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Abstract. The Bochner space Lp ((0, 2π) ;X) , 1 ≤ p < +∞, is considered, in which the peri-

odic Hilbert transform is bounded. Based on this property, it is proved that the family of subspaces{
L
(k)
p (X)

}
k∈Z

, generated by exponential system
{
eikt

}
k∈Z

, forms a basis for Lp ((0, 2π) ;X).

Moreover, it is proved that this system possesses the Riesz property.
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1 Introduction

The classical Hardy classes Hp of analytic functions on the unit disk of complex
plane are very known and play an important role in many areas of mathematics. For
more detailed information about these classes, one can refer to monographs such as
[15,13,8]. Different mathematicians have provided abstract generalizations of these
classes (see, e.g. [17,7,5,6,11,12,16,9]).

In this note, we consider the Bochner space Lp (J ;X) , 1 ≤ p < +∞, on the
interval J = [−π, π). We assume that the periodic Hilbert transform is bounded
in Lp (J ;X) , 1 ≤ p < +∞. For 1 < p < +∞, this property is equivalent to the
Banach space X having the so-called UMD (Unconditional Martingale Difference)

property. We consider the sequence of subspaces
{
L
(k)
p (X)

}
k∈Z

, where L
(k)
p (X) is

the subspace of Lp (J ;X), consisting of functions of the form eiktx, x ∈ X, for all
k ∈ Z. We prove the basicity of this system of subspaces for Lp (J ;X) , 1 ≤ p < +∞.
Moreover, we establish that this basis has X-valued Riesz property.
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2 Notations and auxiliary facts

21 Notations.

The following notations are used throughout this work: N will be the set of all
positive integers, Z+ = {0} ∪ N; Z will be a set of all integers, C will stand for the
field of complex numbers; B-space-Banach space; [X;Y ] denotes a B-space of all
bounded linear operators from X to Y . Moreover, [X] = [X;X]; ‖ · ‖ is a norm in
X; X∗ is a dual space of X; L [M ] is a linear span of the set M ; M̄ is a closure of the
set M ; I is an identity operator; +̇ denotes the direct sum; ω = {z ∈ C : |z| < 1};
γ = {z ∈ C : |z| = 1}; J ≡ [−π;π).

Let X be a B-space and Lp (J ;X) , 1 ≤ p < +∞, be a Bochner space equipped
with the norm

‖f‖Lp(J ;X) =

(∫
J
‖f (t)‖pX dt

) 1
p

.

For every k ∈ Z set

L(k)
p (X) =

{
eiktx : x ∈ X

}
.

It is evident that L
(k)
p (X) ⊂ Lp (J ;X) is a subspace (i.e., a closed subspace).

22 Basis from subspaces.

We will need some facts concerning basis from subspaces.
Let X be a B-space, and X ≡ {Xk}k∈N ⊂ X be a sequence of subspaces of X.

Also, denote Xk ≡ {Xn}n∈N\{k}.
The system X is complete in X, if L [X ] = X.

The system X is minimal in X, if for ∀k ∈ N⇒ Xk ∩ L [Xk] = {0}.
The system X forms a basis for Xif every x ∈ X has a unique expansion in the

form

x =

∞∑
k=1

xk,

with xk ∈ Xk, k ∈ N.
Let P ∈ [X] &P 2 = P , be a continuous projector. Define Q = I − P . which

is also a continuous projector. Let Y = PX &Y c = QX. The following properties
hold: i) Y and Y c are subspaces of X; ii) Y ∩ Y c = {0}; iii) X = Y +̇Y c ⇒ Y and
Y c are complemented subspaces in X.

Conversely, if Y1;Y2 ⊂ X are subspaces and X = Y1+̇Y2 holds, then this de-
composition generates corresponding projectors P ;Q such that I = P +Q& PQ =
QP = 0. These projectors are called mutually disjunctive.

The projectors {Pk}k∈N ⊂ [X] form a basis for X, if they are mutually disjunctive
and I =

∑∞
k=1 Pk, i.e. x =

∑∞
k=1 Pkx, ∀x ∈ X.

The projectors {Pk}k∈N ⊂ [X] are said to be complete in X, if the subspaces
{Xk}k∈N are complete in X, where Xk = PkX, k ∈ N. It is obvious that the projec-
tors {Pk}k∈N ⊂ [X] form a basis for X if and only if the subspaces {Xk}k∈N form a
basis for X, where Xk = PX, k ∈ N .

The following basicity criterion is valid.

Theorem 2.1 The projectors {Pk}k∈N ⊂ [X] form a basis for X if and only if the
following assertions hold:
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i) {Pk}k∈N is complete in X;
ii) {Pk}k∈N are mutually disjunctive;

iii) the projectors Sn =
∑n

k=1 Pk, n ∈ N, are uniformly bounded, i.e.

sup
n
‖Sn‖[X] < +∞.

For more information about these facts and on basis properties of systems of
sines, cosines, exponents and their perturbations in various function spaces one can
refer to the monographs [19,2] and the works [4,18,10,3].

The set of all X-valued trigonometric polynomials Pn : J → X of the form

Pn (t) =

n∑
k=−n

ake
ikt, t ∈ J,

is denoted by P (X), where {ak} ⊂ X.
Consider the Bochner space Lp (γ;X), which is generated by the Lebesgue linear

measure dl on γ, where dl is the length element of γ. We identify the segment J and
the unit circle γ by mapping eit : J ↔ γ. This allow us to identify also the spaces
Lp (J ;X) and Lp (γ;X). And also set f (t) =: f

(
eit
)
, for f : γ → C.

Define on P (X) the following multiplier operator M : P (X)→ Lp (J ;X):

(M P ) (t) = P̃ (t) = −i
∑
k∈Z

sign (k) ake
ikt,

where

P (t) =
∑
k

ake
ikt ∈P (X) ,

and

sign (k) =

{
1 , k > 0,
0, k = 0,
−1 , k < 0 .

It is valid the following

Proposition 2.1 Let X be a B-space. Then P (X) = Lp (J ;X) , 1 ≤ p < +∞ (the
closure is taken in Lp (J ;X)).

Regarding this fact one can see, e.g. the monograph [14].
From Proposition 2.1 it directly follows the following

Corollary 2.1 Let X be a B-space. The sequence of subspaces
{
L
(k)
p (X)

}
k∈Z

is

complete in Lp (J ;X) , 1 ≤ p < +∞.

Consider the following X-valued periodic Hilbert transform(
H̃f
)(

eiθ
)

=
1

2π

∫ π

−π

f (θ − ϕ)

tgϕ2
dϕ, θ ∈ J.

Now, let’s define the basicity of the double system
{
L
(k)
p (X)

}
k∈Z

for Lp (J ;X).
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Definition 2.1 We will say that the system
{
L
(k)
p (X)

}
k∈Z

forms a basis for Lp (J ;X) , 1 ≤
p < +∞, if every f ∈ Lp (J ;X) has a unique expansion of the form

f (t) =

∞∑
k=0

f+k e
ikt +

∞∑
k=1

f−k e
−ikt,

with the coefficients
{
f±k
}
⊂ X.

Also accept the following concept of Riesz property of the system
{
L
(k)
p (X)

}
k∈Z

.

Definition 2.2 We will say that the system
{
L
(k)
p (X)

}
k∈Z

has a Riesz property if

for ∀f ∈ Lp (J ;X), the series

R±f =

+∞∑
k=0

f̂±ke
±ikt,

converges in Lp (J ;X), where

Tk (f) = f̂k =
1

2π

∫ π

−π
e−iktf (t) dt , k ∈ Z, (2.1)

are generalized Fourier coefficients of f (·).

In obtaining main results we will essentially use the following

Lemma 2.1 Let X be a B-space. Then M P = H̃P , ∀P ∈P (X).

This lemma is proved completely analogously to the proof of Lemma 6.9 of mono-
graph [1] (see, p. 162) and we will skip this proof.

From this lemma it directly follows the following obvious

Statement 2.2 Let X be a B-space. If H̃ ∈ [Lp (J ;X)] , 1 ≤ p < +∞, then the
multiplier operator M extends continuously on Lp (J ;X) : M ∈ [Lp (J ;X)].

Indeed, by Proposition 2.1 the set P (X) is dense in Lp (J ;X) and therefore, the
rest follows from Lemma 2.1.

3 Main results

In this section we will prove that the system
{
L
(k)
p (X)

}
k∈Z

forms a basis for

Lp (J ;X) , 1 ≤ p < +∞, if H̃ ∈ [Lp (J ;X)].
First, let us prove the following

Theorem 3.1 Let X be a B-space and H̃ ∈ [Lp (J ;X)] , 1 ≤ p < +∞. Then the

system
{
L
(k)
p (X)

}
k∈Z

forms a basis for Lp (J ;X) in sense that (i.e. in symmetric

sense) ∀f ∈ Lp (J ;X) has a unique expansion

f (t) = lim
n→∞

n∑
k=−n

f̂ke
ikt. (3.1)
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Proof. Consider

(Snf) (t) =
n∑

k=−n
f̂ke

ikt , n ∈ N,

where {fk} are Fourier coefficients of f (·), which are defined by (2.1). So, we have

Snf =
1

2π

∫ π

−π
Dn (τ − t) f (τ) dτ,

where Dn (·) is the Dirichlet kernel

Dn (t) =
sin
(
n+ 1

2

)
t

2 sin t
2

, n ∈ N.

From the relations
1

2π

∫ π

−π
ei(n−k)tdt = δnk; ∀n; k ∈ Z,

it directly follows that if the function f (·) has an expansion of the form (3.1), then

such expansion is unique. Completeness of the system
{
L
(k)
p (X)

}
k∈Z

in Lp (J ;X)

follows from Corollary 2.1.
To prove the theorem it is sufficient to show that the operators {Sn}n∈N ⊂

[Lp (J ;X)] are uniformly bounded. Let λn = n + 1
2 . Then Snf we can represent in

the form
(Snf) (t) = 1

4π

∫ π
−π

sinλn(τ−t) cos(τ−t)
tg τ−t

2

f (τ) dτ =

= 1
4π

(
cosλnt cos tI

(1)
n (t)− cosλnt sin tI

(2)
n (t) −

− sinλnt cos tI
(3)
n (t) + sinλnt sin tI

(4)
n (t)

)
,

where

S(k)
n (t) =

∫ π

−π

f
(n)
k (τ)

tg τ−t2
dτ , k = 1, 4 ;

and
f
(n)
1 (τ) = sinλnτ cos τ f (τ) , f

(n)
2 (τ) = sinλnτ sin τ f (τ) ,

f
(n)
3 (τ) = cosλnτ cos τ f (τ) , f

(n)
4 (τ) = cosλnτ sin τ f (τ) .

Then, we obtain

‖Snf‖Lp(J ;X) ≤
1

4π

4∑
k=1

∥∥∥S(k)
n

∥∥∥
Lp(J ;X)

≤ c
4∑

k=1

∥∥∥f (n)k

∥∥∥
Lp(J ;X)

≤ c ‖f‖Lp(J ;X) ,

where c > 0 is a constant independent of n and f . Consequently, by Theorem 2.1 we

obtain the basicity (in symmetric sense) of the system
{
L
(k)
p (X)

}
k∈Z

for Lp (J ;X).

Theorem is proved.

The following theorem is also true.

Theorem 3.2 Let X be a B-space and H̃ ∈ [Lp (J ;X)] , 1 ≤ p < +∞. Then the

system
{
L
(k)
p (X)

}
k∈Z

has a Riesz property.
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Proof. Define the Riesz operator R+on P (X) by expression

(
R+P

)
(τ) =

m∑
n=0

anτ
n,

∀P =
m∑

n=−m
anτ

n ∈P (X) . (3.2)

We have

R+P =
1

2
T0 (P ) +

1

2
(P + iM (P )) ,

where M is a multiplier operator and Tk (·) is defined by formula (2.1) (Fourier
coefficients). Since, T0 ∈ Lp (J ;X) (it directly follows from expression of Tk), then
it is evident that

R+ ∈ [Lp (J ;X)]⇔M ∈ [Lp (J ;X)] .

So, let Sm (f) be m-th order partial sum of function f ∈ Lp (J ;X):

Sm (f) (τ) =

m∑
n=−m

Tn (f) τn , m ∈ N.

Then for polynomials of the form (3.2) we have(
R+P

)
(τ) = τm

[
Sm
(
ξ−mP (ξ)

)]
(τ) . (3.3)

According to the Theorem 3.1 we have

‖Sm (f)‖Lp(J ;X) ≤ c ‖f‖Lp(J ;X) , ∀m ∈ N, ∀f ∈ Lp (J ;X) ,

where the constant c > 0 is independent of m and f .
Taking into account this relation, from (3.3) we obtain∥∥R+P

∥∥
Lp(J ;X)

≤ c
∥∥τ−mP (τ)

∥∥
Lp(J ;X)

= c ‖P (τ)‖Lp(J ;X) , ∀P ∈P (X) .

Since, P (X) is dense in Lp (J ;X), then from here it follows that the operator
R+extends continuously to Lp (J ;X): R+ ∈ [Lp (J ;X)]. In particular, we obtain
that for ∀f ∈ Lp (J ;X), the series

R+f =
∞∑
n=0

f̂nτ
n,

converges in Lp (γ;X) and from the Theorem 3.1 it follows that the series

R−f =

−1∑
n=−∞

f̂nτ
n,

also converges in Lp (γ;X).
Theorem is proved.

Using the Theorems 3.1 & 3.2 it is easy to establish the validity of the following

Statement 3.3 Let X be a B-space and H̃ ∈ [Lp (J ;X)] , 1 ≤ p < +∞. Then the

system of subspaces
{
L
(k)
p (X)

}
k∈Z

forms a basis for Lp (J ;X).
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Note that the class of B-spaces for which H̃ ∈ [Lp (J ;X)] is sufficiently wide. For
example, let’s remember the definition of UMD (Unconditional Martingale Differ-
ence) property.

Definition 3.1 A B-space X is said to have the property of unconditional martin-
gale differences (UMD property) if for all p ∈ (1,∞) there exists a finite constant
β ≥ 0 (depending on p and X) such that the following holds. Whenever (S,A , µ)

is a σ-finite measure space, {Fn}Nn=0 is a σ-finite filtration, and {fn}Nn=0 is a finite
martingale in Lp (S;X), then for all scalars |εn| = 1, n = 1, ..., N we have∥∥∥∥∥

N∑
n=1

εndfn

∥∥∥∥∥
Lp(S;X)

≤ β

∥∥∥∥∥
N∑
n=1

dfn

∥∥∥∥∥
Lp(S;X)

.

If this condition holds, then X is said to be a UMD space.
It is very known that if X has UMD property, then H̃ ∈ [Lp (J ;X)] , 1 < p < +∞

(see, e.g. [14]). Consequently, as a particular case from Statement 3.3, we get the
following

Corollary 3.1 Let B-space X have UMD property. Then, the system
{
L
(k)
p (X)

}
k∈Z

forms a basis for Lp (J ;X), 1 < p < +∞.
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