = Λ

∞,t
1
p

= WLp.

We denote byWM loc
p,q;λ the weak local Morrey-Lorentz space of all measurable functions

with finite quasinorm

‖f‖WM loc
p,q;λ

:= sup
r>0

r
−λ
q ‖t

1
p
− 1
q f∗(t)‖WLq(0,r).

Lemma 2.2 [6] Let 0 < q ≤ p <∞, 1
s = 1

p −
λ
q and 0 < λ ≤ q

p . Then(
q

p

)− 1
q

‖f‖WLs ≤ ‖f‖M loc
p,q;λ
≤ λ−

1
q ‖f‖WLs .

In particular, ‖f‖WL∞ = ‖f‖M loc
q
λ
,q;λ

.

Lemma 2.3 The inequalities

(f + g)∗(t1 + t2) ≤ f∗(t1) + g∗(t2)

(fg)∗(t1 + t2) ≤ f∗(t1) g∗(t2)

holds for all t1, t2 ≥ 0. In particular, the inequalities

(f + g)∗(t) ≤ f∗(t/2) + g∗(t/2)

(fg)∗(t) ≤ f∗(t/2) g∗(t/2)

holds for all t ≥ 0.
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Lemma 2.4 Let 0 < p, p1, p2, q, q1, q2 < ∞, 0 ≤ λ ≤ 1, 1
p = 1

p1
+ 1

p2
and 1

q = 1
q1

+ 1
q2

.
Suppose that f ∈M loc

p1,q1;λ(Rn) and f ∈M loc
p2,q2;λ(Rn). Then

‖fg‖M loc
p,q;λ(Rn) ≤ 2

1
p
− 1
q ‖f‖M loc

p1,q1;λ
(Rn) ‖g‖M loc

p2,q2;λ
(Rn).

Proof. Assume that 0 ≤ λ ≤ 1, 0 < p, p1, p2, q, q1, q2 <∞, 1
p = 1

p1
+ 1
p2

and 1
q = 1

q1
+ 1
q2

,
f ∈ M loc

p1,q1;λ(Rn) and f ∈ M loc
p2,q2;λ(Rn). Using Lemma 2.3 and Hölder’s inequality for

Lebesgue spaces, we obtain

‖fg‖M loc
p,q;λ(Rn) = sup

r>0
r
−λ
q ‖t

1
p
− 1
q (fg)∗(t)‖Lq(0,r)

≤ sup
r>0

r
−λ
q ‖t

1
p
− 1
q f∗(t/2) g∗(t/2)‖Lq(0,r)

= sup
r>0

r
−λ
q ‖t

1
p1
− 1
q1 f∗(t/2) t

1
p2
− 1
q2 g∗(t/2)‖Lq(0,r)

≤ sup
r>0

r
−λ
q ‖t

1
p1
− 1
q1 f∗(t/2)‖Lq1 (0,r) ‖t

1
p2
− 1
q2 g∗(t/2)‖Lq2 (0,r)

Taking t/2 = s, we have

‖fg‖M loc
p,q;λ(Rn) ≤ sup

r>0
r
−λ
q ‖(2s)

1
p1
− 1
q1 f∗(s)‖Lq1 (0,r) ‖(2s)

1
p2
− 1
q2 g∗(s)‖Lq2 (0,r)

≤ 2
1
p
− 1
q ‖f‖M loc

p1,q1;λ
(Rn) ‖g‖M loc

p2,q2;λ
(Rn).

Thus, the proof is complete.

Corollary 2.2 Let 0 ≤ λ < 1, 1 < p, p′, q, q′ < ∞, 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1. Suppose
that f ∈M loc

p,q;λ(Rn). Then

‖f‖L1(B) ≤ ‖f‖M loc
p,q;λ(Rn) |B|

1
p′+

λ
q .

Proof. Let 1 < p, p′, q, q′ <∞, 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1. Suppose that f ∈M loc
p,q;λ(Rn).

Then

‖f‖L1(B) ≤ ‖f∗‖L1(0,|B|) = ‖t
1
p′−

1
q′ t

1
p
− 1
q f∗‖L1(0,|B|)

≤ ‖t
1
p
− 1
q f∗‖Lq(0,|B|)‖t

1
p′−

1
q′ ‖Lq′ (0,|B|)

≤ ‖f‖M loc
p,q;λ(Rn) |B|

λ
q ‖t

1
p′−

1
q′ ‖Lq′ (0,|B|)

≈ ‖f‖M loc
p,q;λ(Rn) |B|

1
p′+

λ
q .

The following theorem is the boundedness of the maximal operator in local Morrey-
Lorentz spaces M loc

p,q;λ.

Theorem 2.1 [22, Theorem 1.1] Let 1 ≤ q ≤ ∞, 0 ≤ λ < 1 and q
q+λ ≤ p <∞.

(i) If q
q+λ < p < q

λ , then the operator M is bounded in the local Morrey-Lorentz space
M loc
p,q;λ.
(ii) If p = q

q+λ , then the operator M is bounded from M loc
p,q;λ to the weak space

WM loc
p,q;λ.
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3 M loc
p,q;λ-boundedness of the maximal commutator operator Mb

In this section we find necessary and sufficient conditions for the boundedness of the maxi-
mal commutator Mb on M loc

p,q;λ(Rn) Morrey-Lorentz spaces.

Definition 3.1 We define the space BMO(Rn) as the set of all locally integrable functions
f with finite norm

‖f‖∗ = sup
x∈Rn,t>0

|B(x, t)|−1

∫
B(x,t)

|f(y)− fB(x,t)|dy <∞,

where fB(x,t) = |B(x, t)|−1
∫
B(x,t) f(y)dy.

For proving our main results, we need the following estimate.

Lemma 3.1 [32, Lemma 1] If b ∈ BMO(Rn), then for any s ∈ (0, 1), there exists a
positive constant C such that

M ]
s

(
Mbf

)
(x) ≤ C ‖b‖∗ M2f(x) (3.1)

for every x ∈ Rn and for all f ∈ Lloc
1 (Rn).

Theorem 3.1 Let 1 ≤ q ≤ ∞, 0 ≤ λ < 1 and q
q+λ < p <∞. The following assertions are

equivalent:
(i) b ∈ BMO(Rn).
(ii) The operator Mb is bounded on M loc

p,q;λ(Rn).
(iii) There exist a constant C > 0 such that

sup
B

∥∥(b(·)− bB)χB∥∥M loc
p,q;λ(Rn)

‖χB‖M loc
p,q;λ(Rn)

≤ C. (3.2)

(iv) There exist a constant C > 0 such that

sup
B

∥∥(b(·)− bB)χB∥∥L1(Rn)

|B|
≤ C. (3.3)

Proof. (i)⇒ (ii). Suppose that b ∈ BMO(Rn). Combining Theorem 2.1 and Lemma 3.1,
we get

‖Mbf‖M loc
p,q;λ

. ‖M ]
q

(
Mbf

)
‖M loc

p,q;λ

. ‖b‖∗‖M2f‖M loc
p,q;λ

. ‖b‖∗‖Mf‖M loc
p,q;λ

. ‖b‖∗‖f‖M loc
p,q;λ

.

(ii) ⇒ (i). Assume that Mb is bounded on M loc
p,q;λ(Rn). Let B = B(x, r) be a fixed

ball. We consider f = χB . It is easy to compute that

‖χB‖M loc
p,q;λ
≈ |B|

1
p
−λ
q . (3.4)
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On the other hand, for all x ∈ B we have∣∣b(x)− bB
∣∣ ≤ 1

|B|

∫
B
|b(x)− b(y)|dy

=
1

|B|

∫
B
|b(x)− b(y)|χB(y)dy

≤Mb(χB)(x).

Since Mb is bounded on M loc
p,q;λ(Rn), then by (3.4) we obtain

‖
(
b− bB

)
χB‖M loc

p,q;λ

‖χB‖M loc
p,q;λ

≤
‖Mb(χB)‖M loc

p,q;λ

‖χB‖M loc
p,q;λ

.
‖χB‖M loc

p,q;λ

‖χB‖M loc
p,q;λ

= 1, (3.5)

which implies that (3.2) holds since the ball B ⊂ Rn is arbitrary.
(iii) ⇒ (iv). Assume that (3.2) holds, we will prove (3.3). For any fixed ball B, by

Corollary 2.2, inequalities (3.2) and (3.4), it is easy to see

1

|B|

∫
B
|b(x)− b(y)|dy .

1

|B|
‖
(
b− bB

)
χB‖M loc

p,q;λ
|B|

1
p′+

λ
q .

≈
‖
(
b− bB

)
χB‖M loc

p,q;λ

‖χB‖M loc
p,q;λ

. 1.

(iv)⇒ (i). For any fixed ball B, we have

1

|B|

∫
B
|b(x)− bB|dy =

‖
(
b− bB

)
χB‖L1

|B|

≤ sup
B

‖
(
b− bB

)
χB‖L1

|B|
. 1,

which implies that b ∈ BMO(Rn). Thus the proof of the theorem is completed.

In the case λ = 0 from Theorem 3.1 we get the following corollary.

Corollary 3.1 [24] Let 1 < p, q <∞. The following assertions are equivalent:
(i) b ∈ BMO(Rn).
(ii) The operator Mb is bounded on Lp,q(Rn).
(iii) There exist a constant C > 0 such that

sup
B

∥∥(b(·)− bB)χB∥∥Lp,q(Rn)

‖χB‖Lp,q(Rn)
≤ C.

(iv) There exist a constant C > 0 such that

sup
B

∥∥(b(·)− bB)χB∥∥L1(Rn)

|B|
≤ C.
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4 M loc
p,q;λ-boundedness of the commutator of maximal operator [b,M ]

In this section we obtain necessary and sufficient conditions for the boundedness of the
commutator of maximal operator [b,M ] on M loc

p,q;λ(Rn) Morrey-Lorentz spaces.
For a function b defined on Rn, we denote

b−(x) :=

{
0 , if b(x) ≥ 0

|b(x)|, if b(x) < 0

and b+(x) := |b(x)| − b−(x). Obviously, b+(x)− b−(x) = b(x).
The following relations between [b,M ] and Mb are valid :
Let b be any non-negative locally integrable function. Then for all f ∈ Lloc

1 (Rn) and
x ∈ Rn the following inequality is valid∣∣[b,M ]f(x)

∣∣ =
∣∣b(x)Mf(x)−M(bf)(x)

∣∣
=
∣∣M(b(x)f)(x)−M(bf)(x)

∣∣ ≤M(|b(x)− b|f)(x) = Mbf(x).

If b is any locally integrable function on Rn, then

|[b,M ]f(x)| ≤Mbf(x) + 2b−(x)Mf(x), x ∈ Rn (4.1)

holds for all f ∈ Lloc
1 (Rn) (see, for example [23,44]).

Denote by MBf the local maximal function of f :

MBf(x) := sup
B′3x:B′⊂B

1

|B′|

∫
B′
|f(y)| dy, x ∈ Rn.

Applying Theorem 3.1, we obtain the following result.

Theorem 4.1 Let 1 ≤ q ≤ ∞, 0 ≤ λ < 1 and q
q+λ < p <∞. The following assertions are

equivalent:
(i) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(ii) The operator [b,M ] is bounded on M loc

p,q;λ(Rn).
(iii) There exist a constant C > 0 such that

sup
B

∥∥(b(·)−MB(b)(·)
)
χB
∥∥
M loc
p,q;λ(Rn)

‖χB‖M loc
p,q;λ(Rn)

≤ C. (4.2)

(iv) There exist a constant C > 0 such that

sup
B

∥∥(b(·)−MB(b)(·)
)
χB
∥∥
L1(Rn)

|B|
≤ C. (4.3)

Proof. (i) ⇒ (ii). Suppose that b ∈ BMO(Rn) and b− ∈ L∞(Rn). Combining Lemma
2.1 and Theorem 3.1, and inequality (4.1), we get

‖[b,M ]f‖M loc
p,q;λ
≤ ‖Mbf + 2b−Mf‖M loc

p,q;λ

≤ ‖Mbf‖M loc
p,q;λ

+ ‖b−‖L∞ ‖Mf‖M loc
p,q;λ

.
(
‖b‖∗ + ‖b−‖L∞

)
‖f‖M loc

p,q;λ
.

Thus, we obtain that [b,M ] is bounded on M loc
p,q;λ(Rn).
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(ii)⇒ (iii). Assume that [b,M ] is bounded onM loc
p,q;λ(Rn). LetB = B(x, r) be a fixed

ball. Since
M(bχB)χB = MB(b) and M(χB)χB = χB,

we have

|MB(b)− bχB| = |M(bχB)χB − bM(χB)χB|
≤ |M(bχB)− bM(χB)| = |[b,M ]χB|.

Hence
‖MB(b)− bχB‖M loc

p,q;λ(Rn) ≤ ‖[b,M ]χB‖M loc
p,q;λ(Rn).

Thus we get

‖
(
b−MB(b)

)
χB‖M loc

p,q;λ

‖χB‖M loc
p,q;λ

≤
‖[b,M ](χB)‖M loc

p,q;λ

‖χB‖M loc
p,q;λ

.
‖χB‖M loc

p,q;λ

‖χB‖M loc
p,q;λ

= 1,

which deduces that (iii).
(iii) ⇒ (iv). Assume that (4.2) holds, then for any fixed ball B, by Corollary 2.2, we

conclude that
1

|B|

∫
B
|b(x)−MB(b)(x)|dx .

1

|B|
‖
(
b−MB(b)

)
χB‖M loc

p,q;λ
|B|

1
p′+

λ
q

≈
‖
(
b−MB(b)

)
χB‖M loc

p,q;λ

‖χB‖M loc
p,q;λ

. 1.

(iv)⇒ (i). Assume that (4.3) holds, we will prove b ∈ BMO(Rn) and b− ∈ L∞(Rn).
Denote by

E := {x ∈ B : b(x) ≤ bB}, F := {x ∈ B : b(x) > bB}.
Since ∫

E
|b(t)− bB| dt =

∫
F
|b(t)− bB| dt,

in view of the inequality b(x) ≤ bB ≤MB(b), x ∈ E, we get

1

|B|

∫
B
|b− bB| =

2

|B|

∫
E
|b− bB|

≤ 2

|B|

∫
E
|b−MB(b)|

≤ 2

|B|

∫
B
|b−MB(b)| . c.

Consequently, b ∈ BMO(Rn). In order to show that b− ∈ L∞(Rn), note thatMB(b) ≥ |b|.
Hence

0 ≤ b− = |b| − b+ ≤MB(b)− b+ + b− = MB(b)− b.
Thus

(b−)B ≤ c,
and by the Lebesgue Differentiation theorem we get that

0 ≤ b−(x) = lim
|B|→0

1

|B|

∫
B
b−(y)dy ≤ c for a.e. x ∈ Rn.

Thus the proof of the theorem is completed.
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In the case λ = 0 from Theorem 4.1 we get the following corollary.

Corollary 4.1 [24] Let 1 < p, q <∞. The following assertions are equivalent:
(i) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(ii) The operator [b,M ] is bounded on Lp,q(Rn).
(iii) There exist a constant C > 0 such that

sup
B

∥∥(b(·)−MB(b)(·)
)
χB
∥∥
Lp,q(Rn)

‖χB‖Lp,q(Rn)
≤ C.

(iv) There exist a constant C > 0 such that

sup
B

∥∥(b(·)−MB(b)(·)
)
χB
∥∥
L1(Rn)

|B|
≤ C.

5 M loc
p,q;λ-boundedness of the commutator of sharp maximal operator [b,M ]]

In this section we obtain necessary and sufficient conditions for the boundedness of the
commutator of maximal operator [b,M ]] on M loc

p,q;λ(Rn) Morrey-Lorentz spaces.
Next, our third result is as follows.

Theorem 5.1 Let 1 ≤ q ≤ ∞, 0 ≤ λ < 1 and q
q+λ < p <∞. The following assertions are

equivalent:
(i) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(ii) The operator [b,M ]] is bounded on M loc

p,q;λ(Rn).

(iii) There exist a constant C > 0 such that

sup
B

∥∥(b(·)− 2M ]
(
bχB

)
(·)
)
χB
∥∥
M loc
p,q;λ(Rn)

‖χB‖M loc
p,q;λ(Rn)

≤ C. (5.1)

(iv) There exist a constant C > 0 such that

sup
B

∥∥(b(·)− 2M ]
(
bχB

)
(·)
)
χB
∥∥
L1(Rn)

|B|
≤ C. (5.2)

Proof. We only need to prove (1)⇒ (2), (2)⇒ (3), (3)⇒ (4) and (4)⇒ (1).
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(1) ⇒ (2). Since b ∈ BMO(Rn) and b− ∈ L∞(Rn), then for any locally integrable
function f and a.e. x ∈ Rn

∣∣[b,M ]]f(x)
∣∣ =

∣∣∣ sup
B3x

b(x)

|B|

∫
B
|f(y)− fB|dy

− sup
B3x

1

|B|

∫
B
|b(y)f(y)− (bf)B|dy

∣∣∣
≤ sup

B3x

1

|B|

∫
B

∣∣(b(y)− b(x))f(y) + b(x)fB − (bf)B
∣∣dy

≤ sup
B3x

( 1

|B|

∫
B
|b(y)− b(x)| |f(y)|+

∣∣b(x)fB − (bf)B
∣∣)

. ‖b‖∗Mbf(x) + sup
B3x

∣∣∣b(x)

|B|

∫
B
f(z)dz − 1

|B|

∫
B
b(z)f(z)dz

∣∣∣
. ‖b‖∗Mbf(x) + sup

B3x

1

|B|

∫
B
|b(x)− b(z)||f(z)|dz

. ‖b‖∗Mbf(x).

Then, it follows from Theorem 2.1 that [b,M ]] is bounded on M loc
p,q;λ(Rn).

(2) ⇒ (3). Assume [b,M ]] is bounded on M loc
p,q;λ(Rn), we will prove (5.1). For any

fixed ball B, we have (see [8, page 3333] or [44, page 1383] for details)

M ]
(
χB
)
(x) =

1

2
for all x ∈ B.

Then, for all x ∈ B,

b(x)− 2M ]
(
b χB

)
(x) = 2

(b(x)

2
−M ]

(
b χB

)
(x)
)

= 2
(
b(x)M ]

(
χB
)
(x)−M ]

(
b χB

)
(x)
)

= [b,M ]]
(
χB
)
(x).

Since [b,M ]] is bounded on M loc
p,q;λ(Rn), then by applying (3.4), we have

sup
B

∥∥(b(·)− 2M ]
(
bχB

)
(·)
)
χB
∥∥
M loc
p,q;λ(Rn)

‖χB‖M loc
p,q;λ(Rn)

≤ sup
B

∥∥[b,M ]]
(
χB
)∥∥
M loc
p,q;λ(Rn)

‖χB‖M loc
p,q;λ(Rn)

≤ sup
B

‖χB‖M loc
p,q;λ(Rn)

‖χB‖M loc
p,q;λ(Rn)

. 1,

which implies (5.1).
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(3) ⇒ (4): We deduce (5.1) from (5.2). Assume (5.1) holds, then for any fixed ball B,
it follows from Corollary 2.2 and (3.4) that

|B|−1
∥∥∥b(·)− 2M ]

(
b χB

)
(·)
∥∥∥
L1(B)

≤ |B|−1
∥∥b(·)− 2M ]

(
b χB

)
(·)
∥∥
M loc
p,q;λ(Rn)

|B|
1
p′+

λ
q

≈
‖
(
b− bB

)
χB‖M loc

p,q;λ

‖χB‖M loc
p,q;λ

. 1.

where the constant C is independent of B. So we obtain (5.2).
(4)⇒ (1). We first prove b ∈ BMO(Rn). For any fixed ball B, we have (see (2) in [8]

for details) ∣∣bB∣∣ ≤ 2M ]
(
b χB

)
(x), for any x ∈ B. (5.3)

For any ball B, let E = {y ∈ B : b(y) ≤ bB} and F = {y ∈ B : b(y) > bB}. The
following equality is true (see [8, page 3331]):∫

E
|b(y)− bB|dy =

∫
F
|b(y)− bB|dy.

Since b(y) ≤ bB ≤ |bB| ≤ 2M ]
(
b χB

)
(y) for any y ∈ E, we obtain

|b(y)− bB| ≤
∣∣b(y)− 2M ]

(
b χB

)
(y)
∣∣, y ∈ E.

Then we have

1

|B|

∫
B
|b(y)− bB|dy =

2

|B|

∫
E
|b(y)− bB|dy

≤ 2

|B|

∫
E

∣∣b(y)− 2M ]
(
b χB

)
(y)
∣∣dy

≤ 2

|B|

∫
B

∣∣b(y)− 2M ]
(
b χB

)
(y)
∣∣dy.

Applying (5.2) we get b ∈ BMO(Rn).
In order to show that b− ∈ L∞(Rn), note that

∣∣bB∣∣ ≤ 2M ]
(
b χB

)
(x) for any x ∈ B.

Then, for all x ∈ B,

2M ]
(
b χB

)
(x)− b(x) ≥

∣∣bB∣∣− b(x) =
∣∣bB∣∣− b+(x) + b−(x).

Therefore ∣∣bB∣∣− 1

µ(B)

∫
B
b+(x)dx+

1

µ(B)

∫
B
b−(x)dx

=
1

µ(B)

∫
B

(∣∣bB∣∣− b+(x) + b−(x)
)
dx

≤ 1

µ(B)

∫
B

(
2M ]

(
b χB

)
(x)− b(x)

)
dx

≤ 1

µ(B)

∫
B

∣∣b(x)− 2M ]
(
b χB

)
(x)
∣∣dx. (5.4)
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Then from Corollary 2.2 and (3.4) we get

1

µ(B)

∫
B

∣∣b(x)− 2M ]
(
b χB

)
(x)
∣∣dx

1

µ(B)

∥∥∥(b(·)− 2M ](b χB )
)
χB

∥∥∥
M loc
p,q;λ(Rn)

|B|
1
p′+

λ
q

≤

∥∥(b(·)− 2M ](b χB )
)
χB
∥∥
M loc
p,q;λ(Rn)

‖χB‖M loc
p,q;λ(Rn)

≤ C , (5.5)

From (5.4) abd (5.5) we obtain∣∣bB∣∣− 1

µ(B)

∫
B
b+(x)dx+

1

µ(B)

∫
B
b−(x)dx ≤ C.

By the Lebesgue differentiation theorem we get that

2|b−(x)| = 2b−(x) = |b(x)| − b+(x)− b−(x) ≤ C.

This implies that b− ∈ L∞(Rn).
Thus the proof of the theorem is completed.

In the case λ = 0 from Theorem 5.1 we obtain a new consequence.

Corollary 5.1 Let 1 < p, q <∞. The following assertions are equivalent:
(i) b ∈ BMO(Rn) and b− ∈ L∞(Rn).
(ii) The operator [b,M ]] is bounded on Lp,q(Rn).
(iii) There exist a constant C > 0 such that

sup
B

∥∥(b(·)− 2M ]
(
bχB

)
(·)
)
χB
∥∥
Lp,q(Rn)

‖χB‖Lp,q(Rn)
≤ C.

(iv) There exist a constant C > 0 such that

sup
B

∥∥(b(·)− 2M ]
(
bχB

)
(·)
)
χB
∥∥
L1(Rn)

|B|
≤ C.
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