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Abstract. The paper is devoted to the study of the Fredholm property of a boundary value problem for
a three-dimensional elliptic equation with variable coefficients with nonlocal boundary conditions in a
bounded domain with a Lyapunov boundary. Singular necessary solvability conditions are derived, the
regularization of which is carried out according to a new original scheme. Based on the regularized
necessary conditions and boundary conditions, the Fredholm property of the problem is proved.

Keywords. non-local boundary conditions · three-dimensional elliptic equation · variable coefficients ·
necessary conditions · regularization · Fredholm property.

Mathematics Subject Classification (2010): 35J05, 35J40

1 Introduction

As is known, the Fredholm property of local boundary value problems (Dirichlet, Neu-
mann, Poincar) for partial differential equations is proved by reduction to the Fredholm
integral of the second kind with a regular kernel, which is solved by the method of suc-
cessive approximations. Since even-order equations are usually considered in the theory of
partial differential equations, this scheme is generally accepted in this case.

In nonlocal boundary value problems for PDEs, the entire boundary is the carrier of a
nonlocal boundary condition, as if ”stitching” the values of the unknown function and its
derivatives on different sections of the boundary. The introduction of nonlocal conditions
also eliminated the misunderstanding between the O.D.E. and partial differential equations,
when the number of boundary conditions does not coincide with the order of the equation.

In contrast to classical problems, for the nonlocal BVP there arose possibility of Fred-
holm property proof both for even and odd orders [1]-[5] by a principially new method:
based on a fundamental solution of the principal part of the PDE and by means of the 2-nd
Green’s formula so called “necessary conditions” of solvability are obtained. The Fredholm
property is investigated just from the necessary conditions.

It should be noted that for linear ordinary differential equations these necessary con-
ditions were obtained by A.A. Dezin in the form of usual boundary conditions [6]-[7]. For
partial differential equations for the first time these conditions were considered and obtained
by A.V. Bitsadze in the form of singular integral equations for two-dimensional Laplace
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equation [8]. The regularization was carried out using the method of succcessive approxi-
mations. A.A.Bitsadze called them both “necessary and sufficient conditions of solvability”
[8].

In three-dimansional case the singularities have a special form and are not regularized
as in the general case as we arrive at a Fredholm equation of the first kind which is a dead
end. A new approach [2], [5], [9]-[11] is used to regularize the obtained singularities what
allows to prove the Fredholmness of the posed problem.

2 Problem statement

Let us consider the three-dimensional Laplace equation in a convex in the direction x3
domain D ⊂ R3 whose projection onto plane Ox1x2 = Ox′ is domain S ⊂ Ox1x2, Γ is
the boundary (Lyapunov surface) of the domain D:

Lu = ∆u(x) +

3∑
k=1

ak(x)
∂u(x)

∂xk
+ a(x)u(x) = 0, x ∈ D ⊂ R3 (2.1)

with non-local boundary conditions:

liu =
2∑

k=1

3∑
j=1

α
(k)
ij (x′)

∂u(x)

∂xj

∣∣
x3=γk(x′)

+
2∑

k=1

α
(k)
i (x′)u(x)

∣∣
x3=γk(x′) = ϕi(x

′), i = 1, 2; x′ = (x1, x2) ∈ S, (2.2)

u(x) = f0(x), x ∈ Γ̄1
⋂
Γ̄2, (2.3)

where S = projOx1x2D, Γ1 and Γ2 are the lower and the upper half surfaces of the bound-
ary Γ respectively defined as follows: Γk = {ξ = (ξ1, ξ2, ξ3) : ξ3 = γk(ξ

′),
ξ′ = (ξ1, ξ2) ∈ S} where ξ3 = γk(ξ1; ξ2) , k = 1, 2, are equations of half surfaces Γ1
and Γ2, functions γk(ξ′) , k = 1, 2, are twice differentiable with respect of the both of the
variables ξ1, ξ2; the coefficients α(k)

ij (x′), α(k)
i (x′) are continuous functions .

The fundamental solution for equation (2.1) is the same as for the three-dimensional
Laplace equation [12]:

U(x− ξ) = − 1

4π

1

|x− ξ|
. (2.4)

Let us get basic relationships and necessary conditions.
Multiplying equation (2.1) by the fundamental solution (2.4), integrating it over the

domain D by parts ∫
D
Lu(x)U(x− ξ)dx =

∫
D
u(x)∆U(x− ξ)dx

+
3∑
j=1

∫
Γ

[(
∂u(x)

∂xj
U(x− ξ)− u(x)

∂U(x− ξ)
∂xj

)
cos(ν, xj)dx

]

+
3∑

k=1

∫
D
ak(x)

∂u(x)

∂xk
U(x− ξ)dx+

∫
D
a(x)u(x)U(x− ξ)dx
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and taking into account that ∆xU(x− ξ) = δ(x− ξ) where δ(x− ξ) is the Dirac δ-function
we’ll get the first basic relationship:

−
3∑
j=1

∫
Γ

[(
∂u(x)

∂xj
U(x− ξ)− u(x)

∂U(x− ξ)
∂xj

)
cos(ν, xj)dx

]

−
3∑

k=1

∫
D
ak(x)

∂u(x)

∂xk
U(x− ξ)dx−

∫
D
a(x)u(x)U(x− ξ)dx

=

∫
D
u(x)δ(x− ξ)dx =

{
u(ξ), ξ ∈ D,
1
2u(ξ), ξ ∈ Γ. (2.5)

Here the first relationship gives the representation of the general solution of equation (2.1)
and the second expression in (2.5) is the first necessary condition.

Taking into account ∂U(x−ξ)
∂xj

= − xj−ξj
4π|x−ξ|3 = − cos(x−ξ,xj)

4π|x−ξ|2 we obtain the 1st necessary
condition (ξ ∈ Γ ) in the form

1

2
u(ξ) = −

∫
Γ

∂u(x)

∂ν
U(x− ξ)dx−

∫
Γ
u(x)

cos(x− ξ, νx)

4π |x− ξ|2
dx

−
3∑

k=1

∫
D
ak(x)

∂u(x)

∂xk
U(x− ξ)dx−

∫
D
a(x)u(x)U(x− ξ)dx (2.6)

where all the integrands have a weak singularity as the order of singularity doesn’t exceed
the multiplicity of the integrals.
Thus we have proved

Theorem 2.1. Let a convex along the direction x3 domain D ⊂ R3 be bounded with the
boundary Γwhich is a Lyapunov surface. Then the obtained first necessary condition (2.6)
is regular.

Multiplying (2.1) by ∂U(x−ξ)
∂xi

, i = 1, 3, , integrating it over the domain D we obtain the
rest of three basic relationships:∫

D
Lu

∂U(x− ξ)
∂xi

dx =

∫
D
∆u(x)

∂U(x− ξ)
∂xi

dx

+

∫
D

3∑
k=1

ak(x)
∂u(x)

∂xk

∂U(x− ξ)
∂xi

dx+

∫
D
a(x)u(x)

∂U(x− ξ)
∂xi

dx,

whence after integrating by parts we get the second basic relationship∫
Γ

∂u(x)

∂xm

[
∂U(x− ξ)
∂xm

cos(νx, xi)−
∂U(x− ξ)

∂xi
cos(νx, xm)

]
dx

+

∫
Γ

∂u(x)

∂xl

[
∂U(x− ξ)

∂xl
cos(νx, xi)−

∂U(x− ξ)
∂xi

cos(νx, xl)

]
dx

−
∫
Γ

∂u(x)

∂xi

∂U(x− ξ)
∂νx

dx−
∫
D

3∑
k=1

ak(x)
∂u(x)

∂xk

∂U(x− ξ)
∂xi

dx

−
∫
D
a(x)u(x)

∂U(x− ξ)
∂xi

dx =

{
∂u(ξ)
∂ξi

, ξ ∈ D,
1
2
∂u(ξ)
∂ξi

, ξ ∈ Γ,
i = 1, 3 , (2.7)
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where the numbers i, m, l make a permutation of numbers 1,2,3. The second expressions in
(2.7) are the second necessary conditions ( ξ ∈ Γ , i = 1, 2, 3 ).

Taking into account that ∂U(x−ξ)
∂xi

= − xi−ξi
4π|x−ξ|3 = − cos(x−ξ,xi)

4π|x−ξ|2 and introducing the
designations

Kij(x, ξ) = (cos(x− ξ, xi) cos(νx, xj)− cos(x− ξ, xj) cos(νx, xi)) .

We can rewrite the second necessary conditions in (2.7) as:

1

2

∂u(ξ)

∂ξi
=

+

∫
Γ

∂u(x)

∂xm

Kmi(x, ξ)

4π |x− ξ|2
dx+

∫
Γ

∂u(x)

∂xl

Kli(x, ξ)

4π |x− ξ|2
dx .

−
∫
Γ

∂u(x)

∂xi

∂U(x− ξ)
∂νx

dx−
∫
D

3∑
k=1

ak(x)
∂u(x)

∂xk

∂U(x− ξ)
∂xi

dx−

−
∫
D
a(x)u(x)

∂U(x− ξ)
∂xi

dx. (2.8)

where i = 1, 2, 3 and the numbers i,m,l make a permutation of numbers 1,2,3.
If we disclose two first surface integrals in (2.8) (i = 1, 2, 3) over the lower and the

upper half surfaces Γk, k = 1, 2:

∂u

∂ξi

∣∣
ξ3=γk(ξ′) =

2∑
j=1

(−1)j−1
∫
S

∂u(x)

∂xm

∣∣∣x3=γj(x′) Kmi(x, ξ)

2π |x− ξ|2

∣∣∣∣∣∣∣x3 = γj(x
′)

ξ3 = γk(ξ
′)

dx′

cos(νx, x3)

+
2∑
j=1

(−1)j−1
∫
S

∂u(x)

∂xl

∣∣∣x3=γj(x′) Kli(x, ξ)

2π |x− ξ|2

∣∣∣∣∣∣∣x3 = γj(x
′)

ξ3 = γk(ξ
′)

dx′

cos(νx, x3)

−2

∫
Γ

∂u(x)

∂xi

∂U(x− ξ)
∂νx

∣∣
ξ3=γk(ξ′) dx− 2

∫
D

3∑
p=1

ap(x)
∂u(x)

∂xp

∂U(x− ξ)
∂xi

dx

−
∫
D

2a(x)u(x)
∂U(x− ξ)

∂xi
dx (2.9)

and extract only singular terms (x3 = ξ3) for k = 1, 2 then we’ll get the second necessary
conditions (2.9) (i = 1, 2, 3) in the form:

∂u

∂ξi

∣∣
ξ3=γk(ξ′) = (−1)k

∫
S

∂u(x)

∂xm

∣∣
x3=γk(x′)

Kmi(x, ξ)

2π |x− ξ|2

∣∣∣∣∣∣∣x3 = γk(x
′)

ξ3 = γk(ξ
′)

dx′

cos(νx, x3)

+(−1)k+1

∫
S

∂u(x)

∂xl

∣∣
x3=γk(x′)

Kli(x, ξ)

2π |x− ξ|2

∣∣∣∣∣∣∣x3 = γk(x
′)

ξ3 = γk(ξ
′)

dx′

cos(νx, x3)
+ ... , k = 1, 2

(2.10)
where three dots designate the sum of nonsingular terms.
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Remark 2.1. Three dots in (2.10) contain the derivatives ∂u(x)
∂xl

∣∣
x3=γk(x′) , l = 1, 2, 3;

k = 1, 2, under the sign of integral and later we shall take it into consideration.
Let us introduce the designations:

K
(k)
ij (x′, ξ′) = Kij(x, ξ)

∣∣∣∣∣∣∣x3 = γk(x
′)

ξ3 = γk(ξ
′)

, (2.11)

|x− ξ|2

∣∣∣∣∣∣∣x3 = γk(x
′)

ξ3 = γk(ξ
′)

=
∣∣x′ − ξ′∣∣2 + (γk(x

′)− γk(ξ′))2 =
∣∣x′ − ξ′∣∣2 Pk(x′, ξ′) (2.12)

where

Pk(x
′, ξ′) = 1 +

[
∂γk(x

′)

∂x1
cos(x′ − ξ′, x1)

+
∂γk(x

′)

∂x2
cos(x′ − ξ′, x2) +O(

∣∣x′ − ξ′∣∣)]2 6= 0, k = 1, 2 .

By means of the designations (2.11), (2.12) we’ll rewrite the necessary conditions (2.10)
for k=1,2 as follows:

∂u

∂ξi

∣∣
ξ3=γk(ξ′)

= (−1)(k)
∫
S

∂u(x)

∂xm

∣∣∣∣x3=γk(x′) 1

2π |x′ − ξ′|2
K

(k)
mi (x

′, ξ′)

Pk(x′, ξ′)

dx′

cos(νx, x3)

+(−1)(k+1)

∫
S

∂u(x)

∂xl

∣∣
x3=γk(x′)

1

2π |x′ − ξ|′2
K

(k)
li (x′, ξ′)

Pk(x′, ξ′)

dx′

cos(νx, x3)
+..., i = 1, 2, 3; k = 1, 2.

(2.13)
Theorem 2.2. Under assumptions of Theorem 2.1 necessary conditions (2.13) are sin-

gular.

3 Regularization of the necessary conditions

Let us build a linear combination of necessary conditions (2.13) for k=1,2 (i=1,2; j=1,2,3)
with unknown yet coefficients β(k)ij (ξ′) and bracket the common factor 1

2π|x′−ξ′|2 under the
sign of integral (i = 1, 2):

3∑
j=1

(
β
(1)
ij (ξ′)

∂u(ξ)

∂ξj

∣∣
ξ3=γ1(ξ′) + β

(2)
ij (ξ′)

∂u(ξ)

∂ξj

∣∣
ξ3=γ2(ξ′)

)

=

∫
S

1

2π |x′ − ξ′|2
dx′

cos(νx, x3)

2∑
k=1

(−1)k

×
3∑
j=1

β
(k)
ij (ξ′)

∂u(x)

∂xm

∣∣
x3=γk(x′)

K
(k)
mj (x

′, ξ′)

Pk(x′, ξ′)
+
∂u(x)

∂xl

∣∣
x3=γk(x′)

K
(k)
lj (x′, ξ′)

Pk(x′, ξ′)

+ ... .

(3.1)
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Adding and subtracting β
(k)
ij (x′) from β

(k)
ij (ξ′) , k = 1, 2 in (3.1) and suggesting that

functions β(k)ij (ξ′) satisfy Hölder condition we get a week singularity in the integrals with
β
(k)
ij (ξ′)−β(k)

ij (x′)

|x′−ξ′|2 . Expanding all the coefficients at the derivatives by Taylor’s formula at point

ξ′ = x′:

K
(k)
ij (x′, ξ′)

Pk(x′, ξ′)
=
K

(k)
ij (x′, x′)

Pk(x′, x′)
+

∂

∂x1

(
K

(k)
ij (x′, x′)

Pk(x′, x′)

)
(x1 − ξ1) + ...

and discarding the terms with weak singularity we obtain:

3∑
j=1

(
β
(1)
ij (ξ′)

∂u(ξ)

∂ξj

∣∣
ξ3=γ1(ξ′) + β

(2)
ij (ξ′)

∂u(ξ)

∂ξj

∣∣
ξ3=γ2(ξ′)

)

=

∫
S

1

2π |x′ − ξ′|2
dx′

cos(νx, x3)

2∑
k=1

(−1)k

×
3∑
j=1

∂u(x)

∂xj

∣∣
x3=γk(x′)

β(k)il (x′)
K

(k)
lj (x′, x′)

Pk(x′, x′)
+ β

(k)
im (x′)

K
(k)
mj (x

′, x′)

Pk(x′, x′)

+ ... (3.2)

where i=1,2 and the numbers j, l, m form a permutation of numbers 1,2,3.
To regularize the integral in the right hand side of (3.2) let us impose conditions on

the coefficients β(k)ij (ξ′), i.e. let the coefficients at the derivatives under the sign of integral

(3.2) be equal to the coefficients α(k)
ij (ξ′) from the boundary conditions (2.2). Then we get

a system of 6 equations for each i=1,2:

(−1)kβ
(k)
il (x′)

K
(k)
lj (x′, x′)

Pk(x′, x′)
+ (−1)kβ

(k)
im (x′)

K
(k)
mj (x

′, x′)

Pk(x′, x′)
= α

(k)
ij (x′), (3.3)

k=1,2; j=1,2,3,
where the numbers j, l, m form a permutation of numbers 1,2,3 as we mentioned above.

We assume that system (3.3) has the unique solution β(k)ij (x′) , i, k = 1, 2; j = 1, 2, 3.

Remark 3.1. As the system (3.3) is linear the obtained functions β(k)ij (x′) , i, k = 1, 2;

j = 1, 2, 3, are linear with respect to the given functions α(k)
ij (x′) , i, k = 1, 2; j = 1, 2, 3,

and, therefore, satisfy a Hlder condition.
Then for the further regularization we replace the expression under the integral sign in

the right-hand side of (3.3) using boundary conditions (2.2):

3∑
j=1

(
β
(1)
ij (ξ′)

∂u(ξ)

∂ξj

∣∣
ξ3=γ1(ξ′) + β

(2)
ij (ξ′)

∂u(ξ)

∂ξj

∣∣
ξ3=γ2(ξ′)

)

=

∫
S

ϕi(x
′)

2π |x′ − ξ′|2
dx′

cos(νx, x3)

−
∫
S

1

2π |x′ − ξ′|2

[
2∑

k=1

α
(k)
i (x′)u(x′, γk(x

′))

]
dx′

cos(νx, x3)
..... (3.4)
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From necessary condition (2.6) for u(ξ) on Γk , k = 1 , 2, discarding the term with the
normal derivative ∂u

∂νx
in the integrand and leaving only weakly singular terms we have:

u(ξ)
∣∣
ξ3=γk(ξ′)

= −
∫
S

u(x)
∣∣
x3=γk(x′)

2π |x′ − ξ′|2

cos(x− ξ, νx)

∣∣∣∣∣∣∣ ξ3 = γk(ξ
′)

x3 = γk(x
′)

Pk(x′, ξ′)

dx′

cos(νx, x3)
+ .... (3.5)

Substituting necessary conditions (3.5) into (3.4) and changing the order of integration we’ll
obtain regularized relationships:

3∑
j=1

(
β
(1)
ij (ξ′)

∂u(ξ)

∂ξj

∣∣
ξ3=γ1(ξ′) + β

(2)
ij (ξ′)

∂u(ξ)

∂ξj

∣∣
ξ3=γ2(ξ′)

)

= −
2∑

k=1

∫
S

u(ζ)
∣∣
ζ3=γk(ζ′) dζ

′

cos(νζ , ζ3)

∫
S
α
(k)
i (x′)

cos(ζ − ξ, νζ)

∣∣∣∣∣∣∣ ζ3 = γk(ζ
′)

x3 = γk(x
′)

2π |x′ − ζ ′|2 |x′ − ξ′|2 Pk(x′, ζ ′)
dx′

cos(νx, x3)

+

∫
S

ϕi(x
′)

2π |x′ − ξ′|2
dx′

cos(νx, x3)
+ ... , (3.6)

as the interior integral in the first term in the RHS of (3.6) doesn’t contain the unknown and
the second term is convergent if functions ϕi(x′), i = 1, 2, are continuously differentiable
in S and vanish on the boundary ∂S = S̄\S.

Thus we have established the following
Theorem 3.1. Let the conditions of Theorem 2.1 hold true. If system (3.3) is uniquely

resolved, the conditions (2.2) are linear independent, the coefficients α(k)
ij (x′) for i =

1, 2; j = 1, 3; k = 1, 2, belong to some Hlder class and the rest of the coefficients and
kernels are continuous functions, functions ϕi(x′), i = 1, 2, are continuously differentiable
and vanish on the boundary ∂S = S̄\S then the relationships (3.6) are regular.

4 Fredholm property of the problem

It is well-known from the calculus that

∂

∂xp
u(x1, x2, γk(x1, x2))

=
∂u(x)

∂xp

∣∣
x3=γk(x′) +

∂u(x)

∂x3

∣∣
x3=γk(x′)

∂γk(x
′)

∂xp
, k = 1, 2; p = 1, 2, (4.1)

whence we have
∂u(x)
∂xp

∣∣
x3=γk(x′) = ∂u(x′,γk(x

′))
∂xp

− ∂u(x)
∂x3

∣∣
x3=γk(x′)

∂γk(x
′)

∂xp
, p=1,2; k=1,2. (4.1)

So, the derivatives ∂u(x)
∂x1

∣∣
x3=γk(x′) and ∂u(x)

∂x2

∣∣
x3=γk(x′) are defined through the derivative

∂u(x)
∂x3

∣∣
x3=γk(x′) . Then we have two unknown quantities: the boundary values of the un-

known function u(x′, γ1(x
′)) and u(x′, γ2(x

′)).
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After substituting (4.1) for ∂u(x)∂x1

∣∣
x3=γk(x′) and ∂u(x)

∂x2

∣∣
x3=γk(x′) into (2.2) and grouping

the unknown quantities we get a system:

liu =

2∑
m=1

 2∑
j=1

α
(m)
ij (x′)

(
∂u(x′, γm(x′))

∂xj
− ∂u(x)

∂x3

∣∣
x3=γm(x′)

∂γm(x′)

∂xj

)

+α
(m)
i3 (x′)

∂u(x)

∂x3

∣∣
x3=γm(x′)

]

+
2∑

m=1

α
(m)
i (x′)u(x′, γm(x′)) = ϕi(x

′), x′ ∈ S, i = 1, 2. (4.2)

Introducing the designations:

Aij(x
′) = α

(j)
i3 (x′)−

2∑
m=1

α
(j)
im(x′)

∂γj(x
′)

∂xm
, i, j = 1, 2 ,

system (4.2) can be rewritten in the form:

Ai1(x
′)
∂u(x)

∂x3

∣∣
x3=γ1(x′) +Ai2(x

′)
∂u(x)

∂x3

∣∣
x3=γ2(x′) = Fi(x

′) , i = 1, 2, (4.3)

where the right-hand sides of system (4.3) have the form:

Fi(x
′) = ϕi(x

′)−
2∑
j=1

2∑
m=1

α
(m)
ij (x′)

∂u(x′, γm(x′))

∂xj
+

+
2∑

k=1

α
(k)
i (x′)u(x′, γk(x

′)), x′ ∈ S, i = 1, 2. (4.4)

Remark 4.1. Note that the right hand sides Fi(x
′) of system (4.3) are, in the virtue of

(4.4), functionals of u |Γ1 , u |Γ2 and
∂u|Γk
∂xj

, k, j = 1, 2:

Fi(x
′) = Fi(x

′, u |Γ1 , u |Γ2 ,
∂u |Γ1

∂x1
,
∂u |Γ1

∂x2
,
∂u |Γ2

∂x1
,
∂u |Γ2

∂x2
), i = 1, 2. (4.5)

If to assume that

∆(x′) =

∣∣∣∣A11(x
′) A12(x

′)
A21(x

′) A22(x
′)

∣∣∣∣ 6= 0 (4.6)

the system (4.3) can be reduced to a normal form:

∂u(x)
∂x3

∣∣
x3=γ1(x′) = 1

∆(x′)

∣∣∣∣F1(x
′) A12(x

′)
F2(x

′) A22(x
′)

∣∣∣∣ ,
∂u(x)
∂x3

∣∣
x3=γ2(x′) = 1

∆(x′)

∣∣∣∣A11(x
′) F1(x

′)
A21(x

′) F2(x
′)

∣∣∣∣ .
whence, in the virtue of (4.5), we have (from boundary conditions (2.2) and (4.1) :

∂u(x)

∂x3

∣∣
x3=γk(x′) = Φk(u |Γ1 , u |Γ2 ,

∂u |Γ1

∂x1
,
∂u |Γ1

∂x2
,
∂u |Γ2

∂x1
,
∂u |Γ2

∂x2
), k = 1, 2. (4.7)
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Now substituting (4.1) for ∂u(x)∂xj

∣∣
x3=γk(x′) , j, k = 1, 2, into regular relationships (3.6)

and grouping the terms we’ll get a system:
2∑

m=1

βim(ξ′)
∂u(ξ)

∂ξ3

∣∣
ξ3=γm(ξ′) = Bi(ξ

′) , i = 1, 2, (4.8)

where the RHSs of (4.8) are as follows

Bi(ξ
′) = −

2∑
j=1

2∑
m=1

β
(m)
ij (ξ′)

∂u(ξ′, γm(ξ′))

∂ξj

−
2∑

k=1

∫
S

u(ζ)
∣∣
ζ3=γk(ζ′) dζ

′

cos(νζ , ζ3)

∫
S
α
(k)
i (x′)

cos(ζ − ξ, νζ)

∣∣∣∣∣∣∣ ζ3 = γk(ζ
′)

x3 = γk(x
′)

2π |x′ − ζ ′|2 Pk(x′, ζ ′)
dx′

cos(νx, x3)

+

∫
S

ϕi(x
′)

2π |x′ − ξ′|2
dx′

cos(νx, x3)
+ .... , ξ′ ∈ S, i = 1, 2.

In the virtue of remark 2.1 system (4.8), is a system of integral Fredholm equations of the
second kind with respect to ∂u(ξ)

∂ξ3

∣∣
ξ3=γk(ξ′) , k = 1, 2. Consequently, the system (4.8) has

the unique solution

∂u(ξ)

∂ξ3

∣∣
ξ3=γk(ξ′) = Ψk(u |Γ1 , u |Γ2 ,

∂u |Γ1

∂ξ1
,
∂u |Γ2

∂ξ1
,
∂u |Γ1

∂ξ2
,
∂u |Γ2

∂ξ2
), (4.9)

as, evidently,Bi(ξ′), j = 1, 2, are linear functionals of u(ξ′, γk(ξ
′)), ∂u(ξ

′,γk(ξ
′))

∂ξj
, j = 1, 2,

k = 1, 2.
The functionals Φk, Ψk , k = 1, 2, from (4.7) and (4.9) are linear with respect to the

unknown values u |Γ1 , u |Γ2 ,
∂u|Γ1
∂ξj

,
∂u|Γ2
∂ξj

, j = 1, 2:

Φk =

2∑
i=1

a
(k)
i (ξ′)u |Γi +

2∑
i,j=1

b
(k)
ij (ξ′)

∂u |Γi
∂ξj

+

2∑
i=1

∫
S
c
(k)
i (ζ ′)u |Γi dζ

+
2∑

i,j=1

∫
S
d
(k)
ij (ζ ′)

∂u |Γi
∂ζj

dζ + ek(ξ
′), k = 1, 2, (4.10)

Ψk =

2∑
i=1

a
(l)
i (ξ′)u |Γi +

2∑
i,j=1

b
(l)
ij (ξ′)

∂u |Γi
∂ξj

+
2∑
i=1

∫
S
c
(l)
i (ζ ′)u |Γi dζ

+
2∑

i,j=1

∫
S
d
(l)
ij (ζ ′)

∂u |Γi
∂ζj

dζ + el(ξ
′), l = 3, 4; k = 1, 2. (4.11)

Excluding ∂u(ξ)
∂ξ3

∣∣
ξ3=γk(ξ′) , k = 1, 2, from system (4.7), (4.9) and taking into account

(4.10), (4.11) we’ll obtain a system of linear integro-differential Fredholm equations of the
second kind with respect to u(ξ′, γk(ξ

′)), k = 1, 2:
2∑
i=1

A
(k)
i (ξ′)u |Γi +

2∑
i,j=1

B
(k)
ij (ξ′)

∂u |Γi
∂ξj

+
2∑
i=1

∫
S
C

(k)
i (ζ ′)u |Γi dζ
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+

2∑
i,j=1

∫
S
D

(k)
ij (ζ ′)

∂u |Γi
∂ζj

dζ + gk(ξ
′) = 0, k = 1, 2, (4.12)

where
A

(k)
i (ξ′) = a

(k)
i (ξ′)− a(k+2)

i (ξ′) , B
(k)
ij (ξ′) = b

(k)
ij (ξ′)− b(k+2)

ij (ξ′),

C
(k)
i (ζ ′) = c

(k)
i (ζ ′)− c(k+2)

i (ζ ′), D
(k)
ij (ζ ′) = d

(k)
ij (ζ ′)− d(k+2)

ij (ζ ′),

gk(ξ
′) = ek(ξ

′)− ek+2(ξ
′), k = 1, 2.

Thus, we have come to a two-dimensional system (4.12) of linear integro-differential equa-
tions of the first order with Dirichlet’s conditions (2.3) on ∂S =Γ̄1

⋂
Γ̄2 . As the boundary

∂S is one-dimensional then this Dirichlet’s condition doesn’t restrict the generality because
its dimension is two units less than the dimension of the domain D.

Thus, we have established the following
Theorem 4.1. If the assumptions of Theorem 3.1 and conditions (4.6) hold true and

system (4.8) is uniquely resolved then boundary-value problem (2.1)-(2.2) is reduced to
a two-dimensional system of linear integro-differential equations (4.12) with Dirichlet’s
condition (2.3) on the boundary ∂S = S\S.

When solution u |Γk ,
∂u|Γk
∂ξj

, k, j = 1, 2, is obtained from system (4.12), then solution
∂u(x)
∂x3

∣∣
x3=γk(x′) , k = 1, 2, is derived from (4.7), or (4.9). Then we find ∂u(x)

∂x1

∣∣
x3=γk(x′)

and ∂u(x)
∂x2

∣∣
x3=γk(x′) from (4.1).

The solution to problem (2.1)-(2.3) is obtained from the 1st and 2nd basic relationships
(2.5) and (2.7) as from a system of Fredholm equations for u(ξ), ∂u(ξ)∂ξi

, ξ ∈ D, i = 1, 2, 3:

u(ξ) = −
3∑
j=1

2∑
k=1

∫
Γk

(
∂u(x)

∂xj
U(x− ξ)− u(x)

∂U(x− ξ)
∂xj

)
cos(νx, xj)dx

−
3∑

m=1

∫
D
am(x)

∂u(x)

∂xm
U(x− ξ)dx−

∫
D
a(x)u(x)U(x− ξ)dx,

∂u(ξ)

∂ξi
=

∫
Γ

∂u(x)

∂xm

[
∂U(x− ξ)
∂xm

cos(νx, xi)−
∂U(x− ξ)

∂xi
cos(νx, xm)

]
dx

+

∫
Γ

∂u(x)

∂xl

[
∂U(x− ξ)

∂xl
cos(νx, xi)−

∂U(x− ξ)
∂xi

cos(νx, xl)

]
dx

−
∫
Γ

∂u(x)

∂xi

∂U(x− ξ)
∂νx

dx−
∫
D

3∑
k=1

ak(x)
∂u(x)

∂xk

∂U(x− ξ)
∂xi

dx

−
∫
D
a(x)u(x)

∂U(x− ξ)
∂xi

dx, i = 1, 2, 3.

Finally, there has been established
Theorem 4.2. If the assumptions of Theorem 4.1 hold true then boundary value problem

(2.1), (2.2), (2.3) has Fredholm property.
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